

ABB MEASUREMENT & ANALYTICS | OPERATING INSTRUCTION | OI/FCB100/FCH100-EN REV. I

CoriolisMaster FCB100, FCH100

Coriolis Mass Flowmeter

Device firmware version: ≥ 01.09.02

Measurement made easy

FCB130 / FCB150 FCH100 / FCH150

Introduction

The compact CoriolisMaster FCB100, FCH100 series flowmeter for system integration features low pressure drop and highflow rate and offers high-speed communication via RS485 Modbus and two binary outputs.

Additional Information

Additional documentation on CoriolisMaster FCB100, FCH100 is available for download free of charge at www.abb.com/flow. Alternatively simply scan this code:

Table of contents

1	Safety4
	General information and instructions4
	Warnings4
	Intended use4
	Improper use4
	Cyber security disclaimer5
	Software downloads5
	Warranty provisions5
	Manufacturer's address5
	Service address5
2	Use in potentially explosive atmospheres6
	Device overview6
	ATEX, IECEx and UKEX6
	cFMus6
	Ex marking7
	ATEX, IECEx and UKEX7
	cFMus7
	Temperature data8
	Temperature resistance for the connecting cable8
	Environmental and process conditions for model
	FCx1xx8
	Electrical data – ATEX, IECEx, UKEX and cFMus 11
	Modbus outputs and digital outputs11
	Special connection conditions11
	Installation instructions12
	ATEX, IECEx and UKEX12
	cFMus12
	Use in areas exposed to combustible dust12
	Sensor insulation12
	Opening and closing the terminal box12
	Cable entries in accordance with ATEX/IECEx and
	UKEX
	Cable entries in accordance with cFMus13
	Specific Conditions of Use14
	Electrical connections14
	Process sealing15
	Operating instructions15
	Protection against electrostatic discharges15
	Repair15
	Changing the type of protection – ATEX, IECEx and
	UKEX
	Changing the type of protection – cFMus17
3	Use in hazardous areas in accordance with EAC

	General	19
	Measuring principle	19
	Device designs	20
_		
5	Product identification	
	Name plate	22
6	Transport and storage	24
Ŭ	Inspection	
	Transport	
	Storage	
	Returning devices	
7	Installation	
	General installation conditions	25
	Installation location and assembly	25
	Liquid measuring media	
	Gaseous measuring media	27
	Turn-off devices for the zero point adjustment	27
	Sensor insulation	
	Installation in EHEDG-compliant installations	
	Devices for legal metrology	
	Process conditions	
	Temperature limits °C (°F)	
	Pressure ratings	
	Housing as a protective device (optional)	
	Material load for process connections	
	Material load curves for flange devices	
	Installing the sensor	
	Opening and closing the terminal box	31
8	Electrical connections	22
0	Safety instructions	
	Installing the connection cables	
	Terminal assignment	
	Electrical data for inputs and outputs	
	Power supply	
	Digital output 41 / 42, 51 / 52	
	Modbus [®] communication	
	Connection on the device	

4 Design and function19

9	Commissioning and operation	. 37
	Safety instructions	.37
	Operating instructions	.37
	Write-protection switch, service LED and local operato	or
	interface	.37
	Checks prior to commissioning	.38
	Switching on the power supply	.38
	Inspection after power-up of the power supply	.38
	Parameterization of the device	
	Parameterization via the Modbus interface	.38
	Parameterization via the local operating interface	.39
	Interface description	.41
	Modbus data types	.41
	Register tables (overview)	.42
	Modbus error handling (exception codes)	48
	Application of the Health Indication Registers	
	(Condensed Status Registers))	49
	Using the scan register	49
	Design of the scan register (example)	
	Available units	.51
	Available process variables	.53
	Parameter descriptions	.55
	Software history	.83
	Zero point balance under operating conditions	84
	Measurement of standard volumes	84
	Setup	84
	VeriMass erosion monitor	.85
	Setup	.85
	Enhanced Coriolis Control (ECC)function	86
	Applications in accordance with API (American Petrole	um
	Institute)	.87
	Concentration measurement DensiMass	
	Calculating standard volumes and standard densition	es
	of liquids	.87
	Accuracy of the concentration measurement	88
	Creation of the concentration matrix	
	FillMass batch function	90
	Setup	.91
	Filling operation run	.91
10	Diagnosis / error messages	
	General	.93
	Overview	
	Alarm status und alarm history status	96

11	Maintenance	99
	Safety instructions	99
	Cleaning	
	Sensor	
12	Repair	
	Safety instructions	100
	Spare parts	100
	Returning devices	
	Replacing the fuse	101
13	Dismounting and disposal	101
13	Dismounting and disposal Dismounting	
13	- ·	101
	Dismounting Disposal	101 102
14	Dismounting Disposal	
14	Dismounting Disposal	
14 15	Dismounting Disposal	
14 15	Dismounting Disposal Specification Additional documents	
14 15	Dismounting Disposal Specification Additional documents Appendix	

1 Safety

General information and instructions

These instructions are an important part of the product and must be retained for future reference.

Installation, commissioning, and maintenance of the product may only be performed by trained specialist personnel who have been authorized by the plant operator accordingly. The specialist personnel must have read and understood the manual and must comply with its instructions.

For additional information or if specific problems occur that are not discussed in these instructions, contact the manufacturer. The content of these instructions is neither part of nor an amendment to any previous or existing agreement, promise or legal relationship.

Modifications and repairs to the product may only be performed if expressly permitted by these instructions.

Information and symbols on the product must be observed. These may not be removed and must be fully legible at all times. The operating company must strictly observe the applicable national regulations relating to the installation, function testing, repair and maintenance of electrical products.

Warnings

The warnings in these instructions are structured as follows:

A DANGER

The signal word '**DANGER**' indicates an imminent danger. Failure to observe this information will result in death or severe injury.

MWARNING

The signal word '**WARNING**' indicates an imminent danger. Failure to observe this information may result in death or severe injury.

The signal word '**CAUTION**' indicates an imminent danger. Failure to observe this information may result in minor or moderate injury.

NOTICE

The signal word *'NOTICE'* indicates possible material damage.

Note

'**Note**' indicates useful or important information about the product.

Intended use

This device is intended for the following uses:

- To convey liquids and gases (including unstable measuring media).
- To meter mass flow directly.
- To meter volumetric flow (indirectly via mass flow and density).
- To measure the density of the measuring medium.
- To measure the temperature of the measuring medium.

The device has been designed for use exclusively within the technical limit values indicated on the identification plate and in the data sheets.

When using measuring media, the following points must be observed:

- Measuring media may only be used if, based on the state of the art or the operating experience of the user, it can be assured that the chemical and physical properties necessary for operational security of the materials of the wetted parts of the flowmeter sensor will not be adversely affected during the operating time.
- Media containing chloride in particular can cause corrosion damage to stainless steels which, although not visible externally, can damage wetted parts beyond repair and lead to the measuring medium escaping. It is the operator's responsibility to check the suitability of these materials for the respective application.
- Measuring media with unknown properties or abrasive measuring media may only be used if the operator is able to perform regular and suitable tests to ensure the safe condition of the device

Improper use

The following are considered to be instances of especially improper use of the device:

- Operation as a flexible compensating adapter in piping, for example for compensating pipe offsets, pipe vibrations, pipe expansions, etc.
- For use as a climbing aid, for example for mounting purposes.
- For use as a bracket for external loads, for example as a support for piping, etc.
- Material application, for example by painting over the housing, name plate or welding/soldering on parts.
- Material removal, for example by spot drilling the housing.

Cyber security disclaimer

This product is designed to be connected to and to communicate information and data via a network interface. It is operator's sole responsibility to provide and continuously ensure a secure connection between the product and your network or any other network (as the case may be).

Operator shall establish and maintain any appropriate measures (such as but not limited to the installation of firewalls, application of authentication measures, encryption of data, installation of anti-virus programs, etc.) to protect the product, the network, its system and the interface against any kind of security breaches, unauthorized access, interference, intrusion, leakage and/or theft of data or information.

ABB and its affiliates are not liable for damages and/or losses related to such security breaches, any unauthorized access, interference, intrusion, leakage and/or theft of data or information.

Software downloads

By visiting the web pages indicated below, you will find notifications about newly found software vulnerabilities and options to download the latest software. It is recommended that you visit this web pages regularly: www.abb.com/cybersecurity

ABB-Library – CoriolisMaster FCx100 – Software Downloads

Warranty provisions

Using the device in a manner that does not fall within the scope of its intended use, disregarding this manual, using underqualified personnel, or making unauthorized alterations releases the manufacturer from liability for any resulting damage. This renders the manufacturer's warranty null and void.

Manufacturer's address

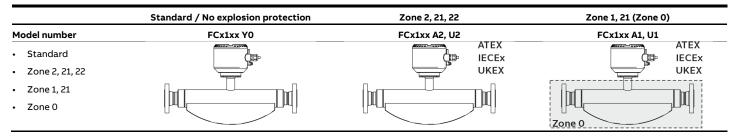
ABB AG

Measurement & Analytics Schillerstr. 72 32425 Minden Germany Tel: +49 571 830-0 Fax: +49 571 830-1806

Service address

Customer service center

Tel: 0180 5 222 580 Email: automation.service@de.abb.com


2 Use in potentially explosive atmospheres

Note

Further information on the approval of devices for use in potentially explosive atmospheres can be found in the type examination certificates or the relevant certificates at <u>www.abb.com/flow</u>.

Device overview

ATEX, IECEx and UKEX

cFMus

	Standard / No explosion protection	Class I Div. 2 Zone 2, 21	21, Class I Div. 1 Zone 0, 1, 20
Model number	FCx1xx Y0	FCx1xx F2	FCx1xx F1
Standard		E FM IS	EFM IS
Class I Div. 2	Ç=	Cites- Approved	Charlen Approved
Class I Div. 1			
• Zone 2, 21			
• Zone 1, 21			
 Zone 0, 20 			Zone 0

Ex marking

Note

- A specific marking applies, depending on the design. •
- ABB reserves the right to modify the Ex-marking. Refer to the name plate for the exact marking. •

ATEX, IECEx and UKEX

cFMus

	Model FCx1xx-F2 in Zone 2, Div. 2
	FM (marking US)
FM 14 ATEX0017X	Certificate:
FM22UKEX0041X	NI: CL I, DIV2, GPS ABCD, T6 T2
	NI: CL II, III, DIV2, GPS EFG, T6 T3B
	DIP: CL II, Div 1, GPS EFG, T6 T3B
	DIP: CL III, Div 1, 2, T6 T3B
	CL I, ZN 2, AEx ec IIC T6 T2 Gc
IECEx FME 14.0003X	ZN 21 AEx tb IIIC T85°C T165°C Db
	See Instructions for temperature clas
	FM (marking Canada)
	Certificate:
	NI: CL I, DIV2, GPS ABCD, T6 T2
	NI: CL II, III, DIV2, GPS EFG, T6 T3B
FM 14 ATEX0016X	DIP: CL II, Div 1, GPS EFG, T6 T3B
FM22UKEX0042X	DIP: CL III, Div 1, 2, T6 T3B
	Ex ec IIC T6 T2 Gc
	See Instructions for temperature clas
IECEx FME 14.0003X	Model FCx1xx-F1 in Zone 1, Div. 1
	FM (marking US)
	FM22UKEX0041X IECEx FME 14.0003X FM 14 ATEX0016X FM22UKEX0042X

Ex ia tb IIIC T85°C ... T_{medium} Db

FM (marking US)	
Certificate:	FM16US0201X
NI: CL I, DIV2, GPS ABCD, T6 T2	
NI: CL II, III, DIV2, GPS EFG, T6 T3B	
DIP: CL II, Div 1, GPS EFG, T6 T3B	
DIP: CL III, Div 1, 2, T6 T3B	
CL I, ZN 2, AEx ec IIC T6 T2 Gc	
ZN 21 AEx tb IIIC T85°C T165°C Db	
See Instructions for temperature class information	
FM (marking Canada)	
Certificate:	FM16CA0104X
NI: CL I, DIV2, GPS ABCD, T6 T2	
NI: CL II, III, DIV2, GPS EFG, T6 T3B	
DIP: CL II, Div 1, GPS EFG, T6 T3B	
DIP: CL III, Div 1, 2, T6 T3B	
Ex ec IIC T6 T2 Gc	
See Instructions for temperature class information	

l, Div. 1

FM (marking US)	
Certificate:	FM16US0201X
XP-IS: CL I, Div 1, GPS BCD, T6 T2	
DIP: CL II, Div 1, GPS EFG, T6 T3B	
DIP: CL III, Div 1, 2, T6 T3B	
CL I, ZN 1, AEx db ia IIB+H2 T6 T2 Ga/Gb	
ZN 21 AEx ia tb IIIC T85°C to T165°C Db	
See Instructions for temperature class information and Installat	ion Drawing
No. 3KXF000014G0009	
FM (marking Canada)	
Certificate:	FM16CA0104X
XP-IS: CL I, Div 1, GPS BCD, T6 T2	
DIP: CL II, Div 1, GPS EFG, T6 T2	
DIP: CL III, Div 1, 2, T6 T3B	
Ex db ia IIB+H2 T6 T2 Gb	
Ex ia INTRINSICALLY SAFE SECURITE INTRINSEQUE	
See Instructions for temperature class information and Installat	ion Drawing
No. 3KXF000014G0009	

... 2 Use in potentially explosive atmospheres

Temperature data

Temperature resistance for the connecting cable

The temperature at the cable entries of the device is dependent on the measuring medium temperature $\rm T_{medium}$ and the ambient temperature $\rm T_{amb.}$

For the electrical connection of the device, use only cables with sufficient temperature resistance in accordance with the table.

T _{amb.}	Temperature resistance for the connecting cable
≤ 50 °C (≤ 122 °F)	≥ 105 °C (≥ 221 °F)
≤ 60 °C (≤ 140 °F)	≥ 110 °C (≥ 230 °F)
≤ 70 °C (≤ 158 °F)	≥ 120 °C (≥ 248 °F)

From an ambient temperature of $T_{amb.} \ge 60$ °C (≥ 140 °F) the wires in the terminal boxes must be additionally insulated using the enclosed silicone hoses.

Environmental and process conditions for model FCx1xx...

Ambient temperature T _{amb.}	-20 to 70 °C
	(-4 to 158 °F)
	-40 to 70 °C*
	(-40 to 158 °F)*
Measuring medium temperature	-40 to 205 °C
T _{medium}	(-40 to 400 °F)
IP rating / NEMA rating	IP 65, IP 67 /
	NEMA 4X,Type 4X

* Optional, with order code 'Ambient temperature range – TA9'

Measuring medium temperature (Ex data) for model FCx1xx-A1, U1... in Zone 1

The table shows the maximum permissible measuring medium temperature as a function of ambient temperature and temperature class.

					Т	emperature class
Ambient temperature T _{amb.}		Т2	ТЗ	Т4	Т5	Т6
≤ 30 °C (≤ 86 °F)	205 °C (400 °F)	205 °C (400 °F)	195 °C (383 °F)	130 °C (266 °F)	95 °C (203 °F)	80 °C (176 °F)
≤ 40 °C (≤ 104 °F)	205 °C (400 °F)	205 °C (400 °F)	195 °C (383 °F)	130 °C (266 °F)	95 °C (203 °F)	80 °C (176 °F)
≤ 50 °C (≤ 122 °F)	205 °C (400 °F)	205 °C (400 °F)	195 °C (383 °F)	130 °C (266 °F)	95 °C (203 °F)	80 °C (176 °F)
≤ 60 °C (≤ 140 °F)	205 °C (400 °F)	205 °C (400 °F)	195 °C (383 °F)	130 °C (266 °F)	95 °C (203 °F)	80 °C (176 °F)
≤ 70 °C (≤ 158 °F)	205 °C (400 °F)	205 °C (400 °F)	195 °C (383 °F)	130 °C (266 °F)	95 °C (203 °F)	80 °C (176 °F)

Measuring medium temperature (Ex data) for model FCx1xx-A2, U2... in Zone 2

The table shows the maximum permissible measuring medium temperature as a function of ambient temperature and temperature class.

