

ABB MEASUREMENT & ANALYTICS | OPERATING INSTRUCTIONS | OI/LP-EN REV. D

LP

Linear pneumatic piston actuators

Measurement made easy

High performance actuators for precision damper control

Overview

LP linear piston actuators are typically used to control the position of airflow regulating dampers, butterfly valves, and other similar process regulating devices on furnaces, boilers and air distribution systems.

They are most often used on windbox dampers in NOx reduction control systems. When directly connected to a lever on the damper shaft, these actuators provide accurate positioning control at minimum.

For more information

Further publications for the LP series of linear pneumatic piston actuators are available for free download from:

www.abb.com/actuators

(see links and reference numbers below) or by scanning this code:

Search for or click on

Data Sheet

LP

Linear pneumatic piston actuators

DS/LP-EN

WARNING notices as used in this manual apply to hazards or unsafe practices which could result in personal injury or death.

CAUTION notices apply to hazards or unsafe practices which could result in property damage.

NOTES highlight procedures and contain information which assist the operator in understanding the information contained in this manual.

All software, including design, appearance, algorithms and source codes, is owned and copyrighted by ABB Inc. or its suppliers.

WARNING

INSTRUCTION MANUALS

Do not install, maintain or operate this equipment without reading, understanding and following the proper ABB Inc. instructions and manuals, otherwise injury or damage may result.

POSSIBLE PROCESS UPSETS

Operation and maintenance must be performed only by qualified personnel and only after securing equipment controlled by this product. Adjusting or removing this product while it is in the system may upset the process being controlled. Some process upsets may cause injury or damage.

NOTICE

The information contained in this document is subject to change without notice. ABB Inc. reserves the right to make minor changes to this publication, such as company name & logos as well as other minor corrections, without necessarily changing the publication number.

ABB Inc., its affiliates, employees, and agents, and the authors of and contributors to this publication specifically disclaim all liabilities and warranties, express and implied (including warranties of merchantability and fitness for a particular purpose), for the accuracy, currency, completeness, and/or reliability of the information contained herein and/or for the fitness for any particular use and/or for the performance of any material and/or equipment selected in whole or part with the user of/or in reliance upon information contained herein. Selection of materials and/or equipment is at the sole risk of the user of this publication.

This document contains proprietary information of ABB Inc. and is issued in strict confidence. Its use, or reproduction for use, for the reverse engineering, development or manufacture of hardware or software described herein is prohibited. No part of this document may be photocopied or reproduced without the prior written consent of ABB Inc.

TABLE OF CONTENTS

READ FIRST	2
1.0 SPECIFICATIONS / FEATURES	3
2.0 THRUST RATINGS	4
3.0 NOMENCLATURE	7
4.0 MAINTENANCE	10
5.0 OUTLINE DIMENSION DRAWINGS	12
LP10LP20	16
LP30LP32	
LP40	
LP50	26
LP60	28
6.0 PARTS	30
7.0 ACCESSORIES: CLEVIS. PINS & MOUNTS	36

READ FIRST

WARNING

INSTRUCTION MANUALS

Do not install, maintain, or operate this equipment without reading, understanding and following the proper ABB Inc. instructions and manuals, otherwise injury or damage may result.

RETURN OF EQUIPMENT

All equipment being returned to ABB Inc. for repair must be free of any hazardous materials (acids, alkalis, solvents, etc). A Material Safety Data Sheet (MSDS) for all process liquids must accompany returned equipment. Contact ABB Inc. for authorization prior to returning equipment.

Read these instructions before starting installation; save these instructions for future reference.

WARNING

Stay clear of moving components when performing procedures that require the equipment to be energized. The equipment can operate automatically. There is a risk of entanglement of body parts if caution is not observed. When possible, remove the supply source or remove the equipment from the process before servicing.

Contacting ABB Inc.

Should assistance be required with any ABB Instrumentation product, contact the following:

Telephone:

Automation Services Call Center 1-800-HELP-365

Internet: www.abb.com

- Select Instrumentation & Analytical from the Our Offerings section
- Select Contact Directory from the Products & Services tab. Then select your country location from the Your Country drop-down menu in the center of the page.
- Select **Service** from the **Instrumentation & Analytical** Product Group listing and complete the requested information in the pop-up window.

1.0 SPECIFICATIONS / FEATURES

Simple Cylinder Actuators From 2¹/₂" dia. x 5" Stroke to 10"dia. x 16" Stroke

Linear Piston Actuator Assemblies

The LP series of damper drives provide a linear actuation solution that is ideally suited for applications to control the position of air dampers or louvers on furnaces, boilers, and air distribution systems. They are also used on Burner Tilts and Overfire air dampers. They are suitable for Windbox damper control in NOx reduction control systems.

Operation with TZIDC Smart Positioners offers digital communication, self-calibration, diagnostics and performance monitoring functions.

The "AutoStroke" feature calibrates and tunes the LP assembly automatically.

FEATURES:

High resolution, sensitivity, and fast response with proven AV and TZIDC Positioners.

- Cylinders available with Buna-N or Viton seals.
- Temperature range up to 250°F with AV15. 185°F with TZIDC.
- Easy adaptability to air dampers and louvers via clevis and pivot pin mounting.
- Drop in replacement for many "older" piston actuators.
- Available with built-in 4 to 20ma. position feedback.

The conventional assembly, which uses the AV Positioner series, offers a high-temperature option up to 250°F. In comparison our digital TZIDC solution allows for operation up to 185°F.

LP sizes range from a 2.5" diameter cylinder with a 5" stroke (2.5"x 5") up to a 10"x 16" diameter cylinder. The most common sizes, 2.5"x 5" and 4"x 4," are readily available.

TZIDC Digital Features

- Microprocessor-based
- Local keypad, two line LCD and position indicator
- · Easy local configuration and operation
- Digital communication via HART, FOUNDATION Fieldbus, and Profibus
- Remote configuration and monitoring Configurable operating parameters
- Easy set-up of direct/reverse action, limit stops, etc.
- Integrated position feedback
- Analog and/or digital feedback without additional external devices to calibrate and maintain
- Diagnostics and self-monitoring capabilities
- Easy trouble-shooting and preventive maintenance
- Immunity to shock and vibration allows installation in high vibration areas

2.0 RATINGS

Thrust Ratings

The basic thrust rating of a pneumatic piston is equal to the area of the piston times the supply pressure. The minimum supply pressure for both the TZIDC and the AV1 is 20 psi.

The maximum supply pressure for the TZIDC is 90 psi and 125 psi for the AV positioner.

The area of the piston is $A = \pi D^2/4$. Subtract approximately 10% for friction losses and because the rod side of the piston has less area. An example is shown for an 80 psi air supply:

To find the lever length that would result in 90° rotation of the damper shaft, multiply the cylinder stroke length by 0.707.

Please refer to the individual Product Specifications for details on the AV and TZIDC Positioner performance.

Operating Torque/Thrust	Actuator Type						
Characteristic	LP10	LP20	LP30	LP32	LP40	LP50	LP60
Area-Retracting (Rod Side)	4.71 in. ²	11.2 in. ²	26.8 in. ²	26.8 in. ²	48.8 in. ²	48.8 in. ²	76.1 in. ²
Area-Extending (other side)	4.91 in. ²	11.94 in. ²	28.3 in. ²	28.3 in. ²	50.3 in. ²	50.3 in. ²	78.5 in. ²
Force out @ 80 psi ¹	339 lbs.	806 lbs	1930 lbs.	1930 lbs.	3514 lbs.	3514 lbs.	5479 lbs.
Lever Length for 90° Rotation	3.54 in.	2.83 in.	5.66 in.	11.32 in.	5.66 in.	11.32 in.	11.32 in.
Operating Torque @ 80 psi ²	71 ft. lbs.	134 ft. lbs.	643 ft. lbs.	1286 ft. Ibs.	1172 ft. lbs	2341 ft. lbs.	3651 ft. lbs.

Note 1: Use the rod side area x psi to calculate force. Subtract 10% for friction loss.

Note 2: Torque at mid-stroke is 1.4x torque at +/- 45°

Suggested Maximum Operating Force vs Pressure

The following tables show the maximum operating force at minimum & maximum supply pressure for the various LP cylinder sizes.

Note: The Torque calculation values are provided based on the stroke length of the LP and the required lever arm dimension for 90 deg damper travel.

