

ABB MEASUREMENT & ANALYTICS | ANALYTICAL MEASUREMENT

PGC1000

Targeted applications

The PGC1000 addresses analytical measurement solutions that are simple, highly accurate, costeffective (requiring no shelter), modular and have very low maintenance and implementation requirements.

Measurement made easy

Targeted applications

App category	App description	Cycle time /carrier	Train
H2	Hydrogen - 0.1-100%	75 N2	ВСЈ
02	Trace oxygen - 30-2000 ppm	330 H2/He	ВВР
	% Level oxygen - 0.2-21%	330 He	ВВН
H2O	Trace Moisture - H2O 0.002-2%	90 He	BCR
СО	Carbon monoxide - 0.2-100%	330 H2/He	ВВН
H2S	H2S in fuel gas - 0-300 ppm	180/150 He/H2	BBR/BCM
H2S	Low level ppm H2S	660 sec	BDB
HRVOC	Highly reactive volatile organic compounds	420 He	ВВС/ВВЈ/ВВН
Permanent gasses	H2/O2/N2/CO	330 H2/He	ВВН
Light hydrocarbons	C3+ w/N2/O2 split - Landfill	360 He	ввн/всв
Light hydrocarbons	C3+ w/N2/O2 split - Landfill	345 He	BDG

Hydrocarbons (Gas quality)	Std C6+Btu application	315 H2/He	BBK/BBF
	Fast C6+ Btu app (H2 carrier)	90 H2	BCD/BCF
	Fast C6+ Btu app (He carrier)	180 He	BCC/BCG
	C6+ Btu app up to 1200 ppm H2S	315 H2/He	BBF/BBM
	C7+ Btu application	360 H2/He	BBF/BBS
	C7+ Btu app up to 1200 ppm H2S	540 H2/He	BBF/BCH
	C9+ Btu app w/HCDP available	360 He	BBK/BBF/BBT
	C6+ with trace H2S	360 He	BBK/BBF/BBR
	C6+ with N2/O2 split	330 He	BBK/BBF/BBH
	Demethanizer (tops & bottoms)	60 He	BCT/BCS
Process control	Deethanizer (tops & bottoms)	60 He	BCT/BCS
	Depropanizer (tops & bottoms)	60 He	BCT/BCS
	Debutanizer (tops & bottoms)	420 H2/He	BBK/BBJ
	Debutamer (tops & bottoms)	420 H2/He	BBK/BBJ
	Depentanizer (tops only)	420 H2/He	BBK/BBJ
	C4 Parafins/Olefins	420 H2/He	ВВЈ
	Propane/Propylene split	420 H2/He	ВВЈ

Defined column trains

Train designator	Measured components	Carrier
BBC	C3+/He/N2/C1/CO2/C2=/C2/C2/H2	H2/He
BBF	C3+/N2/C1/CO2/C2=/C2	H2/He
BBG	C3+/N2/C1/CO2/C2=/C2/H2S/H2O	H2/He
ВВН	C1+/He/O2/N2/CO/H2	H2/He
ВВЈ	C5+/C3/C3=/IC4/NC4/B-1/IC4=/TB-2/CB-2/1,3-BD	H2/He
ВВК	C6+/C3/IC4/NC4/NeoC5/IC5/NC5	H2/He
ВВМ	C6+/C3/H2S/IC4/NC4/NeoC5/IC5/NC5	H2/He
ВВР	O2/N2	H2/He
BBR	H2S	H2/He
BBS	C7+/C3/IC4/NC4/NeoC5/IC5/NC5/C6's	H2/He
ВВТ	C9+/C6's/C7's/C8's	He
BBW	02	He
ввх	C4+/CYC3/PD/MA	H2/He
ВСВ	C3+/H2/N2/C1/CO2/C2=/C2/H2S	H2/He
ВСС	C6+/C3/IC4/NC4/NeoC5/IC5/NC5	He
BCD	C6+/C3/IC4/NC4/NeoC5/IC5/NC5	H2
BCF	C3+/N2/C1/CO2/C2=/C2	H2
BCG	C3+/N2/C1/CO2/C2=/C2	He
ВСН	C7+/C3/H2S/IC4/NC4/NeoC5/IC5/NC5/C6's	H2/He
ВСЈ	H2 15 uL	N2
BCK	CO2+/He/O2/N2/CO/C1/H2	H2/He
ВСМ	H2S	H2/He
BCN	C4+/CYC3/PD/MA	H2/He
ВСР	H2 30 uL	N2
BCR	H2O	H2/He
BCS	C3+/N2/C1/CO2/C2=/C2	He
ВСТ	C6+/C3/IC4/NC4/NeoC5/IC5/NC5	He
BCW	H2	N2
всх	TMB	He
BCZ	тнт	He
BDB	H2S	He
BDC	C3+/N2/C2=/H2/C1/CO2/C2H4/C2	H2/He
BDD	C6+/C3/IC4/NC4/NeoC5/IC5/NC5	He
BDF	C3+/N2/C1/CO2/C2=	He
BDG	C3+/H2/N2/C1/CO2/H2S/C2=	H2/He

The guidelines or technical limits allowed for combining trains are as follows:

7051 Industrial Boulevard Bartlesville, Oklahoma 74006 total flow. in quiry @us. abb. com+1 918 338 4888

^{1.} Up to two trains per enclosure 2. Up to two enclosures 3. Limited to a total of four trains per analyzer system.

The three letter combinations appearing in the far left column headed "Column train designator"

correspond to the various sections outlined in the PGC1000 Applications Manual.