					Те	emperature class
Ambient temperature T _{amb.}	T1	T2	Т3	Т4	Т5	Т6
≤ 30 °C (≤ 86 °F)	205 °C (400 °F)*	205 °C (400 °F)*	195 °C (383 °F)*	130 °C (266 °F)*	95 °C (203 °F)*	80 °C (176 °F)
	195 °C (383 °F)	195 °C (383 °F)	130 °C (266 °F)	95 °C (203 °F)	80 °C (176 °F)	
≤ 40 °C (≤ 104 °F)	205 °C (400 °F)*	205 °C (400 °F)*	195 °C (383 °F)*	130 °C (266 °F)*	95 °C (203 °F)*	
	180 °C (356 °F)	180 °C (356 °F)	130 °C (266 °F)	95 °C (203 °F)	80 °C (176 °F)	
≤ 50 °C (≤ 122 °F)	205 °C (400 °F)*	205 °C (400 °F)*	130 °C (266 °F)*	130 °C (266 °F)*	80 °C (176 °F)*	
	140 °C (284 °F)	140 °C (284 °F)	130 °C (266 °F)	95 °C (203 °F)	60 °C (140 °F)	
≤ 60 °C (≤ 140 °F)	205 °C (400 °F)*	205 °C (400 °F)*	130 °C (266 °F)*	130 °C (266 °F)*	_	
	120 °C (248 °F)	120 °C (248 °F)	120 °C (248 °F)	95 °C (203 °F)		
≤ 70 °C (≤ 158 °F)	180 °C (356 °F)*	180 °C (356 °F)*	130 °C (266 °F)*	130 °C (266 °F)*	_	
	80 °C (176 °F)					

* Only with the 'Extended tower length – TE1, TE2 or TE3' order option

Measuring medium temperature (Ex data) for model FCx1xx-A1, U1... in Zone 21 and FCx1xx-A2, U2... in Zone 22 The table shows the maximum permissible measuring medium temperature as a function of ambient temperature and temperature class.

				Т	emperature class
Ambient temperature T _{amb.}	T210 °C	T200 °C	T135 °C	T100 °C	T85°C
≤ 30 °C (≤ 86 °F)	195 °C (383 °F)	130 °C (266 °F)	95 °C (203 °F)	80 °C (176 °F)	80 °C (176 °F)
≤ 50 °C (≤ 122 °F)	140 °C (284 °F)	130 °C (266 °F)	95 °C (203 °F)	60 °C (140 °F)	
≤ 60 °C (≤ 140 °F)	120 °C (248 °F)	120 °C (248 °F)	95 °C (203 °F)	_	
≤ 70 °C (≤ 158 °F)	80 °C (176 °F)	80 °C (176 °F)	80 °C (176 °F)	—	

... 2 Use in potentially explosive atmospheres

... Temperature data

Measuring medium temperature (Ex data) for model FCx1xx-F1... in Class I Div. 1, Class I Zone 1

The table shows the maximum permissible measuring medium temperature as a function of ambient temperature and temperature class.

					Т	emperature class
Ambient temperature T _{amb.}	T1	Т2	ТЗ	Т4	Т5	Т6
≤ 30 °C (≤ 86 °F)	205 °C (400 °F)	205 °C (400 °F)	195 °C (383 °F)	130 °C (266 °F)	95 °C (203 °F)	80 °C (176 °F)
≤ 40 °C (≤ 104 °F)	205 °C (400 °F)	205 °C (400 °F)	195 °C (383 °F)	130 °C (266 °F)	95 °C (203 °F)	80 °C (176 °F)
≤ 50 °C (≤ 122 °F)	205 °C (400 °F)	205 °C (400 °F)	195 °C (383 °F)	130 °C (266 °F)	95 °C (203 °F)	80 °C (176 °F)
≤ 60 °C (≤ 140 °F)	205 °C (400 °F)	205 °C (400 °F)	195 °C (383 °F)	130 °C (266 °F)	95 °C (203 °F)	80 °C (176 °F)
≤ 70 °C (≤ 158 °F)	205 °C (400 °F)	205 °C (400 °F)	195 °C (383 °F)	130 °C (266 °F)	95 °C (203 °F)	80 °C (176 °F)

Measuring medium temperature (Ex data) for model FCx1xx-F2... in Class I Div. 2, Class I Zone 2 The table shows the maximum permissible measuring medium temperature as a function of ambient temperature and temperature class.

					Т	emperature class
Ambient temperature T _{amb.}	T1	T2	Т3	Т4	Т5	Т6
≤ 30 °C (≤ 86 °F)	205 °C (400 °F)*	205 °C (400 °F)*	195 °C (383 °F)*	130 °C (266 °F)*	95 °C (203 °F)*	80 °C (176 °F)
	195 °C (383 °F)	195 °C (383 °F)	130 °C (266 °F)	95 °C (203 °F)	80 °C (176 °F)	
≤ 40 °C (≤ 104 °F)	205 °C (400 °F)*	205 °C (400 °F)*	195 °C (383 °F)*	130 °C (266 °F)*	95 °C (203 °F)*	_
	180 °C (356 °F)	180 °C (356 °F)	130 °C (266 °F)	95 °C (203 °F)	80 °C (176 °F)	
≤ 50 °C (≤ 122 °F)	205 °C (400 °F)*	205 °C (400 °F)*	130 °C (266 °F)*	130 °C (266 °F)*	80 °C (176 °F)*	_
	140 °C (284 °F)	140 °C (284 °F)	130 °C (266 °F)	95 °C (203 °F)	60 °C (140 °F)	
≤ 60 °C (≤ 140 °F)	205 °C (400 °F)*	205 °C (400 °F)*	130 °C (266 °F)*	130 °C (266 °F)*	_	_
	120 °C (248 °F)	120 °C (248 °F)	120 °C (248 °F)	95 °C (203 °F)		
≤ 70 °C (≤ 158 °F)	180 °C (356 °F)*	180 °C (356 °F)*	130 °C (266 °F)*	130 °C (266 °F)*	_	_
	80 °C (176 °F)					

* Only with the 'Extended tower length – TE1, TE2 or TE3' order option

Measuring medium temperature (Ex data) for model FCx1xx-F1... in Zone 21, Class II / III and FCx1xx-F2... in Zone 22, Class II / III

The table shows the maximum permissible measuring medium temperature as a function of ambient temperature and temperature class.

				т	emperature class
Ambient temperature T _{amb.}	T210 °C	T200 °C	T135 °C	T100 °C	T85°C
≤ 30 °C (≤ 86 °F)	195 °C (383 °F)	130 °C (266 °F)	95 °C (203 °F)	80 °C (176 °F)	80 °C (176 °F)
≤ 50 °C (≤ 122 °F)	140 °C (284 °F)	130 °C (266 °F)	95 °C (203 °F)	60 °C (140 °F)	
≤ 60 °C (≤ 140 °F)	120 °C (248 °F)	120 °C (248 °F)	95 °C (203 °F)	_	
≤ 70 °C (≤ 158 °F)	80 °C (176 °F)	80 °C (176 °F)	80 °C (176 °F)	_	_

Electrical data – ATEX, IECEx, UKEX and cFMus

Modbus outputs and digital outputs

Modell ATEX, IECEX, UKCA: FCx1xx-A1, U1..., FCx1xx-A2, U2...

|--|

	Operat	ing values	_				Туре о	f protectio	n			
	(ge	neral)	"ec" /	/ "NI"	"eb"	/ "XP"			"ia" /	′ "IS"		
			(Zone 2	/ Div. 2)	(Zone 1	/ Div. 1)			(Zone 1	/ Div. 1)		
Outputs	U _N [V]	I _N [mA]	U _N [V]	I _N [mA]	U _M [V]	I _M [mA]	U ₀ [V]	I _O [mA]	P _O [mW]	C _O [nF]	C _{O pa} [nF]	L _Ο [μΗ]
Modbus, active	3	30	3	30	30	30	4,2	150	150	13900	_	20
Terminals A / B							U _i [V]	I _i [mA]	P _i [mW]	C _i [nF]	C _i pa [nF]	L _i [μH]
							4,2	150	150	13900	_	20
Digital output DO1, passive	30	25	30	25	30	25	30	25	187	2,4	_	200
Terminals 41 / 42												
Digital output DO2, passive	30	25	30	25	30	25	30	25	187	20	_	200
Terminals 51 / 52												

All outputs are electrically isolated from each other and from the power supply. Digital outputs DO1 / DO2 are not electrically isolated from each other. Terminals 42 / 52 have the same potential.

Special connection conditions

Note

If the protective earth (PE) is connected in the flowmeter's terminal box, you must ensure that no dangerous potential difference can arise between the protective earth (PE) and the potential equalization (PA) in areas with explosion risk.

Note

The safety requirements for intrinsically safe circuits in the EC type examination certificate of the device must be complied with.

The output circuits are designed so that they can be connected to both intrinsically-safe and non-intrinsically-safe circuits.

- Combining intrinsically safe and non-intrinsically safe circuits is not permitted.
- On intrinsically safe circuits, potential equalization should be established along the entire length of the cable used for the signal outputs.
- The rated voltage of the non-intrinsically safe circuits is $U_{\rm M}$ = 30 V.
- Intrinsic safety is preserved If the rated voltage $U_M = 30$ V is not up-scaled when connections are established to non-intrinsically safe external circuits.
- When changing the type of protection, the information in the corresponding chapter **Changing the type of protection** in operating instruction must be observed.

... 2 Use in potentially explosive atmospheres

Installation instructions

ATEX, IECEx and UKEX

The installation, commissioning, maintenance and repair of devices in potentially explosive atmospheres must only be carried out by appropriately trained personnel. Works may be carried out only by persons, whose training has included instructions on different types of protection and installation techniques, concerned rules and regulations as well as general principles of zoning. The person must possess the appropriate competences for the type of work to be conducted.

When operating with combustible dusts, comply with EN 60079-31.

Observe the safety instructions for electric apparatus for potentially explosive atmospheres in accordance with Directive 2014/34/EU (ATEX) or British Regulations (UKEX) and for example IEC 60079-14 (installation of electric equipment in potentially explosive atmospheres).

Comply with the applicable regulations for the protection of employees to ensure safe operation.

It is essential that the temperature classes as per the approvals in '**Temperature data** on page 8' are observed.

The information in the installation diagram **3KXF000014G0009** on page 104 must be observed.

cFMus

The installation, commissioning, maintenance and repair of devices in areas with explosion hazard must only be carried out by appropriately trained personnel.

The operator must strictly observe the applicable national regulations with regard to installation, function tests, repairs, and maintenance of electrical devices. (e. g. NEC, CEC).

It is essential that the temperature classes as per the approvals in '**Temperature data** on page 8' are observed.

The information in the installation diagram **3KXF000014G0009** on page 104 must be observed.

Use in areas exposed to combustible dust

When using the device in areas exposed to combustible dusts (dust ignition), EN 60079-31 as well as the following points must be observed:

- The maximum surface temperature of the device may not up-scale 85 °C (185 °F).
- The process temperature of the attached piping may upscale 85 °C (185 °F).
- Approved dust-proof cable glands must be used when operating in Zone 21, 22 or in Class II, Class III.

Sensor insulation

Observe the notes in **Sensor insulation** on page 28 if the sensor should be insulated.

Observe the information in **Temperature data** on page 8 regarding temperature class and cable specification.

Opening and closing the terminal box

A DANGER

Danger of explosion if the device is operated with the transmitter housing or terminal box open!

Before opening the transmitter housing or the terminal box, note the following points:

- A valid fire permit must be present.
- Make sure that there is no explosion hazard.
- Switch off the power supply and wait for t > 20 minutes before opening.

Risk of injury due to live parts!

When the housing is open, contact protection is not provided and EMC protection is limited.

• Before opening the housing, switch off the power supply.

See also Opening and closing the terminal box on page 31.

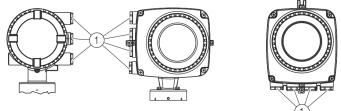
Only original spare parts must be used to seal the housing.

Note

Spare parts can be ordered from ABB Service. www.abb.com/contacts

Cable entries in accordance with ATEX/IECEx and UKEX

The cable glands supplied are ATEX-, IECEx- or UKEX certified.


The use of standard cable glands and seals is prohibited.

- The black plugs in the cable fittings are intended to provide protection during transport. Any unused cable entries must be sealed prior to commissioning, using the seals supplied.
- The outside diameter of the connection cable must measure between 6 mm (0.24 in) and 12 mm (0.47 in) to guarantee the required tightness.
- Black cable fittings are installed by default when the device is supplied. If signal outputs are connected to intrinsically safe circuits, replace the black cap on the corresponding cable gland with the blue one supplied.

Note

To provide the required temperature resistance, devices in the low-temperature design (optional, ambient temperature down to -40 °C [40 °F]) are delivered with cable glands made from metal. These are then also to be used in intrinsically safe circuits.

Cable entries in accordance with cFMus

(1) Transport protection plugs

Figure 1: Cable entry

The devices are delivered with $\frac{1}{2}$ in NPT threads with transport protection plugs.

- Unused cable entries must be sealed off prior to commissioning using either approved pipe fittings or cable glands in accordance with national regulations (NEC, CEC).
- Make sure that the pipe fittings, cable glands and, if applicable, sealing plugs are installed properly and are leaktight.
- If the device is to be operated in areas with combustible dusts, a threaded pipe connection or cable gland with suitable approval must be used.
- The use of standard cable glands and closures is prohibited.

Note

Devices which are certified for use in North America are supplied with a $\frac{1}{2}$ in NPT thread only and without cable glands.

... 2 Use in potentially explosive atmospheres

... Installation instructions

Specific Conditions of Use

Special conditions for safe use!

- The painted surface of the CoriolisMaster Flowmeters may store electrostatic charge and become a source of ignition in applications with a low relative humidity (<~30%) even where the painted surface is relatively free of surface contamination such as dirt, dust, or oil.
 - Guidance on protection against the risk of ignition due to electrostatic discharge can be found in PD CLC/TR 60079-32-1 and IEC TS 60079-32-1.
 - Cleaning of the painted surface should only be done with a damp cloth.
- The section **Temperature data** on page 8 ff. details the permitted temperature classification and ambient temperature ratings as influenced by the process medium temperature.
- Contact the manufacturer for specific flamepath joint details during repair of flameproof Ex d apparatus.
- For models with option m = C provision shall be made external to the equipment, to provide the transient protection device to be set at a level not exceeding 140 % of the peak rated voltage value of 42 V DC.

Electrical connections

The temperature at the cable entries of the device depends on the design, the measuring medium temperature T_{medium} and the ambient temperature $T_{amb.}$

For the electric connection of the device, use only cables with sufficient temperature resistance in accordance with the tables at **Temperature resistance for the connecting cable** on page 8.

Perform grounding of the device in accordance with **Terminal assignment** on page 33.

In accordance with NEC standards, an internal ground connection is present in the device between the sensor and the transmitter.

Perform grounding of the device in accordance with **Terminal assignment** on page 33.

Power supply terminal cover

Make sure that the power supply terminal cover is closed tightly, see also **Electrical connections** on page 32.

Process sealing

In accordance with 'North American Requirements for Process Sealing between Electrical Systems and Flammable or Combustible Process Fluids'.

Note

The device is suitable for use in Canada.

- For use in Class II, Groups E, F and G, a maximum surface temperature of 165 °C (329 °F) may not be up-scaled.
- All cable (conduits) should be sealed from the device within a distance of 18 in (457 mm).

ABB flowmeters are designed for the worldwide industrial market and are suitable for functions such as the measurement of flammable and combustible liquids and can be installed in process pipes.

Connecting devices with cable (conduits) to the electric installation makes it possible for measuring media to reach the electric system.

To prevent measuring media from seeping into the electric installation, the devices are equipped with process gaskets which meet requirements in accordance with ANSI / ISA 12.27.01.

Coriolis mass flowmeters are designed as 'Single Seal Devices'. With the TE2 order option, 'Extended tower length - insulation capacity with dual gasket', the devices can be used as a 'Dual Seal Devices'.