LP10				
Cylinder	diameter	2.5"x5"		
Lever fo	r 90 deg	3.53"		
Supply Force psi lbf		Torque ft-lb		
40	170	35		
45	191	40		
50	212	44		
55	233	48		
60	254	53		
65	276	57		
70	297	62		
75	318	66		
80	339	71		
85	360	75		
90	382	79		

Table 1

LP30				
Cylinder	6"x8"			
Lever fo	or 90 deg	5.66"		
Supply psi	Force Ibf	Torque ft-lb		
40	965	322		
45	1,085	362		
50	1,206	402		
55	1,327	442		
60	1,447	483		
65	1,568	523		
70	1,688	563		
75	1,809	603		
80	1,930	643		
85	2,050	684		
90	2.171	724		

Table 3

LP20				
Cylinder	diameter	4"x4"		
Lever fo	r 90 deg	2.83"		
Supply Force psi lbf		Torque ft-lb		
40	403	67		
45	454	76		
50	504	84		
55	554	92		
60	605	101		
65	655	109		
70	706	118		
75	756	126		
80	806	134		
85	857	143		
90	907	151		

Table 2

LP32				
Cylinder	Cylinder diameter			
Lever fo	r 90 deg	11.31"		
Supply psi	Torque ft-lb			
40	965	643		
45	1,085	723		
50	1,206	804		
55	1,327	884		
60	1,447	964		
65	1,568	1,045		
70	1,688	1,125		
75	1,809	1,205		
80	1,930	1,286		
85	2,050	1,366		
90	2,171	1,447		

Table 4

LP40					
Cylinder	Cylinder diameter				
Lever fo	or 90deg	5.66"			
Supply psi	Force lbf	Torque ft-lb			
40	1,757	586			
45	1,976	659			
50	2,196	732			
55	2,416	806			
60	2,635	879			
65	2,855	952			
70	3,074	1,025			
75	3,294	1,098			
80	3,514	1,172			
85	3,733	1,245			
90	3,953	1,318			

Table 5

LP60				
Cylinde	Cylinder diameter			
Lever f	or 90deg	11.31"		
Supply psi	Force lbf	Torque ft-		
40	2,740	1,826		
45	3,082	2,054		
50	3,425	2,282		
55	3,767	2,510		
60	4,109	2,738		
65	4,452	2,966		
70	4,794	3,195		
75	5,137	3,423		
80	5,479	3,651		
85	5,822	3,879		
90	6,164	4,107		

Table 7

LP50				
Cylinder	Cylinder diameter			
Lever fo	r 90deg	11.31"		
Supply psi	Force Supply psi lbf			
40	1,757	1,171		
45	1,976	1,317		
50	2,196	1,463		
55	2,416	1,610		
60	2,635	1,756		
65	2,855	1,902		
70	3,074	2,049		
75	3,294	2,195		
80	3,514	2,341		
85	3,733	2,488		
90	3,953	2,634		

Table 6

3.0 NOMENCLATURE

"Simple Cylinder" type Linear pneumatic piston actuators are supplied with either type AV conventional or type TZID intelligent positioners mounted on the cylinder. Cylinders are supplied with a threaded clevis on the rod end and a standard MP pivot on the base. Base mounting pivots may be ordered as an accessory.

The cylinders can be supplied with either Buna-N nitrile rubber seals suitable for 200°F (93°C) operation or Viton seals suitable for 300°F (148°C) operation. The Buna-N seals have a lower breakaway pressure, offering smoother modulating control. High temperature Viton seals are inherently higher friction and tend to stick and breakaway, causing somewhat jerky motion. The operating temperature for the AV15 & AV16 is 250°F (121°C). All other positioners have a 185°F (85°C) maximum ambient. Buna-N seals are recommended unless temperatures > 200°F (93°C) dictate Viton.

The TZIDC-200 is for Explosion Proof application Class I Div 1 Gr. C-G. Refer to the AV or TZIDC positioner specifications for positioner details and specifications.

The maximum supply pressure with type TZIDC positioners is 90 psi. The maximum supply pressure with type AV positioners is 125 psi.

Please refer to the individual Instruction Books for the AV and the TZIDC positioners for details on the two types of positioners (Refer to table of Reference Documentation shown below).

Document	Description
D-APE-AV1234_	Characterizable Positioner Type AV1, AV2, AV3, AV4 specification
10/18-0.22 EN	Electro-Pneumatic Positioner TZIDC specification
10/18-0.32 EN	Electro-Pneumatic Positioner TZIDC-200 specification
PN25039 Characterizable Positioner Type AV1 and AV2 instruction	
PN25058 Characterizable Positioner Type AV3 and AV4 instruction	
P-E88-25-001	Closed Loop Control Using Type AV Positioner
P-P88-001 Installing a Type AV Positioner in a Hazardous Location	
42/18-84 EN	TZIDC Positioner Operating Instructions
42/18-73 EN	TZIDC-200 Positioner Operating Instructions
45/18-79 EN	TZIDC/TZIDC-200 Configuration Instructions

Refer to table on next page for LP Nomenclature details.

LP LINEAR PISTON ACTUATORS INSTRUCTION MANUAL

Code **Linear Pneumatic Piston Actuator** LP For quantity greater than 3 call 1: Cylinder Size 2-1/2 in. Diameter, 5 in. Stroke (63.5 mm x 127 mm) 10 4 in. Diameter, 4 in. Stroke (101.6 mm x 101.6 mm) 20 6 in. Diameter, 8 in. Stroke (152.4 mm x 203.2 mm) 30 6 in. Diameter, 16 in. Stroke (152.4 mm x 406.4 mm) 32 8 in. Diameter, 8 in. Stroke (203.2 mm x 203.2 mm) 40 8 in. Diameter, 16 in. Stroke (203.2 mm x 406.4 mm) 50 10 in. Diameter, 16 in. Stroke (254 mm x 406.4 mm) 60 Non Standard Option Χ 2: Cylinder Seals Buna-N Cylinder Seals -40 ... 185 °F (-40 °C ... 85 °C) В Viton Cylinder Seals 30 ... 250 °F (-1°C ... 121 °C) Non Standard Option 3 : Positioner Type (See Note A) AV15, Input 3 ... 15 psi (0.2 ... 1 bar) 250 °F (121 °C) AV16, Input 3 ... 27psi (0.2 ... 1.86 bar), 250 °F (121 °C) 2 AV232__00, 4 ... 20 mA, 185 °F (85 °C) 3 AV11, 3 ... 15 psi (0.2 ... 1 bar), 185 °F (85 °C) 4 AV12, 3 ... 27 psi (0.2...1.9 bar), 185 °F (85 °C) 5 TZIDC, HART 4 ... 20 mA, 185 °F (85 °C), Fail Safe Α TZIDC, HART 4 ... 20 mA, 185 °F (85 °C), Fail in Place В TZIDC-200 (Explosion proof), HART, 4 ... 20 mA, 85 °C (185 °F), Fail Safe С TZIDC-200 (Explosion proof), HART, 4 ... 20 mA, 185 °F (85 °C), Fail in Place D TZIDC-110, Profibus PA, 185°F (85°C), Fail Safe K TZIDC-110, Profibus PA, 185°F (85 °C), Fail in Place TZIDC-210 (Explosion proof), Profibus PA, 185°F (85 °C), Fail Safe м TZIDC-210 (Explosion proof), Profibus PA, 185°F (85 °C), Fail in Place Ν TZIDC-120, Foundation Fieldbus, 185°F (85 °C), Fail Safe P TZIDC-120, Foundation Fieldbus, 185°F (85 °C), Fail in Place R TZIDC-220 (Explosion proof), F. Fieldbus, 185°F (85 °C), Fail Safe s TZIDC-220 (Explosion proof), F. Fieldbus, 185°F (85 °C), Fail in Place Т Non Standard Option X 4 : Position Feedback and Direction Control (See Note B) No Position Feedback, Piston Retracted at 4 mA/min Input signal 0 With 4 ... 20 mA Position Feedback, Piston Retracted at 4 mA/min Input signal (Note: 1 No Position Feedback, Piston Extended at 4 mA/min Input signal 2 With 4-20 mA Position Feedback, Piston Extended at 4 mA/min Input signal (Note: 3 1) Non Standard Option Х 5: Travel Switches No Travel Switches 0 With 2 Digital Switches in TZIDC Only (with FM / CSA Approval) (Note: 1 With 2 Micro Switches in TZIDC (no FM/CSA Approval) (See Note C) (Note: 2 3) Non Standard Option Χ 6 : Equalizing Manifold/Gage Block No Equalizing Manifold or Gage Block 0 Equalizing Manifold with Gage Ports only (See Note D) (Note: Gage Block including Gages (for TZIDC only) No Equalizing Manifold (Note: 2 3) Gage Block with Gage ports only (for AV only) No Equalizing Manifold (See Note D) (Note: 3 5) Non Standard Option Х

7: Mounting/Enclosure Classification Rating (See Note E)

• • • • • • • • • • • • • • • • • • • •	
Standard Clevis & Pivot Tab, NEMA 3R for AV / NEMA 4X for TZIDC	0
Standard Clevis & Pivot Tab with Cylinder Shaft Protective Boot, NEMA for TZIDC	3R for AV / NEMA 4X
Standard Clevis & Pivot Tab, NEMA 4X for AV	2
Standard Clevis & Pivot Tab with Cylinder Shaft Protective Boot, NEMA	4X for AV 3
Non Standard Option	X

8: Tubing

Tubing with Brass Fittings (see note F)	0
Stainless Steel Tubing (304) with Stainless Steel Fittings (Parker)	S
Non Standard Option	Х

LP Notes:

- Note 1: Not available with Positioner Type (See Note A) code 1, 2, K, L, M, N, P, R, S, T
- Note 2: Not available with Positioner Type (See Note A) code 1, 2, 3, 4, 5, K, L, M, N, P, R, S, T
- Note 3: Not available with Positioner Type (See Note A) code 1, 2, 3, 4, 5
- Note 4: Not available with Positioner Type (See Note A) code 1, 2
- Note 5: Not available with Positioner Type (See Note A) code 1, 2, A, B, C, D, K, L, M, N, P, R, S, T

Linear Pneumatic Piston actuators are supplied with either type AV analog or type TZIDC digital positioners mounted on the cylinder. Cylinders are supplied with a threaded clevis on the end.

Base mounting pivots can be ordered as an accessory. A protective boot is optional.

The cylinders can be supplied with either Buna-N nitrile rubber seals suitable for 200 F (93 C) operation or Viton seals suitable for 148 C (300 F) operation.

The Buna-N seals have a lower breakway pressure, offering smoother modulating control.

The operating temperature for the AV15 & AV16 is 250 F (121 C). All other positioners have a 185 F (85 C) maximum ambient.

Buna-N seals are recommended unless temperature >200 F (93 C) dictate Viton.

The TZIDC-200 is for Explosion Proof application Class 1 Div 1 Gr C-G. Refer to the AV or TZIDC positioner specifications for positioner details and specifications.

The maximum supply pressure with type TZIDC positioners is 90 psi. The maximum supply pressure with type AV positioners is 125 psi.

Note A: All positioners have FM/CSA approval, as standard, however see Note C for application exception

Note B: Direction Control refers to Stroke direction (Direct Action), position feedback signal will follow Input signal

Note C: Cam operated microswitch option for TZIDC cannot be used in hazardous areas that require FM/CSA approval.

Cam operated microswitch option for TZIDC-200 can be used in Class 1 Div 1 Gr C-G application for FM/CSA. Refer to TZIDC-200 Data Sheet

Note D: Refer to accessories for Gages, supplied separate for field installation

Note E: Refer to accessories for Mounting Base/Pin or Retainer

4.0 MAINTENANCE INSTRUCTIONS

Very little maintenance is required for the operation of the LP actuator; the cylinders are permanently lubricated at the factory.

MAJOR MAINTENANCE:

To replace rod bushing seals:

- Remove socket head cap screws that hold the bushing retainer to the cylinder and remove the bushing. Remove old seals and replace with new seals making sure that you use some lubricant such as Magnalube "G" (supplied with kit) to aid inserting seals into grooves.
- To replace the rod bushing assembly, lubricate the inside and outside of the bushing lightly and slide over the piston rod by turning the bushing clockwise while pushing the bushing gently over the piston rod.
- 3. Replace the retainer; replace the socket head cap screws one by one being sure that all screws are loosely assembled so as not to cock the bushing in the head. Now tighten each screw just a little at a time to prevent binding of the bushing in the head. The following are the torque values of these socket head cap screws that hold the retainer in place:

#10-32 S.H.C.S used on 2" & 2 1/2" Bore	5 ft-lbs
1/4-28 S.H.C.S. Used on 31/4" to 10" Bore	12 ft-lbs

To Replace Piston seals:

 Disassemble the cylinder by loosening the tie rod nuts at either end of the cylinder, using standard box end or open-end wrenches. Remove the head and bushing assembly from remaining cylinder; now pull piston rod assembly gently from the cylinder tube. Remove piston seals from grooves in piston, being careful not to scratch the bottom of the grooves, as this may allow some small amount of leakage by the piston when the cylinder is put into operation again. Place new seals in piston grooves, being careful not to cut or nick the new piston seals. Be sure the seal lips are pointing outward toward each end of the piston. It is usually wise to remove and replace the tube end seal in the head and cap at the same time.

 Clean entire inside of the cylinder tube, piston rod assembly, and all other parts of the cylinder to be assembled. Coat piston O.D. and seals with a light grease, (Magnalube "G" is recommended) before assembly of cylinder.

Reassemble cylinder in the following manner:

- Place cap end on table with tube groove facing up.
- 2. Position cylinder tube in tube groove.
- Insert piston rod assembly into tube making sure lip of the piston seal enters the tube properly. Insert fully to bottom of tube.
- Place head and bushing over the end of the piston rod pushing gently while turning the head bushing assembly clockwise until the bushing has cleared the wrench flat area of the piston rod.
- 5. Be sure the cylinder tube is seated into the cylinder tube groove in the head.
- 6. Replace the tie rods one by one, being sure that all four are loosely assembled so as to allow the head and cap to rotate slightly so that the head and cap will be squarely in line while you finish torquing the tie rod nuts. Be sure to tighten each nut a little at a time so as to prevent binding of the cylinder. Use the following torque on the tie rod nuts:

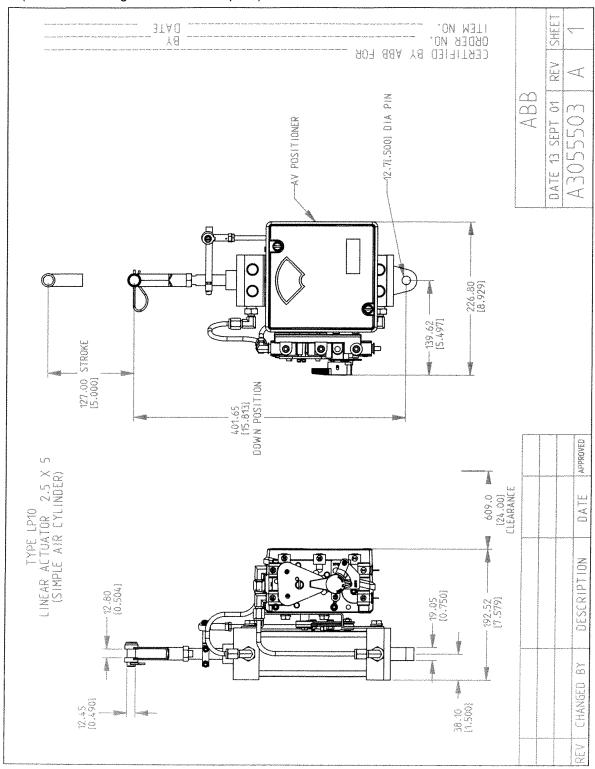
2" – 2 ½" Bore	12-14 ft-lbs
4" Bore	35 ft-lbs
6" Bore	50-55 ft-lbs
8" Bore	110 ft-lbs
10" Bore	125 ft-lbs

CYLINDER LUBRICATION:

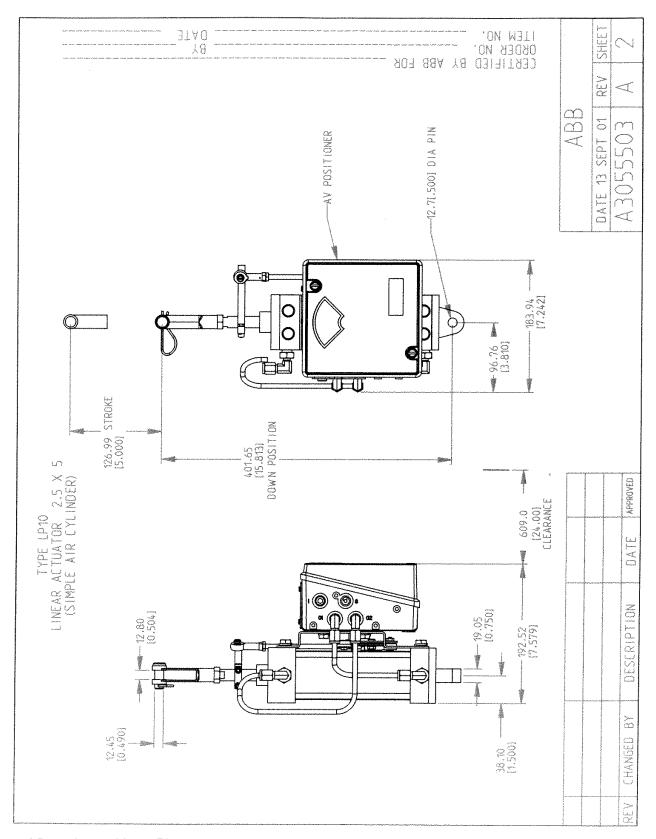
The pneumatic cylinders are designed to perform without the need for additional lubrication. To meet the demands and life expectancy the cylinder lubricant must possess the broadest scope of properties. Magnalube G, http://www.magnalube-g.com/, made by the Carleton-Stuart Corp., is the lubricant of choice that exceeds our performance specifications. Magnalube G is a PTFE-based grease that deposits a fine protective and lubricating film on all moving cylinder components, offering excellent resistance to lubrication migration.