In accordance with the requirements of standard ANSI / ISA 12.27.01, the existing operating limits of temperature, pressure and pressure bearing parts must be reduced to the following limit values:

Limit values				
Flange or pipe material	No limitations			
Nominal sizes	DN 15 to DN 150			
	(½ to 6 in)			
Operating temperature	-50 °C to 205 °C			
	(-58 °F to 400 °F)			
Process pressure	PN 100 / Class 600			

Operating instructions

Protection against electrostatic discharges

DANGER

Explosion hazard due to electrostatic charging!

The painted surface of the device can store electrostatic charges.

As a result, the housing can form an ignition source due to electrostatic discharges in the following conditions:

- The device is operated in environments with a relative humidity of ≤ 30 %.
- The painted surface of the device is thereby relatively free from impurities such as dirt, dust or oil.
- Instructions on avoiding ignition in potentially explosive environments due to electrostatic discharges in accordance with PD CLC/TR 60079-32-1 and IEC TS 60079-32-1 must be complied with!

Instructions on cleaning

The painted surface of the device must be cleaned only using a moist cloth.

Repair

Devices of type of protection 'd / XP' are equipped with flameproof joints in the housing. Contact ABB before commencing repair work.

... 2 Use in potentially explosive atmospheres

... Operating instructions

Changing the type of protection – ATEX, IECEx and UKEX

For installation in Zone 1 the Modbus interface and the digital outputs of models FCB130/150 and FCH130/150 can be operated with different types of protection:

- Modbus interface and digital output in intrinsically safe ia design
- Modbus interface and digital output in non-intrinsically safe design

If a device that is already operational is operated with a different type of protection, the following measures must be implemented/insulation checks performed in accordance with applicable standards.

Original installation	New installation	N	ecessary test steps
Zone 1:	Zone 1:	•	500 V AC/1min or 500 × 1.414 = 710 V DC/1min
Modbus interface and digital	Modbus interface and digital		Test between terminals A / B, 41 / 42 as well as 51 / 52 and terminals A, B, 41, 42, 51 and the
outputs in non-intrinsically safe	outputs in intrinsically safe		housing. When this test is performed, no voltage flashover is permitted in or on the device.
design	ia / IS design	•	Optical evaluation particularly of the electronic circuit boards, no visible damage or evidence
			of explosion.
Zone 1:	Zone 1:	•	Visual inspection, no damage visible on the threads (cover, ½ in NPT cable glands).
Modbus interface and digital	Modbus interface and digital		
outputs in intrinsically safe	outputs in non-intrinsically safe	•	
ia(ib) / IS design	design		

Note

For further details on explosion protection, types of protection and device models, refer to the installation diagram in the annex!

Changing the type of protection – cFMus

The Modbus interface and the digital outputs of the models FCB130/150 and FCH130/150 can be operated with different types of protection:

- When connecting to an intrinsically safe circuit in Div. 1 as an intrinsically safe device (IS).
- When connecting to a non-intrinsically safe circuit in Div. 1 as a device with flameproof enclosure (XP).
- When connecting to a non-intrinsically safe circuit in Div. 2 as a non-sparking device (NI).

If a device that is already operational is operated with a different type of protection, the following measures must be implemented/insulation checks performed in accordance with applicable standards.

Original installation	New installation	Necessary test steps
Housing: XP, U _{max} = 30 V	Housing: XP	• 500 V AC/1min or 500 × 1.414 = 710 V DC/1min
Outputs non IS	Outputs: IS	Test between terminals A / B, 41 / 42 as well as 51 / 52 and terminals A, B, 41, 42, 51 and the
		housing. When this test is performed, no voltage flashover is permitted in or on the device.
		Optical evaluation particularly of the electronic circuit boards, no visible damage or evidence
		of explosion.
	Housings: Div 2	 500 V AC/1min or 500 × 1.414 = 710 V DC/1min
	Outputs: NI	Test between terminals A / B, 41 / 42 as well as 51 / 52 and terminals A, B, 41, 42, 51 and the
		housing. When this test is performed, no voltage flashover is permitted in or on the device.
		Optical evaluation particularly of the electronic circuit boards, no visible damage or evidence
		of explosion.
Outputs: IS	Housing: XP	• Visual inspection, no damage visible on the threads (cover, ½ in NPT cable glands).
Housing: XP	Outputs: non IS	
	Housing: XP	No special measures.
	Outputs: NI	
Housing: XP, U _{max} = 30 V	Housing: XP	• 500 V AC/1min or 500 × 1.414 = 710 V DC/1min
Outputs: NI	Outputs: IS	Test between terminals A / B, 41 / 42 as well as 51 / 52 and terminals A, B, 41, 42, 51 and the
		housing. When this test is performed, no voltage flashover is permitted in or on the device.
		Optical evaluation particularly of the electronic circuit boards, no visible damage or evidence
		of explosion.
	Housing: XP	• Visual inspection, no damage visible on the threads (cover, ½ in NPT cable glands).
	Outputs: non IS	

Note

For further details on explosion protection, types of protection and device models, refer to the installation diagram in the annex!

3 Use in hazardous areas in accordance with EAC TR-CU-012

Note

- An additional document with information on EAC-Ex certification is available for measuring systems that are used in potentially explosive atmospheres in accordance with EAC TR-CU-012.
- The information on EAC-Ex certification is an integral part of this instruction. As a result, it is crucial that the installation guidelines and connection values it lists are also observed. The icon on the name plate indicates

the following:

Information on EAC-Ex certification is available for free download at the following link. Alternatively simply scan the QR code.

INF/FCX100/FCX400/EAC-Ex-X8

4 Design and function

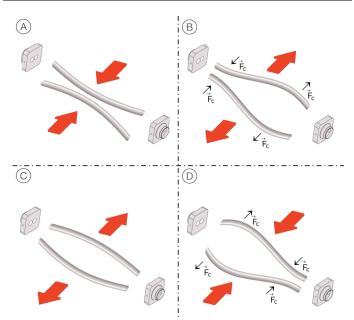
General

The ABB CoriolisMaster operates according to the Coriolis principle.

The construction features conventional parallel meter tubes and is characterized in particular by its space-saving, sturdy design, wide range of nominal diameters and minimal pressure loss.

Measuring principle

If mass flows through a vibrating pipe, Coriolis forces are generated which bend or twist the pipe. These very small measurement pipe deformations are picked up by optimally mounted sensors and electronically evaluated. Because the measured phase shift of the sensor signals is proportional to the mass flow, the mass conveyed by the measuring device can be recorded directly using the Coriolis mass flowmeter. The metering principle is independent of the density, temperature, viscosity, pressure and conductivity of the fluid. The meter tubes always vibrate at resonance. This arising

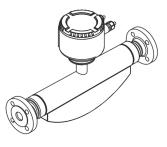

resonant frequency is a function of the meter tube geometry, the characteristics of the materials and the mass of the medium in the resonating meter tube. It provides an accurate measure of the density of the measuring medium.

An integrated temperature sensor records the measuring medium temperature and is utilized for corrections to temperature-dependent device parameters. In summary, it is possible to simultaneously measure mass flow, density and temperature with the Coriolis Mass Flowmeter. Other measurement values can be derived from these values, e.g. volume flow rate or concentration.

Function for calculating Coriolis force

$$\vec{F}c = -2m(\vec{\omega} \times \vec{v})$$

- Fc Coriolis force
- $\vec{\omega}$ Angular velocity
- \vec{V} Velocity of the mass
- m Mass



- (A) Movement of the pipes inward, no flow
- (B) Direction of the Coriolis force with flow and movement of the pipes outward
- (C) Movement of the pipes outward, no flow
- $\textcircled{\sc D}$ $% \left({\mathop{\rm Direction}} \right)$ Direction of the Coriolis force with flow and movement of the pipes inward

Figure 2: Simplified representation of Coriolis forces

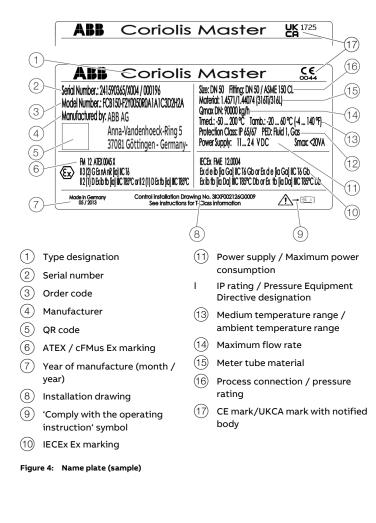
... 4 Design and function

Device designs

Figure 3: FCB1xx/FCH1xx

Model number	FCB1xx for standard applications	FCH1xx for hygienic applications		
Process connections				
Flange DIN 2501 / EN 1092-1	DN 10 to 200, PN 40 to 100	_		
Flange ASME B16.5	DN ½ to 8in, CL150 to CL1500	_		
JIS flange	DN 10 to 200; JIS 10K to 20K	_		
Pipe fitting DIN 11851	DN 10 to 100 (¼ to 4 in)	DN 15 to 100 (½ to 4 in)		
Pipe fitting SMS 1145	DN 25 to 80 (1 to 3 in)	_		
Tri-clamp DIN 32676 (ISO 2852)	DN 15 to 100 (¼ to 4 in)	DN 20 to 100 (¼ to 4 in)		
Tri-clamp BPE	DN ¾ to 4 in	DN ¾ to 4 in		
Female thread DIN ISO 228 and ASME B 1.20.	1 DN 15; PN 100	_		
Other connections	On request	On request		
Wetted material	Stainless steel 1.4435 or 1.4404 (AISI 316L), nickel alloy	Stainless steel, polished 1.4404 (AISI 316L) or 1.4435 (AISI		
	C4 / C22	316L)		
Approvals and certificates				
Explosion protection	Zone 0, 1, 2, 21, 22	Zone 0, 1, 2, 21, 22		
ATEX, IECEx, UKEX, EAC-Ex				
Explosion protection conforming to cFMus	Class I Div. 1, Class I Div. 2, Zone 0, 1, 2, 21	Class I Div. 1, Class I Div. 2, Zone 0, 1, 2, 21		
Hygiene approvals	lygiene approvals —			
Legal metrology	OIML R117, MID, devices for legal metrology in accordance with API / AGA			
Additional approvals	Available from <u>www.abb.com/flow</u> or upon request.			

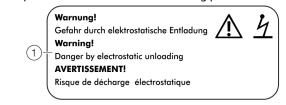
Model number	FCB130	FCB150	FCH130	FCH150		
Measuring accuracy for liquids						
Mass flow*	0.4 %, 0.25 % and 0.2 %	0.1 % and 0.15 %	0.4 %, 0.25 % and 0.2 %	0.1 % and 0.15 %		
Volume flow*	0.4 %, 0.25 % and 0.2 %	0.15 % and ±0.11 %	0.4 %, 0.25 % and 0.2 %	0.15 % and ±0.11 %		
Density	0.01 kg/l	 0.002 kg/l 	0.01 kg/l	 0.002 kg/l 		
		 0.001 kg/l (optional) 		 0.001 kg/l (optional) 		
		• 0.0004 kg/l (optional)		• 0.0004 kg/l (optional)		
Temperature	1 K	0,5 K	1 K	0,5 K		
Measuring accuracy for gases*	1%	0,5 %	1%	0,5 %		
Permissible measuring medium	-50 to 160 °C	-50 to 205 °C	-50 to 160 °C	-50 to 205 °C		
temperature	(-58 to 320 °F)	(-58 to 400 °F)	(-58 to 320 °F)	(-58 to 400 °F)		
Permissible ambient temperature	-40 to 70 °C (-40 to 158 °F)					
Power supply	11 to 30 V DC, nominal volt	age: 24 V DC				
IP rating in accordance with EN 60529	IP 65 / IP 67 / IP 68 (immer	sion depth: 5 m), NEMA 4X				
Communication	Modbus® RTU, RS485					
Outputs in serial production	• Digital output 1: passiv	e				
	• Digital output 2: passiv	e				
External output zero return	Yes					
External totalizer reset	Yes					
Flow measurement in forward flow and	Yes					
reverse flow direction						
Empty pipe detection	Yes, based on preconfigur	ed density alarm				
Self-monitoring and diagnosis	Yes					
Field optimization for flow and density	Yes					
Concentration measurement 'DensiMass'	Yes, optional on models FCB150 and FCH150					
'FillMass' filling function	Yes, optional on models FC	CB150 and FCH150				
"VeriMass" diagnosis function	Yes, optional					


* Indication of accuracy in % of the measured value (% of meas.val.)

5 **Product identification**

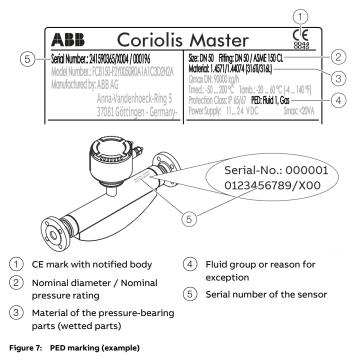
Name plate

Note


The name plates displayed are examples. The device identification plates affixed to the device can differ from this representation.

(1))		
\sim	ABB Coriolis	s N	1aster
(2	Serial Number.: 241590365/X004 / 000196		DN 50 Fitting: DN 50 / ASME 150 CL 14
(3	Model Number.: FCB150-F2Y0050R0A1A1C3D2H2A Manufactured by: ABB AG	Qma	rial: 1.4571/1.44074 (315Ti/316L) x DN: 90000 kg/h 13
	Anna-Vandenhoeck-Ring 5		L:-50 200 °C Tamb.:-20 60 °C (-4 140 °F) ction Class: IP 65/67 PED: Fluid 1. Gas
(4	37081 Göttingen - Germany		rSupply: 1124 VDC Smax:<20VA 12
(5) (6)	Са 1 Екстерно и мојасај ПС ТБ. Л I X Ек ја ња ја дај ШС ТБО. Л I X Ек ја ња ја дај ШС ТБО СРК С С КИ ВНИМОТРИ ЕК 26 КИ СО СВИЖЕ ВООС ⁶		
$\overline{(7)}$	Made in Germany Control installation Dro 05 / 2013 See instructions	awing No.	3KXF002126G0009
		8	9
1	Type designation	(10)	Power supply / Maximum power
(2)	Serial number	~	consumption
\leq	Order code	(11)	IP rating / Pressure Equipment Directive designation
(4)	Manufacturer	(12)	Medium temperature range /
5	QR code	0	ambient temperature range
6	EAC Ex marking	(13)	Maximum flow rate
7	Year of manufacture (month /	(14)	Meter tube material
	year)	(15)	Process connection / pressure
8	Installation drawing	0	rating
9	'Comply with the operating instruction' symbol		

Figure 5: EAC-Ex name plate (example)


Devices which are approved for use in potentially explosive atmospheres have an additional warning plate.

(1)WARNING! - Danger due to electrostatic discharge.

Figure 6: Additional warning plate

The marking is provided on the name plate and on the sensor itself in accordance with the Pressure Equipment Directive (PED).

The marking is dependent on the nominal diameter (> DN 25 or \leq DN 25) of the sensor (also refer to article 4, paragraph 3, Pressure Equipment Directive 2014/68/EU).

Pressure equipment within the scope of the Pressure Equipment Directive

The number of the notified body is specified underneath the CE mark to confirm that the device meets the requirements of the Pressure Equipment Directive.

The respective fluid group in accordance with the Pressure Equipment Directive is indicated under PED.

Example: Fluid group 1 = hazardous fluids, gaseous.

Pressure equipment beyond the scope of the Pressure Equipment Directive

The reason for exception in accordance with article 4 paragraph 3 of the Pressure Equipment Directive is specified under PED.

The pressure equipment is classified in the SEP (= Sound Engineering Practice) 'Good Engineering Practice' category.

6 Transport and storage

Inspection

Check the devices immediately after unpacking for possible damage that may have occurred from improper transport. Details of any damage that has occurred in transit must be recorded on the transport documents.

All claims for damages must be submitted to the shipper without delay and before installation.

Transport

🔺 DANGER

Life-threatening danger due to suspended loads.

In the case of suspended loads, a danger of the load falling exists.

• Standing under suspended loads is prohibited.

Risk of injury due to device slipping.

The device's center of gravity may be higher than the harness suspension points.