Temperatures: Magnalube G is rated up to 236°C (458°F) it will not experience a viscosity breakdown either in higher temperature applications or in high-speed applications, where heat is generated due to normal internal operating friction.

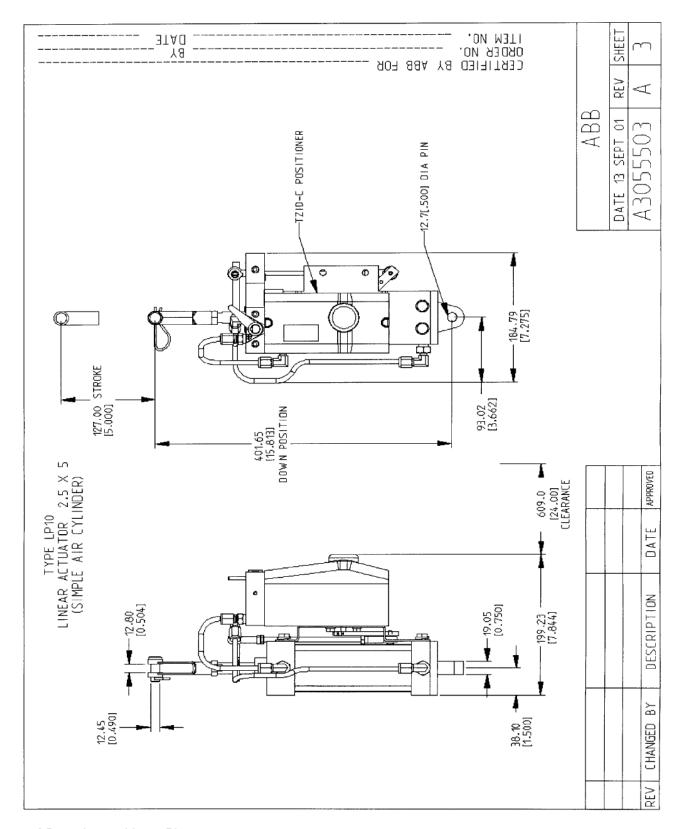
Low temperature rating to -37°C (-35 °F)

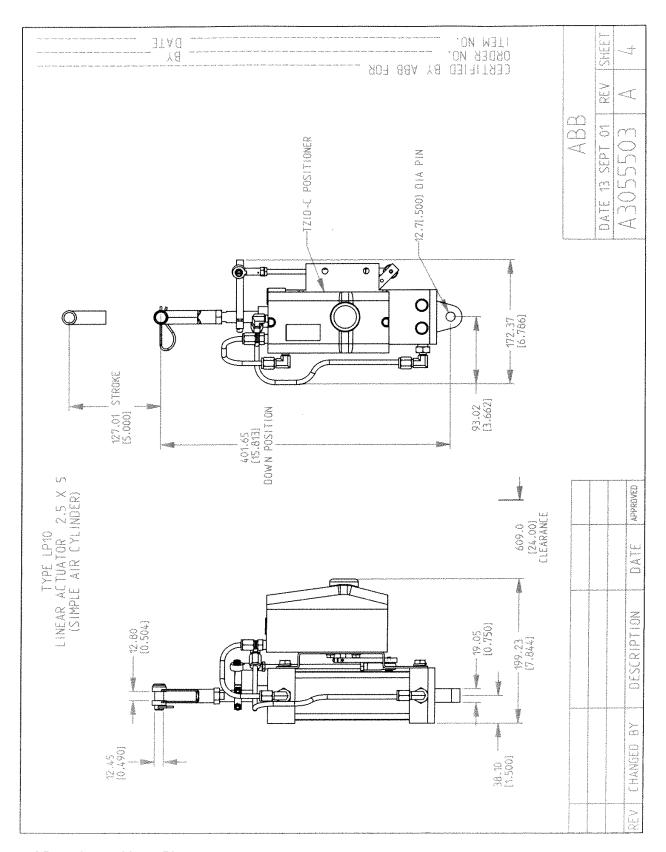

Vertical applications, rod down: Cylinder orientation and actuation can allow for quick and easy lubrication migration. The non-migratory characteristic of Magnalube G eliminates lubrication loss in vertical applications.

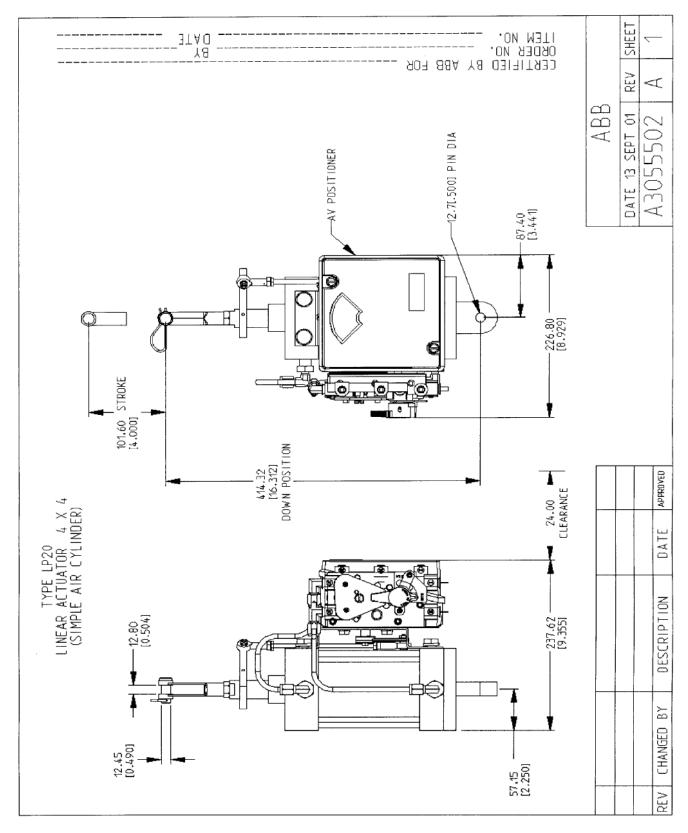
Typical life expectancy: While lubrication is a key component to cylinder life, there are many other contributing factors which could decrease a cylinder's useful life. The typical life expectancy of cylinder components is usually rated as 4,023,360 m (158,400,000") of rod travel which translates into millions of cycles.

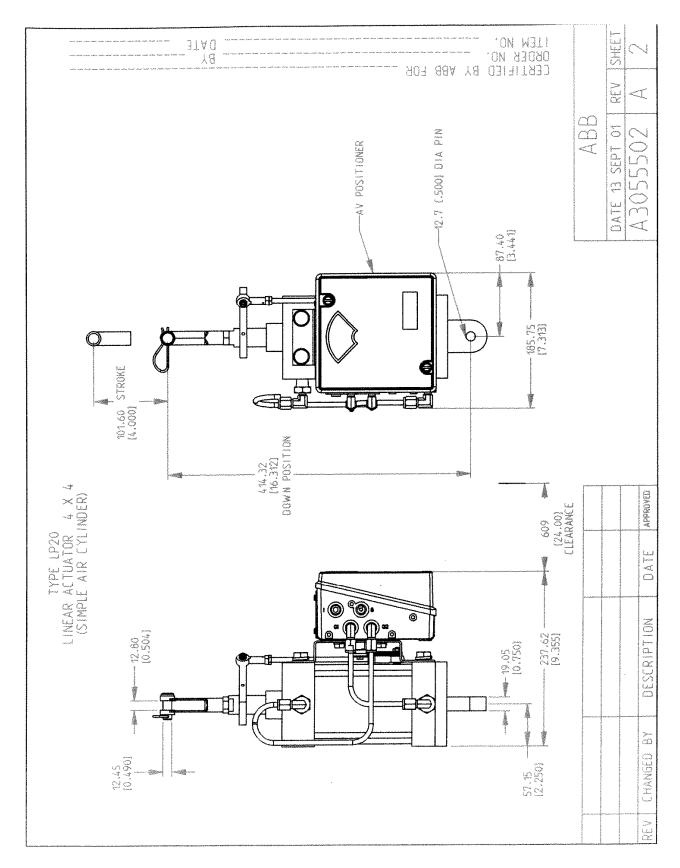

It is recommended to use the cylinder rod protective boot in dirty environments; this will extend the life expectancy of the rod and rod seal.