- Make sure that the device does not slip or turn during transport.
- Support the device laterally during transport.

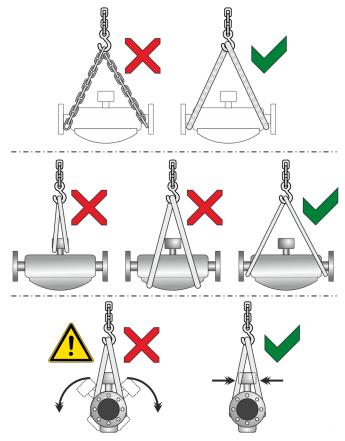


Figure 8: Transport instructions

Observe the following when transporting the device to the measuring location:

- Observe the weight details of the device in the data sheet.
- Use only approved hoisting slings for crane transport.
- Do not lift devices by the transmitter housing or terminal box.
- The center of gravity of the device may be located above the harness suspension points.

Storage

Bear the following points in mind when storing devices:

- Store the device in its original packaging in a dry and dust-free location.
- Observe the permitted ambient conditions for transport and storage.
- Avoid storing the device in direct sunlight.
- In principle, the devices may be stored for an unlimited period. However, the warranty conditions stipulated in the order confirmation of the supplier apply.

The ambient conditions for the transport and storage of the device correspond to the ambient conditions for operation of the device.

Adhere to the device data sheet!

Returning devices

For the return of devices, follow the instructions in **Repair** on page 100.

7 Installation

General installation conditions

Installation location and assembly

Note the following points when selecting the installation location and when mounting the sensor:

- The ambient conditions (IP rating, ambient temperature range T_{ambient}) of the device must be adhered to at the installation location.
- Sensors and transmitters must not be exposed to direct sunlight. If necessary, provide a suitable means of sun protection on site. The limit values for ambient temperature T_{ambient} must be adhered to.
- On flange devices, ensure that the counterflanges of the piping are aligned plane parallel. Only install flange devices with suitable gaskets.
- Prevent the sensor from coming into contact with other objects.
- The device is designed for industrial applications. No special EMC protective measures are required if the electromagnetic fields and interference at the installation location of the device comply with 'Best Practice' (in accordance with the standards listed in the declaration of conformity).

Maintain a suitable distance from electromagnetic fields and interference that extend beyond the usual dimensions.

Seals

Users are responsible for selecting and mounting suitable gaskets (material, shape).

Note the following points when selecting and mounting gaskets:

- Use gaskets made from a material that is compatible with the measuring medium and measuring medium temperature.
- Gaskets must not extend into the flow area, since possible turbulence may influence the accuracy of the device.

Calculating pressure loss

Pressure loss depends on the properties of the medium and the flow rate.

A good aid for pressure loss calculation is the Online ABB Product Selection Assistant (PSA) for flow at www.abb.com/flow-selector.

Brackets and supports

No special supports or damping are required for the device when the device is used and installed as intended.

In systems designed in accordance with 'Best Practice', the forces acting on the device are already sufficiently absorbed. This is also true of devices installed in series or in parallel. For heavier devices, it is advisable to use additional supports / brackets on site. Doing this prevents damage to the process connections and piping from lateral forces.

Please observe the following points:

- Mount two supports or brackets symmetrically in the immediate vicinity of the process connections.
- Do not fasten any supports or brackets to the housing of the flowmeter sensor.

Note

For increased vibration load, such as for example on ships, the use of the 'CL1' marine design is recommended.

Inlet section

The sensor does not require any inlet section. The devices can be installed directly before/after manifolds, valves or other equipment, provided that no cavitation is caused by this equipment.

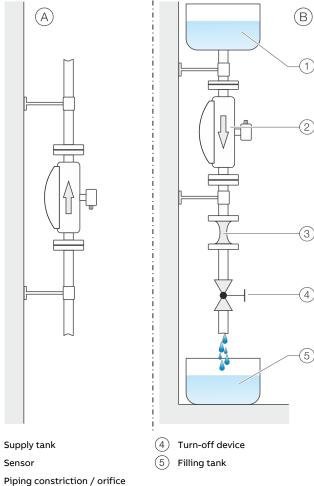
Mounting position

The flowmeter operates in any mounting position. Depending on the measuring medium (liquid or gas) and the measuring medium temperature, certain mounting positions are preferable to others.For this purpose, consider the following examples.

The preferred flow direction is indicated by the arrow on the sensor. The flow will be displayed as positive.

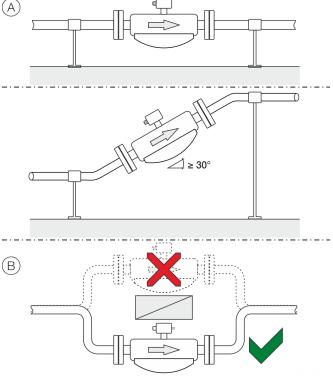
The specified measuring accuracy can be achieved only in the calibrated flow direction (for forward flow calibration, this is only in the direction of the arrow; for the optional forward flow and reverse flow calibration, this can be in both flow directions).

...7 Installation


... General installation conditions

Liquid measuring media

Observe the following points to avoid measuring errors:


- The meter tubes must always be completely filled with the measuring medium.
- The gases dissolved in the measuring medium must not leak out. To safeguard this, a minimum back pressure of 0.2 bar (2.9 psi) is recommended.
- The minimum vapor pressure of the measuring medium must be maintained when there is negative pressure in the meter tube or when liquids are gently simmering.
- During operation, there must be no phase transitions in the measuring medium.

Vertical installation

- (A) For vertical installation in a riser, no special measures are required.
- (B) For vertical installation in a downpipe, a piping constriction or an orifice must be installed below the sensor. Doing this prevents the sensor from draining during the measurement.

Horizontal installation

Figure 10: Horizontal installation

- (A) For liquid measuring media and horizontal installation, the transmitter and terminal box must point upward. If a selfdraining installation is required, the sensor must be mounted at an incline of ≥ 30°.
- (B) Installing the sensor at the highest point of the piping leads to an increased number of measuring errors due to the accumulation of air or the formation of gas bubbles in the meter tube.

Figure 9: Vertical installation

(1)

(2)

(3)

Gaseous measuring media

Observe the following points to avoid measuring errors:

- Gases must be dry and free of liquids and condensates.
 Avoid the accumulation of liquids and the formation of condensate in the meter tube.
- During operation, there must be no phase transitions in the measuring medium.

If there is a risk of condensate formation when using gaseous measuring media, note the following:

Ensure that condensates cannot accumulate in front of the sensor.

If this cannot be avoided, we recommend that the sensor is installed vertically with a downward flow direction.

Vertical installation

For vertical installation, no special measures are required.

Horizontal installation

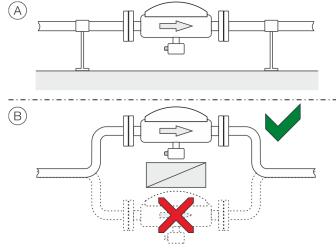
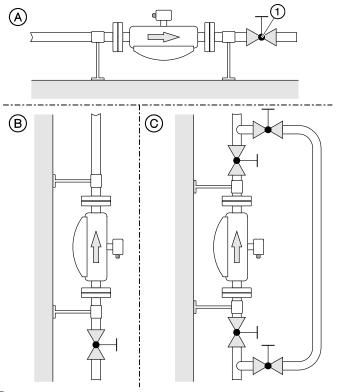



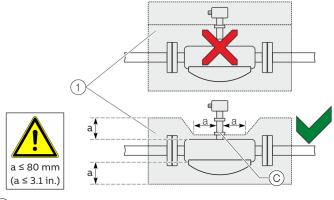
Figure 11: Horizontal installation

- (A) For gaseous measuring media and horizontal installation, the transmitter and terminal box must point downward.
- (B) Installing the sensor at the lowest point of the piping leads to an increased number of measuring errors due to the accumulation of liquid or the formation of condensates in the meter tube.

Turn-off devices for the zero point adjustment

(1) Turn-off device

Figure 12: Mounting options for turn-off devices (example)


To guarantee the conditions for zero point balancing under operating conditions, turn-off devices are required in the piping:

- (A) At least on the outlet side when the transmitter is mounted in horizontal position
- (B) At least on the inlet side when the transmitter is mounted in vertical position.
- © In order to perform balancing during an ongoing process, it is advisable to mount a bypass pipe.

...7 Installation

... General installation conditions

Sensor insulation

(1) Insulation

Figure 13: Installation at T_{medium} -50°to 205 °C (-58 to 400 °F)

The sensor may only be insulated in conjunction with the option TE1 'Extended tower length for sensor insulation' or TE2 'Extended tower length – insulation capacity with dual gasket,' as shown in Figure 13.

Heat tracing of the sensor

When operating the sensor in conjunction with heat tracing, the temperature at point \bigcirc (Figure 13) 100 °C (212 °F) may not be exceeded at any time!

Installation in EHEDG-compliant installations

Risk of poisoning!

Bacteria and chemical substances can contaminate or pollute pipeline systems and the materials they are made of.

- In EHEDG-compliant installations, the instructions below must be observed.
- The required self-draining functionality of the sensor can only be guaranteed when the vertical mounting position or horizontal mounting position at a 30° incline is used. Refer to **Liquid measuring media** on page 26.
- The combination of process connections and gaskets selected by the operator may comprise only EHEDGcompliant components. Please note the information in the latest version of the EHEDG Position Paper: 'Hygienic Process connections to use with hygienic components and equipment' in this regard.

Devices for legal metrology

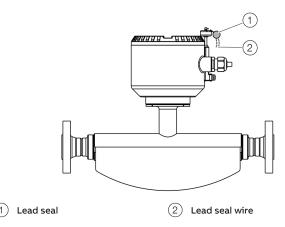


Figure 14: Sealing in accordance with MID / OIML R117 (example)

On devices for legal metrology, the hardware write protection must be activated after commissioning in many cases. This prevents a change in the parameterization of the devices. **Write-protect switch** on page 37

To prevent deactivation of the hardware write protection or other manipulations during operation, the transmitter housing and the sensor housing connection box (with remote mount design) must be sealed.

For this purpose, a seal kit is available at ABB. For the assembly of the seal, please observe the separate 'IN/FCX100/FCX400/MID/OIML-XA' instructions.

Process conditions

Note

When using the device in potentially explosive atmospheres, note the additional temperature data in **Temperature data** on page 8!

Temperature limits °C (°F)

Measuring medium temperature T_{medium} FCx130: -50 to 160 °C (-58 to 320 °F) FCx150: -50 to 205 °C (-58 to 401 °F)

Ambient temperature T_{amb.}

-40 to 70 °C (-40 to 158 °F)

Note

In devices with order code 'Extended tower length – TE3', from an ambient temperature of \geq 65 °C (149 °F), the measuring medium temperature must be limited to a maximum of 140 °C (284 °F).

Pressure ratings

The maximum permissible operating pressure is determined by the respective process connection, the temperature of the medium to be measured, the screws, and the gasket material. For an overview of available pressure ratings, see **Device designs** on page 20.

Housing as a protective device (optional)

Order code PR5

Maximum burst pressure 60 bar (870 psi)

Optional order code PR6 and PR7 on request

- Increased burst pressures up to 100 bar (1450 psi), possible for nominal diameters DN 15 to 100 (½ to 4 in.).
- Increased burst pressures up to 150 bar (2175 psi), possible for nominal diameters DN 15 to 80 (½ to 3 in.).
- Purge connections are available on request.

Pressure Equipment Directive

Conformity assessment in accordance with Category III, fluid group 1, gas The pressure equipment is designed for load changes in accordance with the AD2000 specification sheet S1 Chapter 1.4 a) and b).

Note the corrosion resistance of the meter tube materials in relation to the measuring medium.

Material load for process connections

Note

You can reference the availability of the different process connections in the Online ABB Product Selection Assistant (PSA) for flow <u>www.abb.com/flow-selector</u>.

- Not all connections shown here are available in all the devices and designs.
- The permissible material load of the device can additionally differ from the material load of the connection. The permissible limit values (pressure rating / measuring medium temperature T_{medium}) can be found on the name plate.

Design	Nominal diameter	PS _{max}	TS _{max}	TS _{min}
Pipe fitting	DN 15 to DN 40	40 bar	140 °C	-40 °C
(DIN 11851)	(½ to 1½ in)	(580 psi)	(284 °F)	(−40 °F)
	DN 50 to DN 100	25 bar	140 °C	-40 °C
	(2 to 4 in)	(363 psi)	(284 °F)	(−40 °F)
Pipe fitting	DN 25 to DN 80	6 bar	140 °C	-40 °C
(SMS 1145)	(1 to 3 in)	(87 psi)	(284 °F)	(-40 °F)
Tri-Clamp	DN 15 to DN 50	16 bar	140 °C	-40 °C
(DIN 32676)	(½ to 2 in)	(232 psi)	(284 °F)	(-40 °F)
	DN 65 to DN 100	10 bar	140 °C	-40 °C
	(2½ to 4 in)	(145 psi)	(284 °F)	(-40 °F)
ASME BPE Clamp	< DN 80	17,1 bar	121 °C	-40 °C
	(< 3 in)	(248 psi)	(249,8 °F)	(-40 °F)
	DN 80	15,5 bar	121 °C	-40 °C
	(< 3 in)	(224,8 psi)	(249,8 °F)	(-40 °F)
	DN 100	12,9 bar	121 °C	-40 °C
	(< 4 in)	(187,1 psi)	(249,8 °F)	(-40 °F)
NPT female thread	DN15 stainless steel	179 bar	150 °C	-40 °C
	1.4404	(2596,2 psi)	(302 °F)	(-40 °F)
	DN15 stainless steel	163 bar	205 °C	-40 °C
	1.4404	(2364,1 psi)	(401 °F)	(-40 °F)
	DN15 HC22	267 bar	150 °C	-40 °C
	2.4602	(3872,5 psi)	(302 °F)	(-40 °F)
	DN15 HC22	243 bar	205 °C	-40 °C
	2.4602	(3524,4 psi)	(401 °F)	(-40 °F)

...7 Installation

... Material load for process connections

Material load curves for flange devices

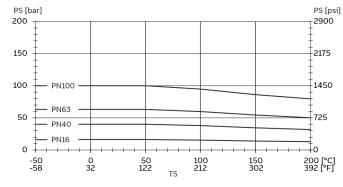


Figure 15: Stainless steel DIN flange 1.4404 (316L) up to DN 200 (8 in.)

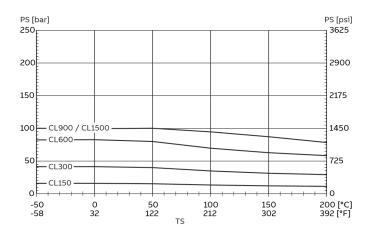


Figure 16: Stainless steel ASME flange 1.4404 (316L) up to DN 200 (8 in.)

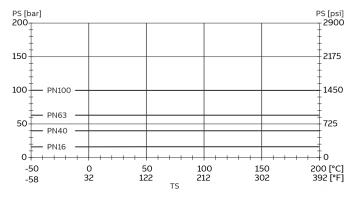
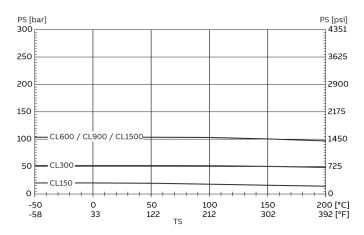



Figure 17: Nickel alloy DIN flange up to DN 200 (8 in)

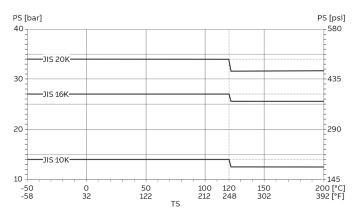


Figure 19: Stainless steel JIS B2220 flange 1.4435 or 1.4404 (AISI 316L) or nickel alloy

Installing the sensor

Before installation in the piping, observe the installation conditions and instructions on the mounting position!

- Insert the sensor into the piping centrally and positioned coplanar. Use suitable gaskets to seal the process connections.
- 2. Tighten flange screws by working on each in a crosswise manner with the maximum permissible torque.
- 3. Check the seal integrity of the process connections.

Opening and closing the terminal box

A DANGER

Danger of explosion if the device is operated with the transmitter housing or terminal box open!

Before opening the transmitter housing or the terminal box, note the following points:

- A valid fire permit must be present.
- Make sure that there is no explosion hazard.
- Switch off the power supply and wait for t > 20 minutes before opening.

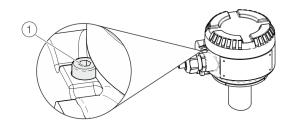


Figure 20: Cover lock (example)

NOTICE

Potential adverse effect on the IP rating

- Make sure that the cover of the power supply terminals is mounted correctly.
- Check the O-ring gasket for damage and replace it if necessary before closing the housing cover.
- Check that the O-ring gasket is properly seated when closing the housing cover.

To open the housing, release the cover lock by screwing in the Allen screw (1).

After closing the housing, lock the housing cover by unscrewing the Allen screw (1).

8 Electrical connections

Safety instructions

A DANGER

Danger of explosion if the device is operated with the transmitter housing or terminal box open!

Before opening the transmitter housing or the terminal box, note the following points:

- A valid fire permit must be present.
- Make sure that there is no explosion hazard.
- Switch off the power supply and wait for t > 20 minutes before opening.

WARNING

Risk of injury due to live parts.

Improper work on the electrical connections can result in electric shock.

- Connect the device only with the power supply switched off.
- Observe the applicable standards and regulations for the electrical connection.

Note

This is a class A device (industrial sector). This device can cause high frequency interferences in residential areas.

In this case, the operator may be required to take appropriate measures to remedy the interference.

The electrical connection may only be established by authorized specialist personnel and in accordance with the connection diagrams.

The electrical connection information in this manual must be observed; otherwise, the IP rating may be adversely affected. Ground the measurement system according to requirements.

Installing the connection cables

Ensure that a drip loop (water trap) is used when installing the connecting cables for the sensor.

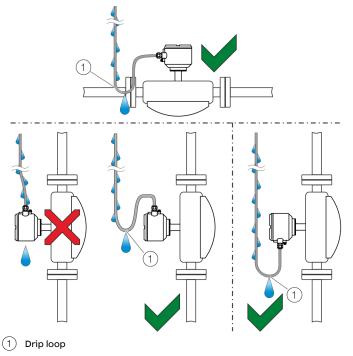
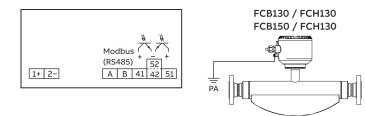



Figure 21: Laying the connection cable

Terminal assignment

Models FCB130, FCB150, FCH130 and FCH150

PA Potential equalization

Figure 22: Electrical connection

Connections for the power supply

DC voltage		
Terminal	Function / comments	
1+	+	
2-	-	

Connections for the outputs

Terminal	Function / comments
A / B	Modbus® RTU (RS485)
41 / 42	Passive digital output DO1
	The output can be configured as a pulse output, frequency
	output or switch output.
51 / 52	Passive digital output DO2
	The output can be configured as a pulse output or switch
	output.

Electrical data for inputs and outputs

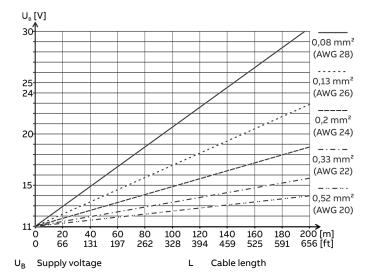
Note

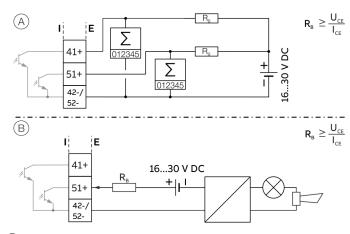
When using the device in potentially explosive atmospheres, note the additional connection data in **Use in potentially explosive atmospheres** on page 6!

Power supply

Supply voltage	11 to 30 V DC		
	(ripple: ≤ 5 %)		
Power consumption	S ≤ 5 VA		

When connecting the devices, note the voltage drop on the cable. The operating voltage on the device must not be less than 11 V.




Figure 23: Maximum cable lengths (examples)

... 8 Electrical connections

... Electrical data for inputs and outputs

Digital output 41 / 42, 51 / 52

Can be configured via Modbus.

(A) Passive digital output 41 / 42 as pulse or frequency output, Passive digital output 51 / 52 as pulse output

(B) Passive digital output 51 / 52 as binary output

Figure 24: Passive digital outputs (I = internal, E = external)

Pulse / frequency output (passive)		
Terminals	41 / 42 (pulse / frequency output)	
	51 / 52 (pulse output)	
Output 'closed'	0 V ≤ U _{CEL} ≤ 3 V	
	For f < 2.5 kHz: 2 mA < I _{CEL} < 30 mA	
	For f > 2.5 kHz: 10 mA < I _{CEL} < 30 mA	
Output 'open'	$16 \text{ V} \le \text{U}_{\text{CEH}} \le 30 \text{ V} \text{ DC}$	
	0 mA ≤ I _{CEH} ≤ 0.2 mA	
fmax	10.5 kHz	
Pulse width	0.1 to 2000 ms	
Binary output (passive)		
Terminals	41 / 42, 51 / 52	
Output 'closed'	0 V ≤ U _{CEL} ≤ 3 V	
	2 mA ≤ I _{CEL} ≤ 30 mA	
Output 'open'	$16 \text{ V} \le \text{U}_{\text{CEH}} \le 30 \text{ V} \text{ DC}$	

Configurable Parameter range - Output on page 66

0 mA ≤ I_{CEH} ≤ 0.2 mA

Note

Switching function

- Digital output 51 / 52 cannot be configured as a frequency output.
- Terminals 42 / 52 have the same potential. Digital outputs 41 / 42 and 51 / 52 are not electrically isolated from each other.
- If you are using a mechanical counter, we recommend setting a pulse width of \ge 30 ms and a maximum frequency of $f_{max} \le$ 3 kHz.

Modbus[®] communication

Note

The Modbus® protocol is an unsecured protocol, as such the intended application should be assessed to ensure that these protocols are suitable before implementation.

Modbus is an open standard owned and administrated by an independent group of device manufacturers styled the Modbus Organization (www.modbus.org/).

Using the Modbus protocol allows devices made by different manufacturers to exchange information via the same communication bus, without the need for any special interface devices to be used.

Modbus protocol	
Terminals	V1 / V2
Configuration	Via the Modbus interface or via the local operating
	interface in connection with a corresponding
	Device Type Manager (DTM)
Transmission	Modbus RTU - RS485 serial connection
Baud rate	2400, 4800, 9600, 19200, 38400, 56000, 57600,
	115200 baud
	Factory setting: 9600 baud
Parity	None, even, odd
	Factory setting: odd
Stop bit	One, two
	Factory setting: One
IEEE format	Little endian, big endian
	Factory setting: Little endian
Typical response time	< 100 ms
Response delay time	0 to 200 milliseconds
	Factory setting: 10 milliseconds

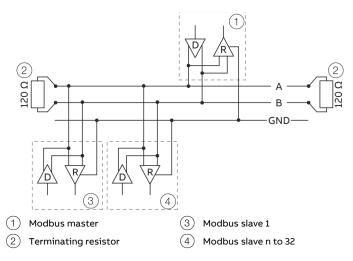


Figure 25: Communication with the Modbus protocol

Modbus response time

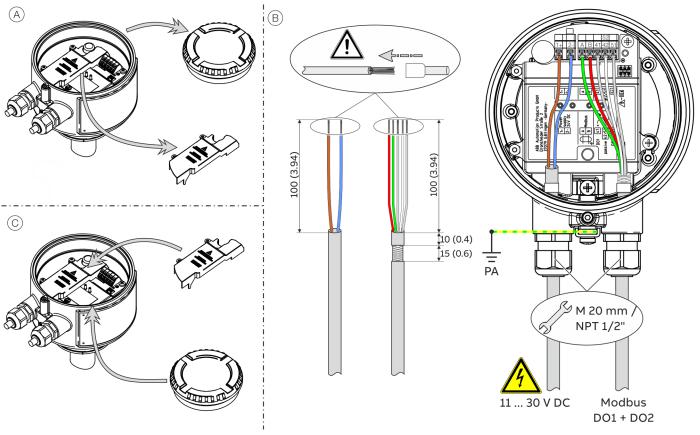
The typical response time of the device is normally less than 100 ms (minimum response time). The response time is calculated from the end of the request telegram from the master to the beginning of the response telegram from the slave. The response time can be increased via the parameter 'modbusResponseDelayTime'.

Refer to **Parameter range – Communication** on page 74. The length of the response telegram is dependent upon the number of bytes read and the baud rate configured.

Cable specification

The maximum permissible length is dependent on the baud rate, the cable (diameter, capacity and surge impedance), the number of loads in the device chain, and the network configuration (2-core or 4-core).

- At a baud rate of 9600 and with a conductor cross-section of at least 0.14 mm² (AWG 26), the maximum length is 1000 m (3280 ft).
- When using a 4-core cable as a 2-wire wiring system, the maximum length must be halved.
- The spur lines must be short, a maximum of 20 m (66 ft).
- When using a distributor with 'n' connections, each branch must have a maximum length of 40 m (131 ft) divided by 'n.'


The maximum cable length depends on the type of cable used. The following standard values apply:

- Up to 6 m (20 ft): cable with standard shielding or twisted-pair cable.
- Up to 300 m (984 ft): double twisted-pair cable with overall foil shielding and integrated earth cable.
- Up to 1200 m (3937 ft): double twisted-pair cable with individual foil shielding and integrated earth cables. Example: Belden 9729 or equivalent cable.

A category 5 cable can be used for Modbus RS485 up to a maximum length of 600 m (1968 ft). For the symmetrical pairs in RS485 systems, a surge impedance of more than 100 Ω is preferred, especially at a baud rate of 19200 and above.

... 8 Electrical connections

Connection on the device

PA Potential equalization

Figure 26: Connection to device

NOTICE

Potential adverse effect on the IP rating

- Check the O-ring gasket for damage and replace it if necessary before closing the housing cover.
- Check that the O-ring gasket is properly seated when closing the housing cover.

Connecting integral mount design Perform steps (A) to (C).

During the process, observe the following instructions:

- Lead the cable for the power supply into the terminal box through the left cable entry.
- Lead the cables for the Modbus outputs and digital outputs into the terminal box through the right cable entry.
- Connect the cables in accordance with the electrical connection. Connect the cable shields to the designated grounding clamp in the terminal box.
- Connect the potential equalization (PE) on the ground terminal to the terminal box.
- Use wire end ferrules when connecting.

Observe the following points when connecting to the power supply:

- Adhere to the limit values of the power supply in accordance with the information on the device name plate.
- The cables must comply with IEC 227 or IEC 245.
- Complete the electrical connection in accordance with the electrical connection diagram.

9 Commissioning and operation

Safety instructions

A DANGER

Explosion hazard

Improper installation and commissioning of the device carries a risk of explosion.

• For use in potentially explosive atmospheres, observe the information in **Use in potentially explosive atmospheres** on page 6!

Risk of burns due to hot measuring media

The device surface temperature may exceed 70 $^{\circ}$ C (158 $^{\circ}$ F), depending on the measuring medium temperature!

• Before starting work on the device, make sure that it has cooled sufficiently.

Operating instructions

When operating the device, please note the following:

- Aggressive or corrosive media can lead to damage of wetted parts. As a result, pressurized media may escape prematurely.
- Wear to the flange gasket or process connection gaskets (such as aseptic pipe fittings, Tri-Clamp, etc.) can cause pressurized media to escape.
- When using internal flat gaskets, these can become brittle as a result of CIP / SIP processes.

If there is a chance that safe operation is no longer possible, take the device out of operation and secure it against unintended startup.

Write-protection switch, service LED and local operator interface

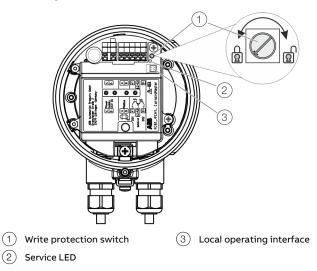


Figure 27: Operating elements in the terminal box

Write-protect switch

The write protection switch is located in the sensor terminal box. If write protection is active, the parameterization of the device cannot be changed via Modbus or the local operating interface. Turning the write protection switch clockwise deactivates the write protection function, while turning the switch counterclockwise activates it.

The power supply to the transmitter must be briefly interrupted in order for the modified setting to take effect.

Service LED

The service LED, which indicates the operating condition of the device, is located in the sensor terminal box.

Service LED	Description	
Flashes rapidly (100 ms)	Starting sequence, device not yet ready for	
	operation	
Lit up continuously	Device operating, no critical error	
Flashes slowly (1 second)	A critical error has occurred, see Diagnosis / error	
	messages on page 93	

Local operating interface

The sensor can also be parameterized without a Modbus connection via the local operating interface, see **Parameterization via the local operating interface** on page 39.

Checks prior to commissioning

The following points must be checked before commissioning the device:

- Correct wiring in accordance with Electrical connections on page 32.
- Correct grounding of the device.
- The ambient conditions must meet the requirements set out in the specification.
- The power supply must meet the requirements set out on the name plate.

NOTICE

Damage to the device due to undervoltage.

In the event that lower voltage is supplied than indicated on the name plate, the current consumption of the device increases.

The internal fuses can be damaged as a result.

 Make sure that the minimum operating voltage of the device is not down-scaled (see also Electrical data for inputs and outputs on page 33).

Switching on the power supply

- 1. Switch on the power supply.
- 2. Perform parameterization of the flowmeter (see **Parameterization of the device** on page 38).

The flowmeter is now ready for operation.

Inspection after power-up of the power supply

The following points must be checked after commissioning the device:

- Parameter configuration must correspond to the operating conditions.
- The system zero point has been balanced (see **Zero point** balance under operating conditions on page 84).

Parameterization of the device

Note

- The device does not have the operating elements for parameterization on site.
- The parameterization is performed either via the Modbus interface or the local operating interface of the device.

Usually at least the following parameters must be set during commissioning:

- The Modbus slave ID, baud rate, and parity,
- The units for the mass flow, density, temperature, and the volume flow rate,
- The pulse width and the pulse factor for the pulse output,
- Massflow CutOff.

The settings for the Modbus interface and the pulse output are only necessary if the corresponding outputs are also used.

Parameterization via the Modbus interface

Note **Parameter descriptions** on page 55 when parameterizing via the Modbus interface.

Factory setting for the Modbus slave ID (address)

The Modbus Slave ID of the device is preset at the factory. The Modbus Slave ID corresponds to the last two digits of the serial number of the device on the name plate.

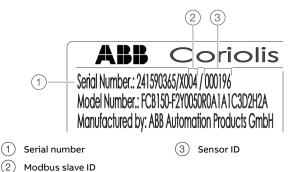
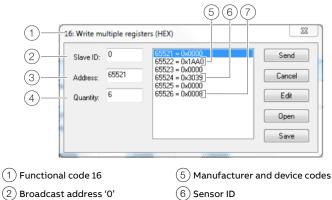


Figure 28: Modbus-address on the name plate (example)

Changing an unknown Modbus slave ID


The Modbus Slave ID (address) of the device must be known for Modbus communication.

Upon delivery, the Modbus Slave ID corresponds to the last two digits of the serial number of the device (see **Parameterization via the Modbus interface** on page 38).

If the Modbus address is not known, the Modbus Slave ID can be reset via a Modbus broadcast message. To do this, the following three Modbus registers must be sent to the bus together with the function code 16 (0x10) "Write Multiple Registers".

Address / data type [register length]	Description
65521 TUSIGN32 [2]	manufacturerDeviceID
	The manufacturer code (ABB = 0x1A) and the
	device code (FCB1xx = 0xA0) must be written to
	the register 65522.
65523 TUSIGN32 [2]	sensorSerialID
	The Sensor ID of the device (on the name plate,
	see Factory setting for the Modbus slave ID
	(address) on page 38). The information must first
	be written in the high-byte (65524) of the register.
65525 TUSIGN32 [2]	slaveID
	The new Modbus Slave ID must be written in the
	high byte (65526) of the register.