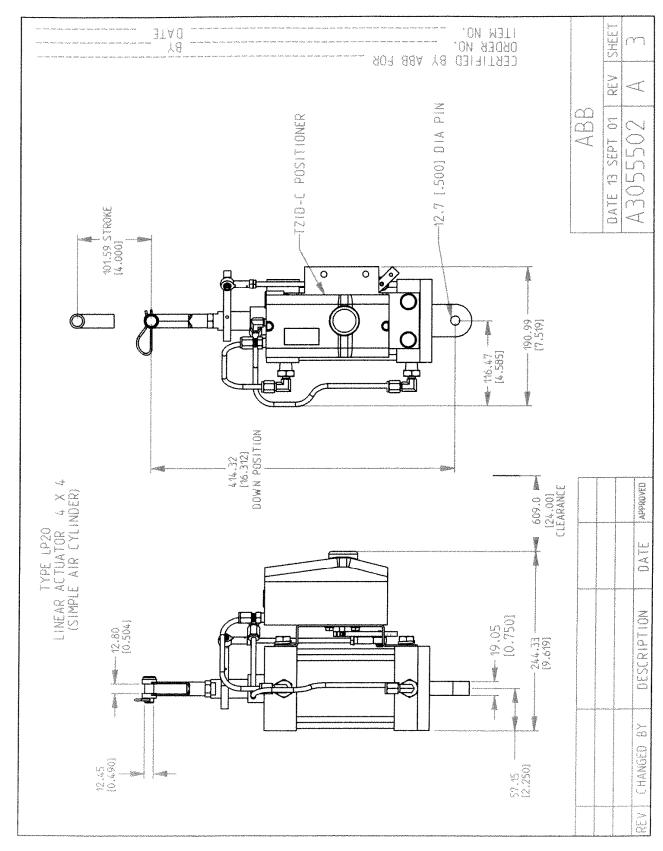
5.0 OUTLINE DIMENSION DRAWINGS

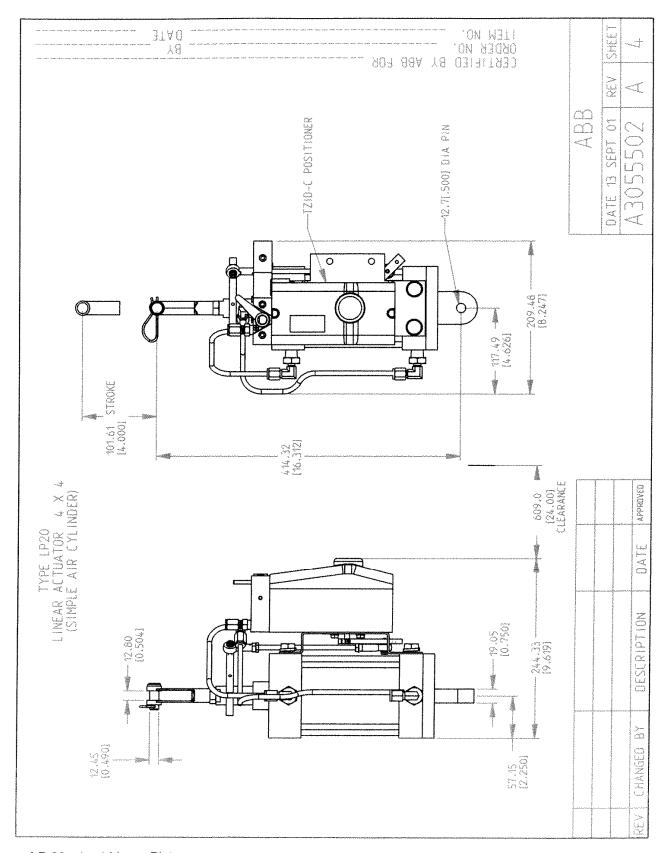

(Certified Drawings available on request).

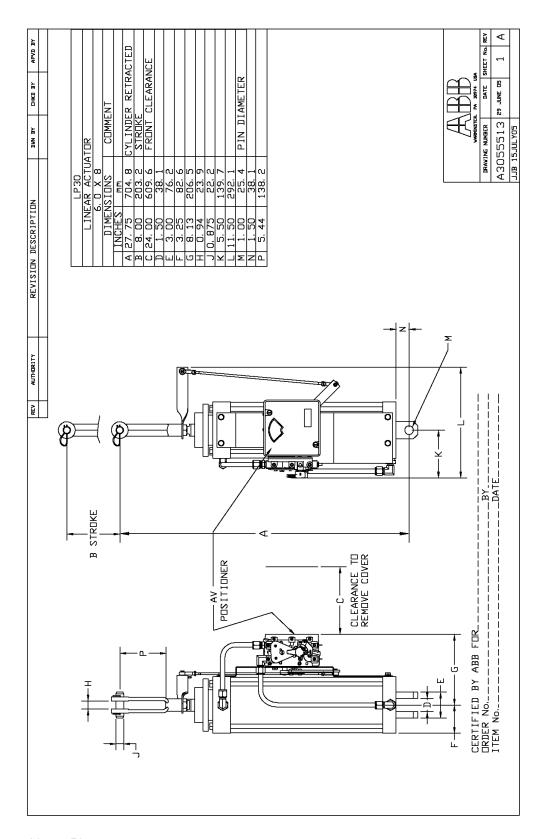

LP 10: 2.5 x 5 Linear Piston Shown With AV Positioner and Manifold

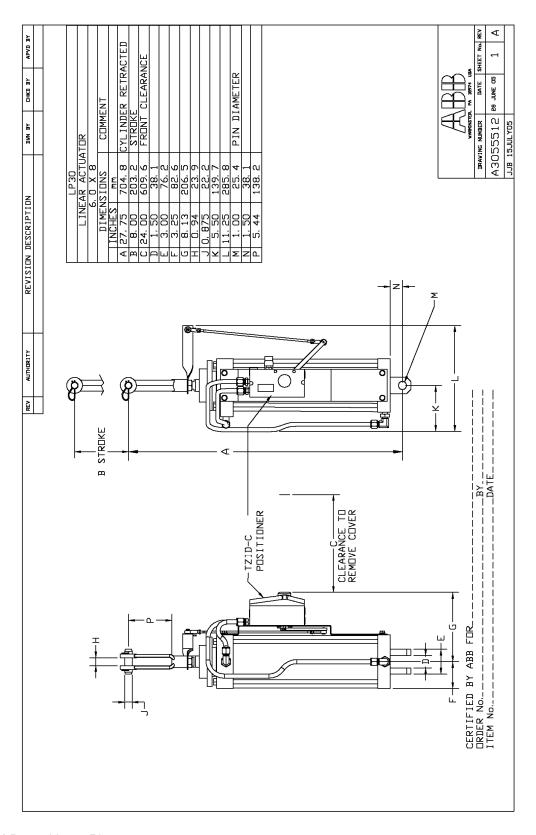

LP 10: 2.5 x 5 Linear Piston
Shown With AV Positioner Without Manifold

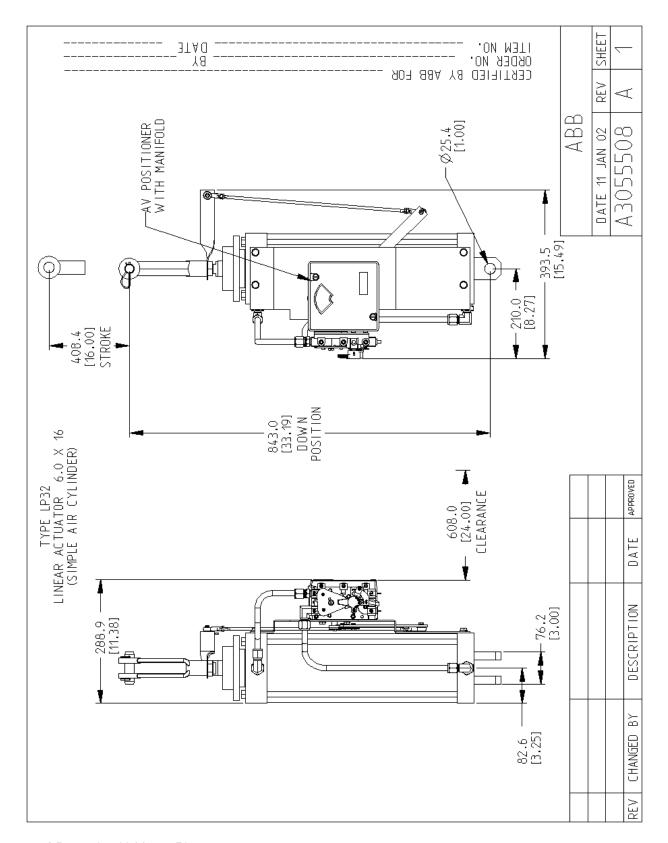

LP 10: 2.5 x 5 Linear Piston
Shown with TZIDC Smart Positioner With Manifold

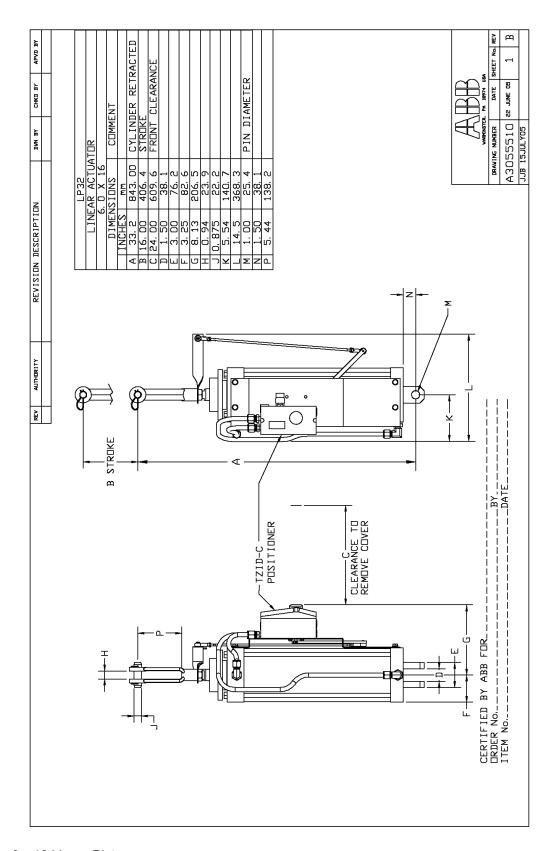

LP 10: 2.5 x 5 Linear Piston
Shown with TZIDC Smart Positioner Without Manifold

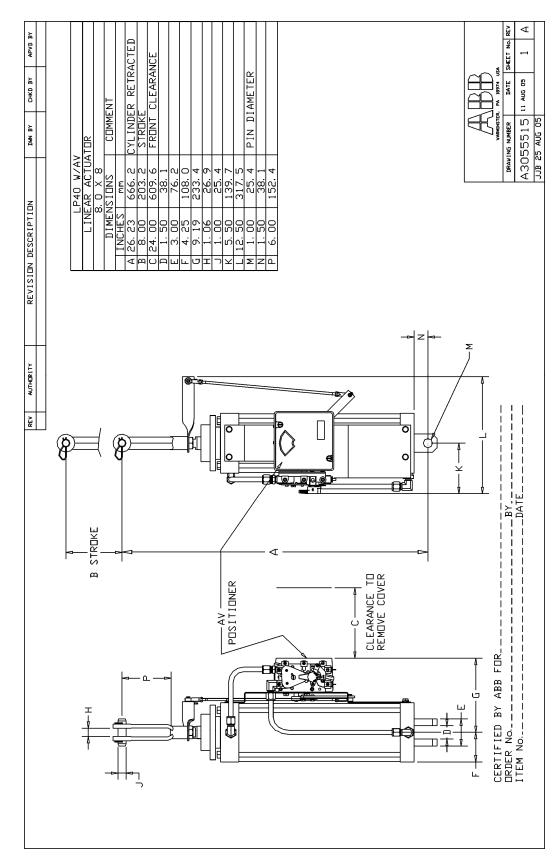

LP 20: 4 x 4 Linear Piston
Shown with AV Positioner and Manifold


LP 20: 4 x 4 Linear Piston Shown with AV Positioner Without Manifold

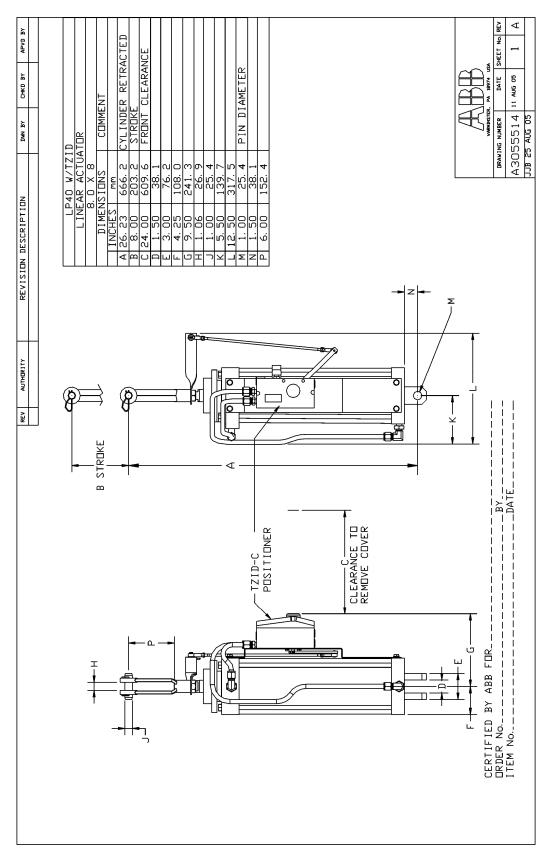

LP 20: 4 x 4 Linear Piston
Shown with TZIDC Positioner Without Manifold


LP 20: 4 x 4 Linear Piston
Shown with TZIDC Positioner and Manifold

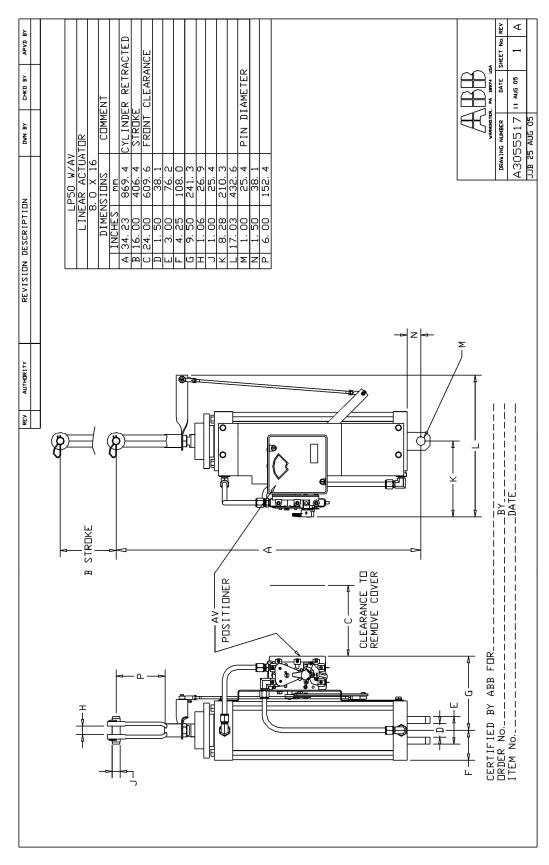

LP 30: Linear Piston
Shown with AV Positioner and Manifold


LP 30: Linear Piston
Shown with TZIDC Positioner Without Manifold

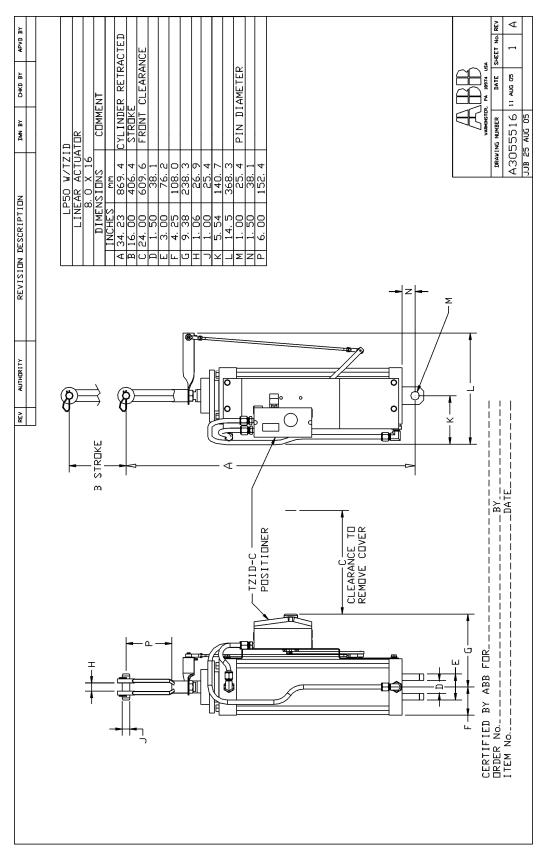
LP 32: 6 x 16 Linear Piston
Shown with AV Positioner With Manifold