The three Modbus registers must now be sent from the Modbus master to the broadcast address "0". All of the devices connected to the bus receive the message, but only the device addressed via the manufacturer code and the Sensor ID sets the Modbus Slave ID to the new required value.

(3) Register start address

- (7) New Modbus slave ID
- (4) Number of registers

Figure 29: Write Multiple Registers (example)

Parameterization via the local operating interface

A PC / notebook and the USB interface cable (3KXS310000L0001) are needed to configure the device via the local operating interface of the device.

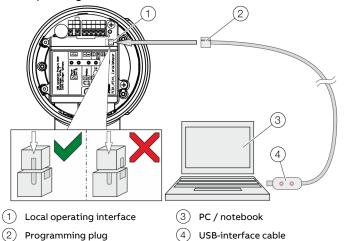


Figure 30: Connection to the local operating interface

Connection on the device

- 1. Open device terminal box.
- 2. Connect programming plug to the local operating interface of the device.
- 3. Insert USB interface cable into a free USB female connector on the PC / notebook.

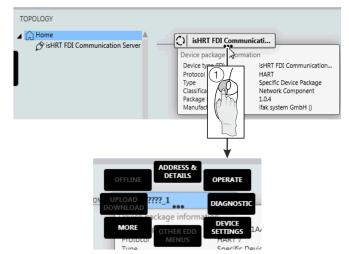
Note

Any required drivers are automatically installed by Windows[®]. If installation of the drivers does not start automatically, search for the drivers using the Windows driver search. If you do not have an Internet connection, use the 'Prolific Driver' software packages.

- 4. Switch on the device power supply.
- 5. Perform parameterization of the device.

... Parameterization of the device

Installation of ABB Field Information Manager (FIM)


Download the ABB Field Information Manager (FIM) using the adjacent download link.

Download the ABB FDI package using the following

Figure 32: Select FIM – COM-Port

- 8. Select the corresponding COM port. Close the menu by clicking on "send".
- 9. By using the menu button on the left side, the flowmeter is displayed under 'TOPOLOGY'.

Installation of the software and connection to the flowmeter:

1. Install ABB Field Information Manager (FIM).

download link.

- 2. Unpack the ABB FDI package into the c:\temp folder.
- Connect the flowmeter with the PC / laptop, see Connection on the device on page 39.
- 4. Power-up the power supply for the flowmeter and start the ABB Field Information Manager (FIM).
- Drag and drop the 'ABB.FCXxxx.02.00.00.HART.fdix' file (or a newer version) to the ABB Field Information Manager (FIM). No special view is needed for this.
- 6. Right-click (1) as shown in Figure 31.

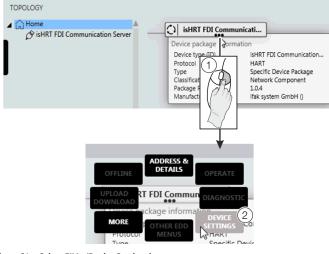


Figure 31: Select FIM – 'Device Settings'

7. Select 'DEVICE SETTINGS' (2) as shown in Figure 31.

Figure 33:

All the submenus can be accessed by clicking the three points below the tag name of the flowmeter with the left mouse button (1).

Interface description

NOTICE

All Modbus addresses in this chapter are indicated in the format "PLC Base 1".

Modbus data types

ABB data type	Data type	Register count	Description
ACTION	unsigned char	One register	The 'ACTION' data type is used to trigger device functions.
			Parameters with the data type 'ACTION' have no internal memory
			requirements. Writing any value into the parameters triggers the
			corresponding device function.
TUSIGN8	unsigned char	One register	16-bit register, but only the first 8-bits are used - unsigned char.
TUSIGN16	unsigned short	One register	16-bit unsigned integer
TINT16	signed short	One register	16-bit signed integer
TUSIGN32	unsigned long	Two consecutive registers	32-bit unsigned integer
TINT32	signed long	Two consecutive registers	32-bit signed integer
TCHAR	unsigned char	One register	16-bit register, but only the first 8-bits are used - unsigned char. The register
		The total length of the register	content is interpreted as an ASCII-value.
		depends on the object length.	
TFLOAT	float	Two consecutive registers	32-bit IEEE floating point
			The device parameter 'IEEE Format' determines the order in which the data
			words of the data types 'float' and 'double' are interpreted.
			See also Parameter range – Communication on page 74.
TDOUBLE	double	Four consecutive registers	64-bit IEEE double-precision floating point
			The device parameter 'IEEE Format' determines the order in which the data
			words of the data types 'float' and 'double' are interpreted. See also Parameter
			range – Communication on page 74.
			If the parameter is set to '1' (IEEE format deactivated), the data words of the
			data types 'float' and 'double' are sent in the standard Modbus format 'big
			endian'.
			Example:
			The value '5.525' is returned in hex as '40, 16, 19, 99, 99, 99, 99, 9A'.
			If the parameter is set to '0' (IEEE format activated), the data words of the
			data types 'float' and 'double' are sent in the format 'little endian' with the
			lowest value word first.
			Example:
			The value '5.525' is returned in hex as '99, 9A, 99 ,99, 19, 99, 40, 16'.

... Interface description

Register tables (overview)

Table ID [hex]	Table name	Table type	Data type	Start index	End index
Input coils					
0xD	Input Coils Table	Coil	TUSIGN8	2000	3000
Register					
0x0	8-bit register	Single	TUSIGN8	1	99
0x1	Action register	Single	ACTION	100	148
0x2	Float register	Single	TFLOAT	149	360
0x3	16-bit register	Single	TUSIGN16	361	407
0x4	Float register	Single	TFLOAT	408	450
0x5	32-bit register	Single	TUSIGN32	451	569
0x6	8-bit register	Single	TUSIGN8	570	600
0x7	16-bit config scan register 1	Single	TUSIGN16	655	686
0x8	Scan register	Single	TUSIGN32	687	750
0x9	16-bit config scan register 2	Single	TUSIGN16	751	782
0xA	Scan register 2	Single	TUSIGN32	783	846
0xB	Float register	Single	TFLOAT	963	1002
0xC	Stringregister	String	TUSIGN8	1003	1499
0xE	String register	String	TCHAR	1500	1999
0xF	Double register	Single	TDOUBLE	847	962
0x10	Slave ID register	Single	TUSIGN32	65521	65526
0x11	Float register	Single	TFLOAT	601	654
0x12	8-bit register	Single	TUSIGN8	3001	3500
0x13	Float register	Single	TFLOAT	3501	4000

The device error messages are transmitted via the Modbus® interface by means of the 'Input Coils.' For more detailed information, see **Diagnosis / error messages** on page 93.

Supported Modbus function codes

In this chapter, all Modbus function codes supported by CoriolisMaster FCB100, FCH100 are described.

Overview

The function codes listed below are supported by CoriolisMaster FCB100, FCH100.

Function code	Description	Applicable to register tables
0x02	Read Discrete Inputs	Alarm status Discrete Inputs
		Alarm history status Discrete Inputs
0x03	Read Holding Registers	Read-write Byte parameters
		Read-write Byte string parameters
		Read-write Float parameters
		Action parameters
0x04	Read Input Registers	Read-only Byte parameters
		Read-only Short parameters
		Read-only Integer parameters
		Read-only Float parameters
		Read-only Double parameters
		Alarm history counters
		Read-only Byte string parameters
0x06	Write Single Register	Read-write Byte parameters
		Read-write Byte string parameters
		Action parameters
0x08	Diagnostics	NA
0x10	Write Multiple Registers	Read-write Byte parameters
		Read-write Byte string parameters
		Read-write Float parameters
		Action parameters
0x11	Report Slave ID	NA

... Interface description

0x02 Read Discrete Inputs

The 'Read Discrete Inputs' function code is used to read off register 'Discrete Inputs (Coil)' of the device. The query telegram is designed as follows:

Byte	Description
1	Slave device code
2	Read Discrete Inputs Function Code, 0x02.
3, 4	Discrete input address. 16-bit value indicating the address of the first discrete input to be read.
5, 6	Number of discrete inputs. 16-bit value indicating the number of discrete inputs to be read.
7, 8	Check sum (CRC) of the Modbus telegram

The reply telegram to a successfully processed query is designed as follows:

Byte	Description
1	Slave device code
2	Read Discrete Inputs Function Code, 0x02.
3	Anzahl (n) der Datenbytes im Antwort-Telegramm
4 (4+n)-1	Discrete input data. Up to 2000 discrete inputs can be read in one request, if available.
(4+n),	Check sum (CRC) of the Modbus telegram
(4+n)+1	

0x03 Read Holding Registers

The 'Read Holding registers' function code is used to read off the 'Read Holding Registers' of the device. The query telegram is designed as follows:

Byte	Description	
1	Slave device code	
2	Read Holding Registers Function Code, 0x03.	
3, 4	Holding register address. 16-bit address indicating the address of the first holding register to read.	
5, 6	Holding register count. 16-bit value indicating the number of holding registers to read.	
7, 8	Check sum (CRC) of the Modbus telegram	

Byte	Description
1	Slave device code
2	Read Holding Registers Function Code, 0x03.
3	Holding register count ('n'). 8-bit value indicating the count of holding registers returned in the message.
4 (4+n)-1	Holding register data.
(4+n),	Check sum (CRC) of the Modbus telegram
(4+n)+1	

0x04 Read Input Registers

The 'Read Input Registers' function code is used to read off the 'Input Register' of the device. The query telegram is designed as follows:

Byte	Description
1	Slave device code
2	Read Input Registers Function Code, 0x04.
3, 4	Input register address. 16-bit value indicating the address of the first input register to read.
5, 6	Input register count. 16-bit value indicating the number of input registers to read.
7, 8	Check sum (CRC) of the Modbus telegram

The reply telegram to a successfully processed query is designed as follows:

Byte	Description
1	Slave device code
2	Read Input Registers Function Code, 0x04.
3	Number (n) of data bytes in the reply telegram
4 (4+n)-1	Input register data.
(4+n),	Check sum (CRC) of the Modbus telegram
(4+n)+1	

0x06 Write Single Register

The 'Write Single Register' function code is used to write a value in one of the 'Holding Register' of the device. The query telegram is designed as follows:

Byte	Description
1	Slave device code
2	Write Single Register Function Code, 0x06.
3, 4	16-bit holding register address.
5, 6	Holding register value. 16-bit value indicating the value to write.
7, 8	Check sum (CRC) of the Modbus telegram

Byte	Description	
1	Slave device code	
2	Write Single Register Function Code, 0x06.	
3, 4	Holding register address. 16-bit value indicating the address of the holding register that was written.	
5, 6	Holding register value. 16-bit value indicating the value that was written to the holding register.	
7, 8	Check sum (CRC) of the Modbus telegram	

... Interface description

0x08 Diagnostics

Only the subfunction 'Return Query Data (0x00, 0x00)' is supported.

If the device receives a query telegram, the telegram is sent back to the Master without changes.

The query and reply telegrams are designed as follows:

Byte	Description
1	Slave device code
2	Diagnostics Function Code, 0x08.
3, 4	Sub-query identifier, 0x00, 0x00.
5(5+n)-1	Diagnostics query data. (Of length 'n').
(5+n)	Check sum (CRC) of the Modbus telegram
(5+n)+1	

0x10 Write Multiple Registers

The 'Write Multiple Register' function code is used to write a value in the 'Holding Register' of the device. The query telegram is designed as follows:

Byte	Description	
1	Slave device code	
2	Write Multiple Registers Function Code, 0x10.	
3, 4	Holding register address. 16-bit value indicating the address of the first holding register to write.	
5, 6	Holding register count. 16-bit value indicating the number of holding registers to write	
7	Byte count ('n'), number of data bytes in the request.	
8(8+n)-1	Holding register message data. The data to write to the holding registers.	
(8+n)	Check sum (CRC) of the Modbus telegram	
(8+n)+1		

Byte	Description
1	Slave device code
2	Write Multiple Registers Function Code, 0x10.
3, 4	Holding register address. 16-bit value indicating the address of the first holding register.
5, 6	Holding register count. 16-bit value indicating the number of holding registers written.
7, 8	Check sum (CRC) of the Modbus telegram

0x11 Report Slave ID

The 'Report Slave ID' commando is used to uniquely identify the slave device. The query telegram is designed as follows:

Byte	Description
1	Slave device code
2	Report Slave ID Function Code, 0x11.
3, 4	Check sum (CRC) of the Modbus telegram

Byte	Description						
1	Slave device code						
2	Report Slave ID Function Code, 0x11						
3	Number of data bytes						
4	Manufacturer identification for ABB 0x1A						
5	Device code for CoriolisMaster devices, 0xA0						
6	Software version, 0x30						
7	Hardware version, 0x30						
8	Not used, 0x30						
911	Reserved for future use, 0x30,0x30,0x30						
1233	Device name						
	(Hex) 41,42,42,20,46,45,58,31,30,30,20,57,61,74,65,72,4D,61,73,74,65,72.						
	(ASCII) 'ABB FCx 1xx CoriolisMaster						
3435	Check sum (CRC) of the Modbus telegram						

... Interface description

Modbus error handling (exception codes)

If the recipient of the message determines an error, it sends an appropriate error message back to the Master. Here the function code from query telegram 0x80 is added. An appropriate error code is sent as data. The following error codes are supported:

Error code	Name	Description
0x01	ILLEGAL_FUNCTION	Use of an unsupported function code or the device currently cannot process the query.
0x02	ILLEGAL_DATA_ADDRESS	Invalid register address is used or an attempt has been made to write to a write-protected
		register address.
0x03	ILLEGAL_DATA_VALUE	Use of unauthorized data values, for example an incorrect number of registers.
0x04	SLAVE_DEVICE_FAILURE	The device currently cannot process the query. Repeat the query later.

The reply telegram with error message is designed as follows:

Byte	Description
1	Slave device code
2	Function code + 0x80
3	Error code (exception code)
4,5	Check sum (CRC) of the Modbus telegram

Application of the Health Indication Registers (Condensed Status Registers))

The CoriolisMaster FCB100, FCH100 has three 'Health indication registers' (Condensed Status Registers). The 'Health indication register 365, 366 and 367 consist of 2 bytes, each containing 8 bits. Each bit represents an error.

The registers are structured as follows:

	365							Ι	366												367																															
	Byte 0 Byte 1							T		E	3	y.	t	e	2	2			E	<u>3</u>	y1	te	9	3		T		I	B	y.	t€	9	4		T		E	3	/1	te	2	5										
												I		_			I					I																						Ţ	Ţ	ļ						
-	01	2	3	4	5	6	7	C	1	2	2	3.	4	5	6	57		5	1	2	3		4	5	6	7	0	1	2	3	4	. 5	5 6	5 7	7	0	1	2	3	4	5	6	57		21	1	2	3	4	5	e	6

Figure 34: Health indication register (example)

The bit position is assigned to the errors in accordance with the 'Byte / Bit pos.' column in the table in the chapter **Alarm status und alarm history status** on page 96.

The following assignment applies to the example in Figure 34:

Byte / Bit	Fault message	
Byte 0 / Bit 3	Flow rate set to 0	
Byte 0 / Bit 5	All counters stopped	
Byte 4 / Bit 3	Density too low	

Using the scan register

The CoriolisMaster FCB100, FCH100 has two 'Scan Register' via which groups of parameters can be requested. As a result, the parameters do not need to be requested individually and the bus load on the Modbus is reduced.

A scan register consists of a configuration register and the actual scan register.

Configuration register

The Modbus addresses of the parameters are entered in the configuration register. These addresses are to be requested as a group when the scan register is read. The configuration is stored in the transmitter and must only be rewritten in the event of changes. A maximum of 32 Modbus addresses may be stored.

Scan Register

When read out, the Scan Register returns the values of the parameters that were entered in the configuration register. The scan register has a length of 32 holding registers that must be considered when entering addresses in the configuration register.

For example, a maximum of 32 addresses with a register length of [1] can be requested via the scan register.

Note

If the total register length of the addresses entered in the configuration register exceeds the register length of the scan register, the response will be shortened accordingly when read out.