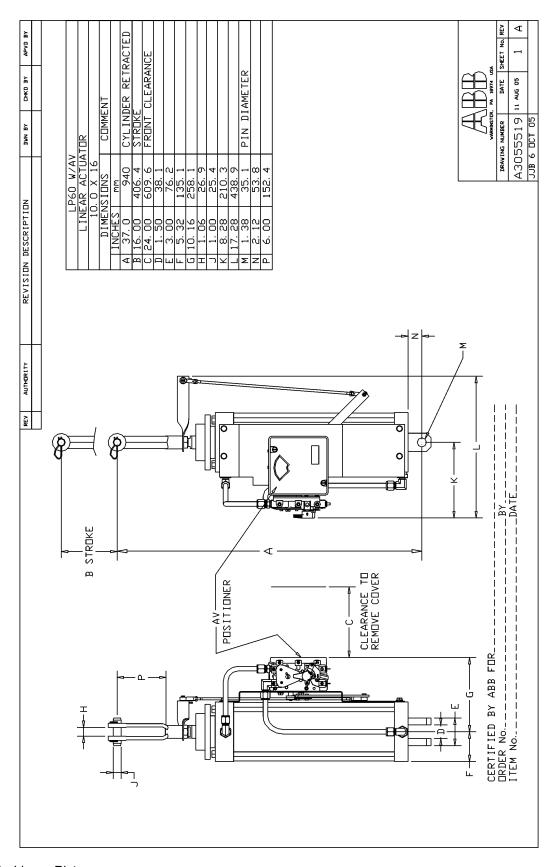
LP 32: 6 x 16 Linear Piston
Shown with TZIDC Positioner Without Manifold