Restrictions

When using the Scan Registers, observe the following points:

- The scan registers are read only. It is not possible to gain write access to the parameters entered in the configuration register.
- Action Registers cannot be addressed via the Scan Registers, as Action Registers require write access
- String Registers cannot be read out via the Scan Registers, as a String would overwrite the available register length of the Scan Register in most cases.

... Interface description

Design of the scan register (example)

Content of the configuration register (Config scan register)

Config scan register 1, re	gister range 655 686								
Config scan register 2, register range 751 782									
Configuration register	Parameter address	Parameter descriptions							
655 / 751	247	Mass flow in the selected mass flow unit (data type float, register length 2)							
656 / 752	249	Volume flow in the selected volume unit (data type float, register length 2)							
657 / 753	259	Mass flow counter reading in forward flow direction (data type float, register length 2)							
658 / 754	263	Volume flow counter reading in forward flow direction (data type float, register length 2)							
659 / 755	365	Diagnosis State 0 (Data type Usign 16, register length 1)							
660 / 756	366	Diagnosis State 1 (Data type Usign 16, register length 1)							
661 / 757	367	Diagnosis State 2 (Data type Usign 16, register length 1)							
662 / 758	368	Mass flow unit Qm (data type Usign 8, register length 1)							
/	FFF	Non-configured register spaces must be filled with FFF.							
686 / 782	FFF								

Response following the scan register request

In this example, 12 registers are used in the scan register.

Scan register 1, register	range 687 718						
Scan register 2, register	Scan register 2, register range 783 846						
Configuration register	Register content						
687 / 783	Mass flow (data type float, register length 2)						
688 / 784							
689 / 785	Volume flow (data type float, register length 2)						
690 / 786							
691 / 787	Mass flow counter reading in forward flow direction (data type float, register length 2)						
692 / 788							
693 / 789	Volume flow counter reading in forward flow direction (data type float, register length 2)						
694 / 790							
695 / 791	Diagnosis state 0 (data type Usign 16, register length 1)						
696 / 792	Diagnosis state 1 (data type Usign 16, register length 1)						
697 / 793	Diagnosis state 2 (data type Usign 16, register length 1)						
698 / 794	Mass flow unit Qm (data type Usign 8, register length 1)						
/	Non-configured register spaces remain unpopulated.						
718 / 846							

Available units

For certain parameters it is possible to choose among the following units.

Note

The 'Code' column indicates the value to which the corresponding parameter must be set, e.g. using the communications interface.

Table 1: Units for the volume flow				
Selection	Code	Description		
m ³ /s	13	Cubic meters per second		
m ³ /min	14	Cubic meters per minute		
m³/h	15	Cubic meters per hour		
m³/d	16	Cubic meters per day		
ft ³ /s	29	Cubic feet per second		
ft ³ /min	30	Cubic feet per minute		
ft ³ /h	31	Cubic feet per hour		
ft³/d	32	Cubic feet per day		
ml/s	46	Milliliters per second		
ml/min	47	Milliliters per minute		
l/s	48	Liters per second		
l/min	49	Liters per minute		
l/h	50	Liters per hour		
l/d	51	Liters per day		
hl/h	54	Hectoliters per hour		
MI/d	62	Megaliters per day		
ugal/s	71	US gallons per second		
ugal/min	72	US gallons per minute		
ugal/h	73	US gallons per hour		
ugal/d	74	US gallons per day		
Mugal/d	82	Mega US gallons per day		
igal/s	91	Imperial gallons per second		
igal/min	92	Imperial gallons per minute		
igal/h	93	Imperial gallons per hour		
igal/d	94	Imperial gallons per day		
bbl/s	112	Oil barrels per second		
bbl/min	113	Oil barrels per minute		
bbl/h	114	Oil barrels per hour		
bbl/d	115	Oil barrels per day		
bls/s	130	Brew barrels per second		
bls/min	131	Brew barrels per minute		
bls/h	132	Brew barrels per hour		
bls/d	133	Brew barrels per day		
xx/yy	254	Customer unit (user-defined)		

Table 2: Units for the mass flow				
Selection	Code	Description		
g/s	1	Grams per second		
g/min	2	Grams per minute		
g/h	3	Grams per hour		
g/d	4	Grams per day		
kg/s	5	Kilograms per second		
kg/min	6	Kilograms per minute		
kg/h	7	Kilograms per hour		
kg/d	8	Kilograms per day		
lb/s	9	Pounds (avdp) per second		
lb/min	10	Pounds (avdp) per minute		
lb/h	11	Pounds (avdp) per hour		
lb/d	12	Pounds (avdp) per day		
t/min	30	Metric tons per minute		
t/h	31	Metric tons per hour		
t/d	32	Metric tons per day		
xx/yy	254	Customer unit (user-defined)		

Table 3: Density units				
Selection	Code	Description Grams per cubic centimeter		
g/cm ³	1			
kg/m³	4	Grams per cubic meter		
g/ml	7	Grams per milliliter		
g/l	10	Grams per liter		
kg/l	11	Kilograms per liter		
lb/ft ³	13	Pounds (avdp) per cubic foot		
lb/ugal	14	Pounds (avdp) per gallon		
SG	17	Specific gravity		
xx/yy	254	Customer unit (user-defined)		

Selection Code Description		Description	
к	1	Kelvin	
°C	2	Celsius	
°F	3	Fahrenheit	
xx/yy	254	Customer unit (user-defined)	

... Available units

Table 5: Concentration units					
Selection	Code	Description			
%	57	Concentration in %			
Brix	101	Brix concentration			
Variable	240	The concentration is calculated with the variables			
Matrix		matrix			
Baume	241	Baume concentration			
API	104	Crude oil density in API degrees			

Table 6: Units for the mass totalizer				
Selection	Code	Description		
kg	2	Kilograms		
g	3	Grams		
t	5	Tons (metric)		
Pound	8	Pounds (advp)		
xx/yy	254	Customer unit (user-defined)		

Table 7: Units for the volume totalizer				
Selection	Code	Description		
m ³	4	Cubic meters		
ft ³	7	Cubic feet		
ml	11	Milliliters		
I	13	Liters		
hl	14	Hectoliters		
ugal	20	US gallons		
igal	21	Imperial gallons		
bbl	22	Barrels (petroleum, USA)		
bls	31	Barrels (beer, USA)		
xx/yy	254	Customer unit (user-defined)		

Table 8: Pressure units				
Selection	Code	Description		
Pa	1	Pascals		
kPa	4	Kilopascals		
Bar	8	Bar		
mBar	9	Millibar		
psi	65	Pounds per square inch		

Selection	Code	Description	
1/kg	2	Per kilogram	
1/g	3	Per gram	
1/m³	4	Per cubic meter	
1/t	5	Per metric ton	
1/ft³	7	Per cubic foot	
1/lb	8	Per pound	
1/ml	11	Per milliliter	
1/l	13	Per liter	
1/hl	14	Per hectoliter	
1/Ml	16	Per megaliter	
1/ugal	20	Per gallon (US)	
1/igal	21	Per gallon (Imperial)	
1/bbl	22	Per barrel (petroleum, USA)	
1/Mugal	27	Per megagallon (US)	
1/bls	31	Barrels (beer, USA)	
1/xx	238	Per user-defined volume flow unit	
1/уу	239	Per user-defined mass flow unit	

Available process variables

The process variables available in the software are listed in the table.

Note

Some of the process variables can be assigned to the digital outputs DO1 (terminals 41 / 42) and DO2 (terminals 51 / 52), configured as frequency [f] or pulse output [pulse].

(Code) indicates to which value the parameters 'Output Value Freq.' and 'Output Value Pulse' must be set. See also chapter **Parameter range - Output** on page 66.

• The 'Modbus address' column indicates the Modbus register address, data type and the register length for the corresponding process variable.

Process variable	Short fo	rm Description	DO1 / 2	DO1 / 2	N	odbus address
			[f] (Code)	[pulse]	TFLOAT [2]	TDOUBLE [4]
				(Code)		
Mass Flow [unit]	Qm	Mass flow in the selected mass flow unit	_	X (1)	247	
Mass Flow [%]	Qm	Mass flow in percent	X (1)	_	267	
Volume Flow [unit]	Qv	Volume flow in the selected volume unit	_	X (2)	253	
Volume Flow [%]	Qv	Volume flow in percent	X (2)	_	273	
Temperature [unit]	Tm	Temperature in the selected volume unit	_	_	251	
Temperature [%]	Tm	Temperature in percent	X (4)	_	271	
Density [unit]	р	Density in the selected density unit	_	_	249	
Density [%]	р	Density in percent	X (3)	_	269	
Net Mass Flow[unit]*	nQm	Net mass flow in the selected volume unit	_	X (8)	973	
Net Mass Flow [%]*	nQm	Net mass flow in percent	X (8)	_	977	
Net Vol.Flow [unit]*	nQv	Net volume flow in the selected volume unit	_	X (9)	979	
Net Volume Flow [%]*	nQv	Net volume flow in percent	X ()9	_	983	
Vol.Flow@Tref[unit]*	Q@T	Volume flow at a reference temperature.		X (10)	967	
Vol.Flow@Tref[%]*	Q@T		X (10)	_	971	
Density@Tref [unit]*	p@T	Density at a reference temperature.		_	963	
Density@Tref [%]*	p@T		X (5)	_	965	
Concentr.unit [%]*	βu	Concentration in the selected unit in percent	X (7)	_	987	
Concentr.unit[unit]*	βu	Concentration in the selected unit	_	_	985	
Concentr.% [%]*	β%	Concentration in the selected unit	X (6)	_	989	
Totalizer Qm Fd	∑m+	Mass flow counter reading in the forward flow direction	_	_	259	851
Totalizer Qm Rev	∑m-	Mass flow counter reading in the reverse flow direction	_	_	261	855
Totalizer Qm Diff	Σm	Mass flow counter reading for forward flow / reverse flow	_	_	255	859
		difference				
Totalizer Qv Fwd	∑v+	Volume flow counter reading in forward flow direction	_	_	263	863
Totalizer Qv Rev	∑v-	Volume flow counter reading in reverse flow direction	_	_	265	867
Totalizer Qv Diff	Σv	Volume flow counter reading for forward flow / reverse flow	_	_	257	871
		difference				

* Process variable is only available if the DensiMass function is activated.

X Process variable available

- Process variable not available

... Available process variables

Process variable	Short form	Description	DO1 / 2	DO1 / 2		Modbus address
			[f]	[pulse]	TFLOAT [2]	TDOUBLE [4]
Total. Net Qm Fwd*	∑M+	Net mass flow counter reading in forward flow direction	_	_	995	887
Total. Net Qm Rev*	∑M-	Net mass flow counter reading in reverse flow direction	_	_	997	891
Total. Net Qm Diff*	ΣM	Net mass flow counter reading for forward flow /	_	_	975	895
		reverse flow difference				
Total. Net Qv Fwd*	∑V+	Net volume flow counter reading in forward flow	—	—	999	899
		direction				
Total. Net Qv Rev*	ΣV-	Net volume flow counter reading in reverse flow	_	_	1001	903
		direction				
Total. Net Qv Diff*	ΣM	Net volume flow counter reading for forward flow /	_	_	981	907
		reverse flow difference				
Total.Qv@Tref Fwd*	∑T+	Volume flow counter reading in forward flow direction	—	_	991	875
		at a reference temperature				
Total.Qv@Tref Rev*	∑T-	Volume flow counter reading in reverse flow direction at	_	_	993	879
		a reference temperature				
Total.Qv@Tref Diff*	ΣT	Volume flow counter reading for forward flow / reverse	_	_	969	883
		flow difference at a reference temperature				
Totalizer Qm Sum	∑m+-S	Absolute value from mass flow counter reading in the	—	_	441	911
		forward flow and reverse flow direction The counter				
		cannot be stopped or reset.				
Totalizer Qv Sum	∑v+-S	Absolute value from volume flow counter reading in the	—	-	443	915
		forward flow and reverse flow direction. The counter				
		cannot be stopped or reset.				
Totalizer Net Qm Sum	∑M+-S	Absolute value from net mass flow counter reading in	_	_	445	919
		forward flow and reverse flow direction. The counter				
		cannot be stopped or reset.				
Totalizer Net Qv Sum	∑V+-S	Absolute value from net volume flow counter reading in	_	_	447	923
		forward flow and reverse flow direction. The counter				
		cannot be stopped or reset.				
Tot. Qv@Tref Sum	∑T+-S	Absolute value from volume flow counter reading in	—	-	449	927
		forward flow and reverse flow direction at a reference				
		temperature. The counter cannot be stopped or reset.				
Current Batch Total**	CBT	Current fill quantity	_	_	847	
Current Batch Counts**	CBC	Number of fill operations	_	_	465	
Pipe frequency	PF	Meter tube frequency in Hz	_	_	275	
Driver Output [mA]	DOC	Driver current in mA	_	_	291	
Sensor Signal A	SSA	Sensor amplitude of sensor A in mV	_	_	283	_
Sensor Signal B	SSB	Sensor amplitude of sensor B in mV	_	_	285	
Specific Gravity	SG	Specific weight for liquids	_	_	431	
API Gravity	API	API level	_		433	

 * $\,$ $\,$ Process variable is only available if the DensiMass function is activated.

** Process variable is only available if the FillMass function is activated.

X = process variable available, — = process variable not available.

Parameter descriptions

Parameter range – Device info

The parameterization of the device can be read out via the Modbus addresses listed here. All Modbus addresses specified here are read only.

Modbus register	Parameter name	Data type [register length] /	Description
address		value range	
/Sensor			
1	Sensor Type	TUSIGN8 [1]	Sensor type.
		0: Simulator	
		1: FCB	
		2: FCH	
2	Meter Size	TUSIGN8 [1]	Nominal diameter of sensor.
		1: DN15 - ½ in	
		2: DN25 - 1 in	
		3: DN50 - 2 in	
		4: DN15 - ½ in	
		5: DN25 - 1 in	
		6: DN50 - 2 in	
		7: DN80 - 3 in	
		8: DN100 - 4 in	
		9: DN150 - 6 in	
3	Feature Series	TUSIGN8 [1]	Sensor model.
		1: Series 130	The DensiMass and FillMass functions are only available in model FCB150 /
		3: Series 150	FCH150.
165	Qm Max DN	TFLOAT [2]	Maximum mass flow for the selected nominal diameter.
			The value is set automatically via the selected nominal diameter.
407	Span Forward	TFLOAT [2]	Calibration value (span) in forward flow direction of the sensor.
415	Span Reverse	TFLOAT [2]	Correction value for 'Span Forward' (span) in reverse flow direction of the
			sensor. Is needed for increased accuracy.
417	Zero Sensor	TFLOAT [2]	Calibration value (zero point) of the sensor for the selected nominal diameter.
159	Freq.@ Empty Pipe	TFLOAT [2]	Meter tube frequency and density during calibration with empty meter tube. The
153	Density @ Empty Pipe	TFLOAT [2]	calibration is usually performed with air as a measuring medium.
161	Freq.@ Full Pipe	TFLOAT [2]	Meter tube frequency and density during calibration with full meter tube. The
155	Density @ Full Pipe	TFLOAT [2]	calibration is usually performed using water as a measuring medium.
3553	Calibration Pressure	TFLOAT [2]	Measuring medium pressure in the selected pressure unit during calibration.
3555	Calibration Temp.	TFLOAT [2]	Measuring medium temperature in °C during calibration.
451	Sensor ID	TUSIGN32 [2]	ID number of the sensor.
1003	Sensor Serial No.	TCHAR [20]	Serial number of the sensor.
455	Sensor Run Hours	TUSIGN32 [2]	Operating hours of the sensor.
/Sensor /Ca	libration		
571	First Cal. Date	TUSIGN8 [3]	Date of first calibration of sensor (calibration of new device).
574	Last Cal. Date	TUSIGN8 [3]	Date of last calibration of sensor.
1029	Cal. Cert. No.	TCHAR [20]	Identification (number) of the relevant calibration certificate.
1049	First Cal. Location	TCHAR [20]	Place of first calibration of the sensor.
1069	Last Cal. Location	TCHAR [20]	Place of last calibration of sensor.