LP 40 : Linear Piston

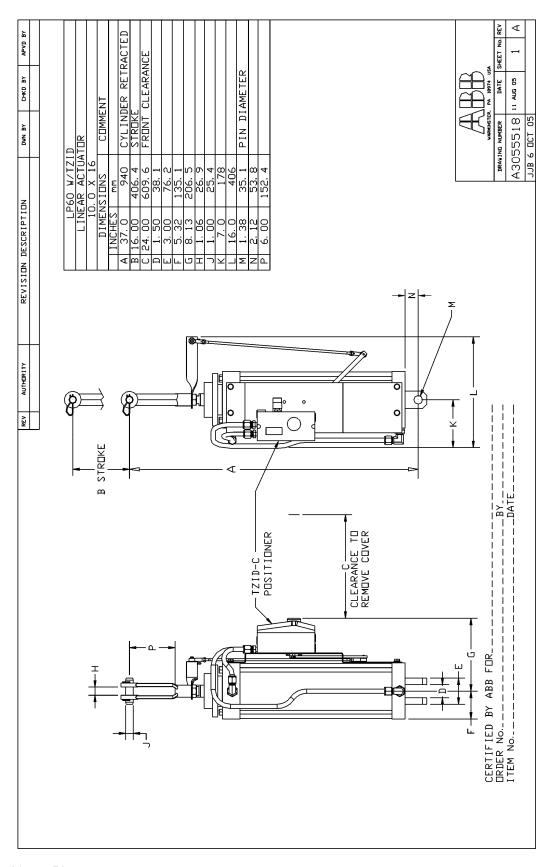
Shown with AV Positioner With Manifold


LP 40 : Linear Piston

Shown with TZIDC Positioner Without Manifold

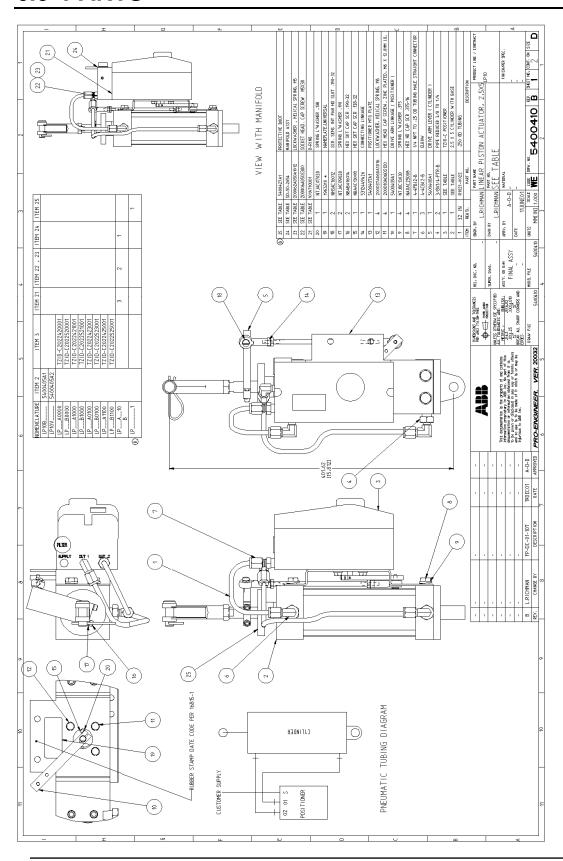

LP 50 : Linear Piston

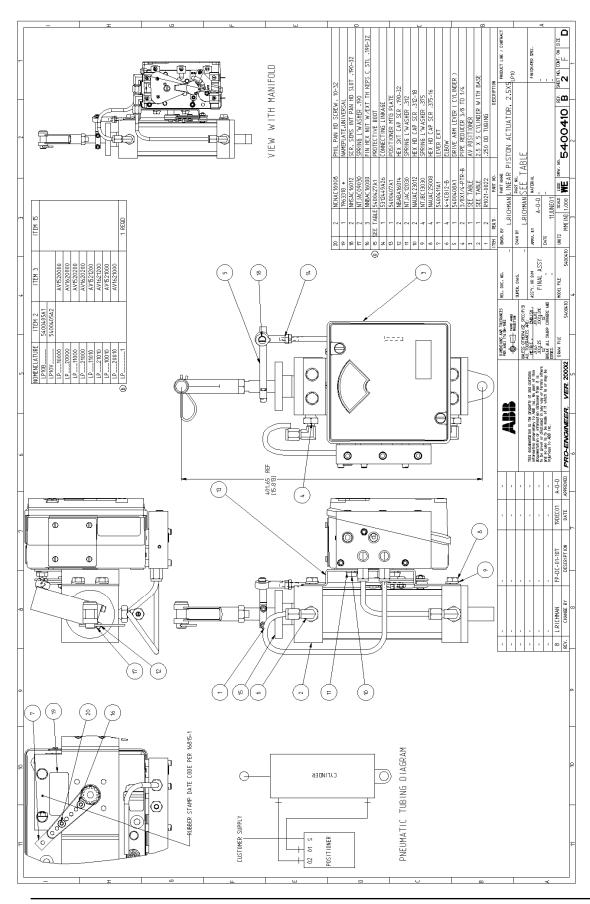
Shown with AV Positioner With Manifold

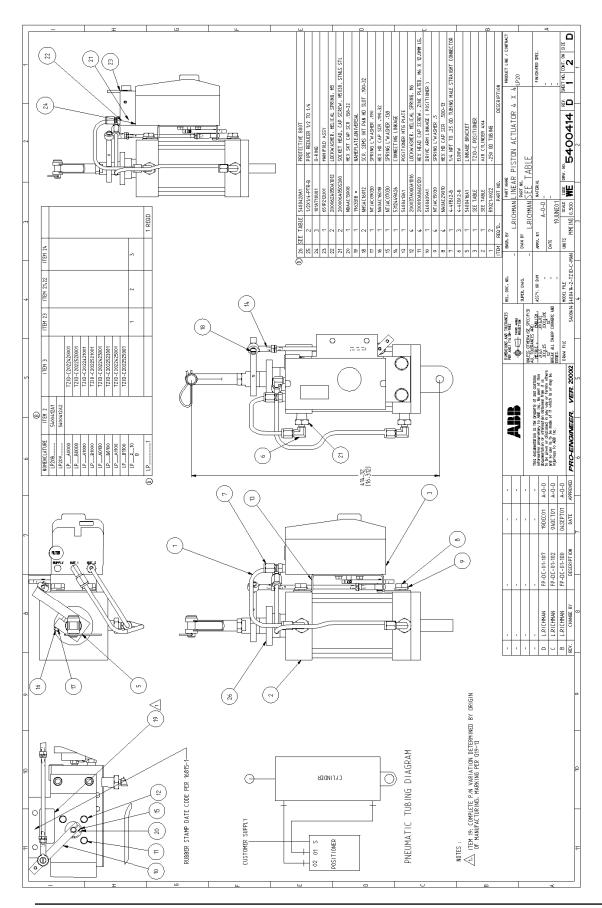

LP 50 : Linear Piston

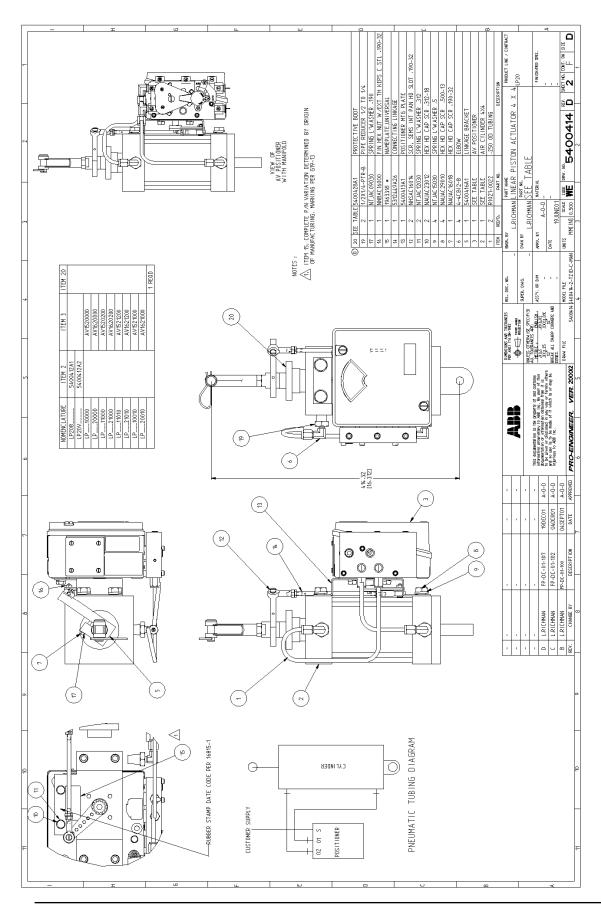
Shown with TZIDC Positioner Without Manifold

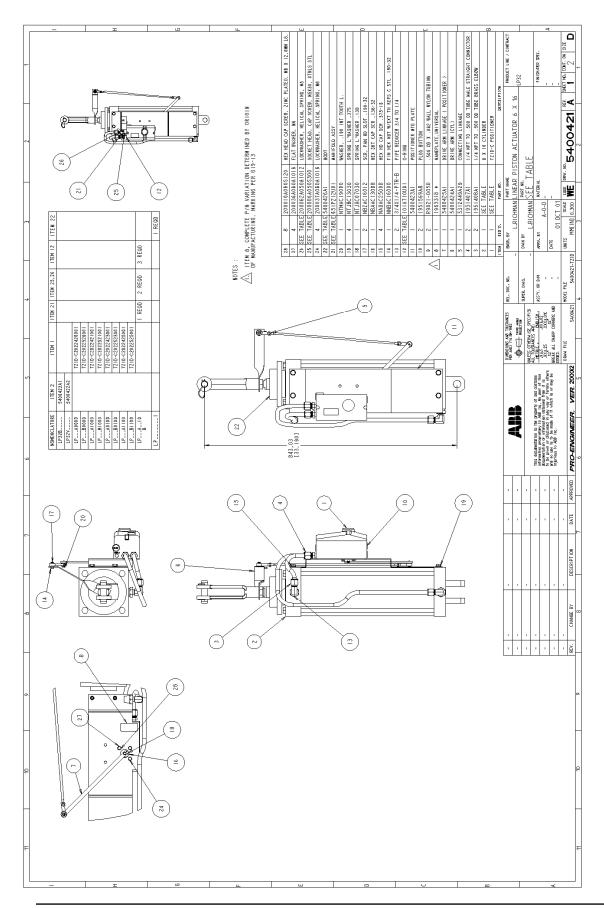
LP 60 : Linear Piston

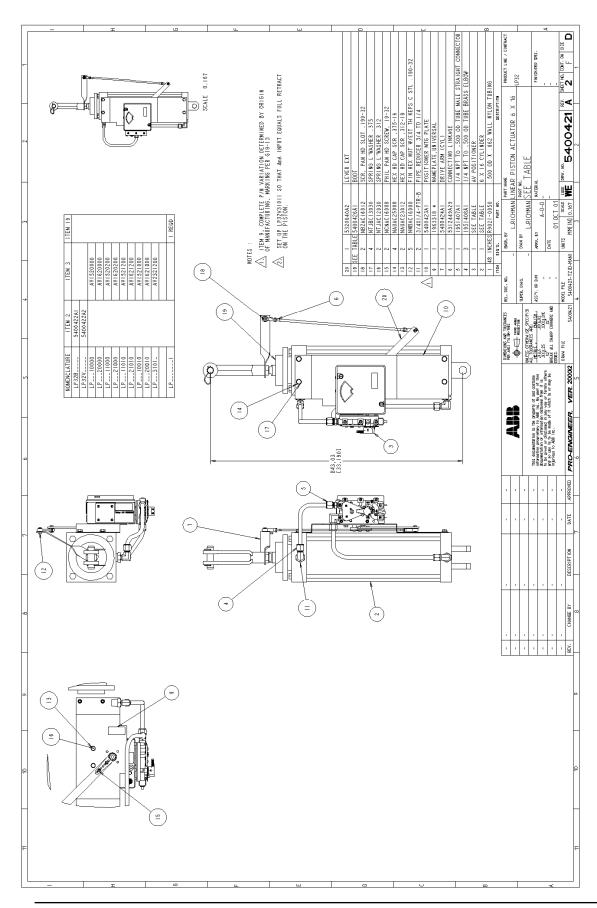

Shown with AV Positioner With Manifold




LP 60 : Linear Piston


Shown with TZIDC Positioner Without Manifold


6.0 PARTS



7.0 ACCESSORIES: CLEVIS, PINS & MOUNTS

ALL DIMENSIONS ARE SHOWN IN INCHES

CLEVIS PIN (W	/ITH B	RIDGE	PIN –	Material: 1018 CRS Finish: Black Oxide		
PART NO.	CD	Н	HP	LH	LP	CLEVIS PIN (INCLUDES BRIDGE PIN)
398B203U03 (for LP10-LP20)	.50	.63	.16	2.25	2.09	BRIDGE CD + .0000
398B203U02 (for LP30-LP50)	1.0	1.19	.20	3.50	3.31	LP————————————————————————————————————

CLEVIS PIN (WITH C	OTTER	PINS)	
PART NO.	CD	LH	LP	Material: 1045 CRS Finish: Chrome Plated O.D.
				CLEVIS PIN (INCLUDES COTTER PINS)
398B203U04 (for LP60)	1.38	5.0	4.25	HARD CHROME O.D.

EYE BRACKET										Material: Cast Ste EYE BRACKET Finish: Black Oxid
PART NO.	ВА	СВ	CD	DD	E	F	FL	L	М	CD DIAMETER
353E435U02 (for LP30-LP50)	3.25	1.5	1.0	.66	4.5	.75	2.25	1.5	1.0	BA
353E435U01 (for LP60)	3.81	2.0	1.38	.66	5.0	.88	3.0	2.13	1.38	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

			CLE	VIS BF	RACKET						CLEVIS BRACKET	Material: Cast Steel Finish: Black Oxide
PART NO.	ВА	СВ	CD	CW	DD	E	F	FL	L	М		
353E435U04 (for LP10 & LP20)	1.63	.75	.50	.50	.38-24	2.5	.38	1.13	.75	.50	F - L - + M - 1	CW ← CB → CW ← E

NOTES:

_

ABB Inc.

Measurement & Analytics

125 E. County Line Road Warminster, PA 18974 USA

Tel: +1 215 674 6000 Fax: +1 215 674 7183

ABB Automation Products GmbH Measurement & Analytics

Schillerstr. 72 32425 Minden Germany

Tel: +49 571 830-0 Fax: +49 571 830-1806

abb.com/actuators

ABB Limited

Measurement & Analytics

Howard Road, St. Neots Cambridgeshire, PE19 8EU

Tel: +44 (0)870 600 6122 Fax: +44 (0)1480 213 339

Email: enquiries.mp.uk@gb.abb.com

_

We reserve the right to make technical changes or modify the contents of this document without prior notice. With regard to purchase orders, the agreed particulars shall prevail. ABB does not accept any responsibility whatsoever for potential errors or possible lack of information in this document.

We reserve all rights in this document and in the subject matter and illustrations contained therein. Any reproduction, disclosure to third parties or utilization of its contents – in whole or in parts – is forbidden without prior written consent of ABB.