Modbus register	Parameter name	Data type [register length] /	Description
address		value range	
/Transmitter			
4	Transmitter Type	TUSIGN8 [1]	Display of the transmitter type.
		4: FCT100	
		10: Error	
453	Transmitter ID	TUSIGN32 [2]	ID number of transmitter.
1089	Transm.Serial No.	TCHAR [20]	Order number of the transmitter.
457	Transm. Run Hours	TUSIGN32 [2]	Operating hours of the transmitter (frontend board).
364	Tx Restart Counter	TUSIGN16 [1]	Number of device restarts (switching the power supply off and on).
467	Time since Restart	TUSIGN32 [2]	Device operating hours since the last restart.
6	DensiMass On/Off	TUSIGN8 [1]	DensiMass function present?
		0: Off	Off: No DensiMass function present.
		1: On	On: DensiMass function present.
7	FillMass On/Off	TUSIGN8 [1]	FillMass function present?
		0: Off	Off: No FillMass function present.
		1: On	On: FillMass function present.
92	VeriMass On/Off	TUSIGN8 [1]	VeriMass function present?
		0: Off	Off: No VeriMass function present.
		1: On	On: VeriMass function present.
3157	CoriolisContr.On/Off	TUSIGN8 [1]	CoriolisControl (ECC) function present?
		0: Off	Off: No CoriolisControl (ECC) function present.
		1: On	On: CoriolisControl (ECC) function present.
1195	Manufacturer	TUSIGN8 [20]	Name of manufacturer.
1215	Street	TUSIGN8 [20]	Manufacturer's address (street)
1235	City	TUSIGN8 [20]	Manufacturer's address (city)
1255	Phone	TUSIGN8 [20]	Manufacturer's address (phone number)
/Transmitter /	/Transmitter Version		
8	FW Frontend Ver.	CONST_U8 [3]	Firmware version of the transmitter (frontend board).
363	FW Frontend CRC	TUSIGN16 [1]	The checksum (CRC) of the firmware version of the transmitter (frontend
			board).
1109	HW Frontend Ver.	TUSIGN8 [20]	Hardware version of the transmitter (frontend board).
11	Bootloader FEB Ver.	CONST_U8 [3]	Firmware version of the bootloader of the transmitter
			(frontend board).
/Transmitter /	/Calibration		
577	First Cal. Date	TUSIGN8 [3]	Date of first calibration of transmitter
			(calibration of new device).
580	Last Cal. Date	TUSIGN8 [3]	Date of last calibration of transmitter.
1135	Cal. Cert. No.	TCHAR [20]	Identification (no.) of the relevant calibration certificate.
1155	First Cal. Location	TCHAR [20]	Place of first calibration of transmitter.
1175	Last Cal. Location	TCHAR [20]	Place of last calibration of transmitter.

Parameter range - config. Device

Modbus register	Parameter name	Data type [register length] /	Description
address		value range	
/Access Contro	bl		
5	Read Only Switch	TUSIGN8 [1]	Indicator of the position of the write protection switch.
		0: Off	See also chapter Write-protect switch on page 37.
		1: On	This parameter is read only.
/Sensor			
15	Range Mode Config	TUSIGN8 [1]	Activation of the second measuring range for the mass and volume flow. The
		0: Deactivated	setting can be performed separately for the mass flow rate (Qm) and volume flow
		1: Qm and Qv	(Qv). This means that it is possible to switch quickly between two measuring
		2: Only Qm	ranges (e.g. Qm Max and Qm Max2). The switchover is performed via the
		3: Only Qv	parameters "Qm Range Mode" and "Qv Range Mode".
165	Qm Max DN	TFLOAT [2]	Maximum mass flow for the selected nominal diameter.
			The value is set automatically via the selected nominal diameter.
			This parameter is read only.
167	Qm Max	TFLOAT [2]	Setting of the upper measuring range value 1 for the mass flow for forward flow
		2.0 to 0.01 QmMaxDN	and reverse flow. The value is also used to calculate the corresponding
			percentage value.
169	Qm Max 2	TFLOAT [2]	Setting of the upper measuring range value 2 for the mass flow for forward flow
		2.0 to 0.01 QmMaxDN	and reverse flow. The value is also used to calculate the corresponding
			percentage value.
18	Qm Range Mode	TUSIGN8 [1]	Manual switchover between the measuring ranges Qm Max and Qm Max 2.
		0: QmMax	
		1: QmMax2	
171	Qv Max DN	TFLOAT [2]	Maximum volume flow. The value indicates the calculated maximum volume flow
			depending on the parameters 'Qm MaxDN' and 'DensityMin'. This parameter is
			read only.
173	Qv Max	TFLOAT [2]	Setting of the upper measuring range value 1 for the mass flow for forward flow
		0.01 to 2.0 Qv MaxDN	and reverse flow. The value is also used to calculate the corresponding
			percentage value.
175	Qv Max 2	TFLOAT [2]	Setting of the upper measuring range value 2 for the mass flow for forward flow
		0.01 to 2.0 Qv MaxDN	and reverse flow. The value is also used to calculate the corresponding
			percentage value.
19	Qv Range Mode	TUSIGN8 [1]	Manual switchover between the measuring ranges Qv Max and Qv Max 2.
		0: QvMax	
		1: QvMax2	
177	Density Max	TFLOAT [2]	Setting the minimum and maximum density of the measuring medium.
		(Density Min + 0.01) to	The values are also used to calculate the corresponding percentage value.
		3.5 g/cm ³	
179	Density Min	TFLOAT [2]	
		0.00 g/cm ³ to (Density	
		Max - 0.01)	

Modbus register	Parameter name	Data type [register length] /	Description
address		value range	
/Sensor			
181	Temperature Max	TFLOAT [2]	Setting the minimum and maximum temperature of the measuring medium. The
		(Temperature Min + 10 °C) to	values are also used to calculate the corresponding percentage value.
		205 °C	_
183	Temperature Min	TFLOAT [2]	
		-50°C to (Temperature	
		Max -10 °C)	
203	Net Qm Max	TFLOAT [2]	Setting of the minimum and maximum net mass flow. The values are also used to
		0.01 to 2.0 Qv MaxDN	_ calculate the corresponding percentage value. The parameters are only available
205	Net Qv Max	TFLOAT [2]	when the DensiMass function is activated.
		0.01 to 2.0 Qv MaxDN	
207	Concentration Max	TFLOAT [2]	Sets the minimum and maximum concentration of the measuring medium. The
			values are also used to calculate the corresponding percentage value. The value
209	Concentration Min	TFLOAT [2]	
			The parameters are only available when the DensiMass function is activated.
185	Density Max at Tref	TFLOAT [2]	Sets the minimum and maximum density of the measuring medium at the
		(Density at Tref Min +	reference temperature T _{ref} .
		0.01 g/cm³) to 3.5 g/cm³	The values are also used to calculate the corresponding percentage value. The
187	Density at Tref Min	TFLOAT [2]	parameters are only available when the DensiMass function is activated.
		0.00 g/cm³ to (Density Max at	
		Tref – 0.01 g/cm³)	
191	Qv at Tref Max	TFLOAT [2]	Sets the maximum volume flow of the measuring medium at the reference
		0.01 to 2.0 Qv MaxDN	temperature T _{ref} .
			The values are also used to calculate the corresponding percentage value. The
			parameter is only available when the DensiMass function is activated.
1315	Sensor Location Tag	TUSIGN8 [20]	Enter the measuring point tagging for the sensor.
		Alphanumeric, maximum 20	
		characters	
1335	Sensor Tag	TUSIGN8 [20]	Enter the TAG number for the measuring sensor.
		Alphanumeric, maximum 20	
		characters	
/Sensor /Op	erating Mode		
17	Flow Direction	TUSIGN8 [1]	Set the measuring direction for the sensor.
		0: Forward flow / reverse flow	As delivered, the device measures and counts in both flow directions. It is
		1: Only forward flow	important to note that the accuracy also depends on whether the device has been
		2: Only reverse flow	calibrated in the forward flow direction only or in the forward flow and reverse
			flow directions.
16	Flow Indication	TUSIGN8 [1]	Inverts the flow direction displayed.
		0: Normal	It is important to note that the accuracy also depends on whether the device has
		1: Inverted	been calibrated in the forward flow direction only or in the forward flow and
			reverse flow directions.

Modbus register	Parameter name	Data type [register length] /	Description
address		value range	
/Transmitter			
189	Damping Qm	TFLOAT [2]	Setting of the damping for the mass flow (the value relates to 1 T (Tau)). The
		0.04 to 300 s (1 Tau)	value relates to a stepwise change of the mass flow rate. The setting of 0.04
			deactivates the damping.
193	Damping Density	TFLOAT [2]	Setting of the damping for the density (the value relates to 1 T (Tau)). The
		0.04 to 300 s (1 Tau)	value relates to a stepwise change of the density. The setting of 0.04 s
			deactivates the damping.
14	Density Mode	TUSIGN8 [1]	Select whether the measured density or a fixed default density is used. Use
		0: Fixed density value	the fixed default density for example if the density measurement is not
		1: Measured density	needed or for gaseous measuring media.
157	Density Fixed Value	TFLOAT [2]	Enter the fixed default density of the measuring medium. The value is also
		0.01 to 3.5 g/cm³	used to calculate the volume flow. When entering a reference density, this
			parameter is used to calculate the reference volume. This is particularly
			common for gas measurements. The parameter is available only if the
			parameter 'Density Mode' has been set to '0: Fixed density value.'
1275	TX Location TAG	TUSIGN8 [20]	Enter the measuring point tagging for the transmitter.
		Alphanumeric, maximum 20	
		characters	
1295	TX TAG	TUSIGN8 [20]	Enter the TAG number for the transmitter.
		Alphanumeric, maximum 20	
		characters	
122	Device Restart	ACTION [1]	Restarts the device.
			Compensates for a short interruption of the power supply.
91	Restore Settings	ACTION [1]	All user-accessible parameters will be reset to the factory default settings.
3557	Delayed Dev. Restart	TFLOAT [2]	Restart of the device after the end of the set time.
		0 to 30 s	

Modbus register	Parameter name	Data type [register length] /	Description
address		value range	
/Transmitter /	Units		
47	Unit Massflow Qm	TUSIGN8 [1]	Selection of the unit for the mass flow (for example for the parameters QmMax /
		Refer to Table 2: Units for the	QmMaxDN and for the corresponding process value).
		mass flow on page 51.	
53	Unit Mass Totalizer	TUSIGN8 [1]	Selection of the unit for the mass counters and the pulse outputs.
		Refer to Table 6: Units for the	
		mass totalizer on page 52.	
50	Unit Volumeflow Qv	TUSIGN8 [1]	Selection of the unit for the volume flow (for example for the parameters QvMax /
50		Refer to Table 1: Units for the	QvMaxDN and for the corresponding process value).
			www.axbiviand.for the corresponding process value).
E 4	Unit Val Tatalizar	volume flow on page 51.	Coloction of the unit for the volume totalizers and the pulse outputs
54	Unit Vol. Totalizer	TUSIGN8 [1]	Selection of the unit for the volume totalizers and the pulse outputs.
		Refer to Table 7: Units for the	
		volume totalizer on page 52.	
48	Unit Density	TUSIGN8 [1]	Selection of the unit for density (for example for the associated parameters and
		-	the corresponding process values).
		on page 51.	
49	Unit Temperature	TUSIGN8 [1]	Selection of the unit for the temperature (for example for the associated
		Refer to Table 4: Temperature	parameters and the corresponding process values).
		units on page 51.	
52	Concentration	TUSIGN8 [1]	Selection of the unit for the concentration (for example for the associated
		Refer to Table 5: Concentration	n parameters and the corresponding process value).
		units on page 52.	
1500	Mass flow Qm Name	TCHAR [8]	Sets the name or the abbreviation for the user-defined unit Qm.
		Alphanumeric, maximum 7	
		characters	
239	Mass flow Qm Factor	TFLOAT [2]	Sets the factor in kg/seconds for the user-defined unit Qm.
		0.0001 to 100000 kg/s	
1532	Mass Tot. Name	TCHAR [8]	Sets the name or abbreviation of the unit for the user-defined mass counter.
		Alphanumeric, maximum 7	
		characters	
423	Mass Tot. Factor	TFLOAT [2]	Sets the factor of the unit for the user-defined mass counter.
		0.0001 to 100000 kg	
1508	Volumeflow Qv Name		Sets the name or abbreviation for the user-defined unit Qv.
		Alphanumeric, maximum 7	
		characters	
245	Volumeflow Qv Factor		Sets the factor in liters/seconds for the user-defined unit Qv.
2.0		0.0001 to 100000 l/s	
1540	Volume Tot. Name	TCHAR [8]	Sets the name or abbreviation of the unit for the user-defined volume totalizer.
1910	volume rot. Nume	Alphanumeric, maximum 7	
		characters	
425	Volumo Tot Eastor		Sets the factor of the unit for the user-defined mass counter.
425	Volume Tot. Factor	TFLOAT [2]	Sets the factor of the unit for the user-defined mass counter.
1516	Deneity No	0.0001 to 100000 l	Casa sha na wa a babwa dasha ƙay sha mara da fira di dawaita mata
1516	Density Name		Sets the name or abbreviation for the user-defined density unit.
		Alphanumeric, maximum 7	
		characters	
241	Density Factor	TFLOAT [2]	Sets the factor in g/ml for the user-defined density unit.
		0.0001 to 100000 g/ml	

Modbus register address	Parameter name	Data type [register length] / value range	Description
/Transmitter	/Cut Off		
195	Low Flow Cut Off	TFLOAT [2]	Sets the switching threshold for the low flow cut-off. If the flow rate is below
		0.0 to 10 %	the switching threshold, there is no flow measurement.
			The setting of 0 % deactivates the low flow cut-off.
			Factory setting: 0.5 %
197	Low Flow Hysteresis	TFLOAT [2]	Sets the hysteresis for the low flow cut-off as it is defined in the parameter
		0.0 to 50 %	'Low Flow Cut Off'.
			Factory setting: 20 %
149	Density Cut Off	TFLOAT [2]	Sets the low flow for density.
		0.0005 to 0.5 g/cm ³	Factory setting: 0.2 g/cm ³
/Transmitter ,	/Feature Settings		
6	DensiMass On/Off	TUSIGN8 [1]	DensiMass function active?*
		0: Off	0: Off: DensiMass function deactivated.
		1: On	1: On: DensiMass function activated.
			This parameter is read only.
361	DensiMass Code	TUSIGN16 [1]	Sets the device-specific code for activating the DensiMass function. After
		0x0000 to 0xFFFF	entering the code, restart the device (for example using the parameter 'Device
			Restart', see page 59, or by briefly switching off the power supply).
7	FillMass On/Off	TUSIGN8 [1]	FillMass function active?*
		0: Off	0: Off: FillMass function deactivated.
		1: On	1: On: FillMass function activated.
			This parameter is read only.
362	FillMass Code	TUSIGN16 [1]	Sets the device-specific code for activating the FillMass function. After entering
		0x0000 to 0xFFFF	the code, restart the device (for example using the parameter 'Device Restart',
			see page 59, or by briefly switching off the power supply).
92	VeriMass On/Off	TUSIGN8 [1]	VeriMass function active?*
		0: Off	0: Off: VeriMass function deactivated.
		1: On	1: On: VeriMass function activated.
			This parameter is read only.
368	VeriMass Code	TUSIGN16 [1]	Sets the device-specific code for activating the VeriMass function. After
		0x0000 to 0xFFFF	entering the code, restart the device (for example using the parameter 'Device
			Restart', see page 59, or by briefly switching off the power supply).
375	CoriolisContr.On/Off	TUSIGN8 [1]	CoriolisControl (ECC) function active?*
		0: Off	0: Off: CoriolisControl (ECC) function deactivated.
		1: On	1: On: CoriolisControl (ECC) function activated.
			This parameter is read only.
3157	CoriolisControl Code	TUSIGN16 [1]	Set the device-specific code to activate the CoriolisControl (ECC) function.
		0x0000 to 0xFFFF	After entering the code, restart the device (for example using the parameter
			'Device Restart', see page 59, or by briefly switching off the power supply).

 * $\,$ To use this function later on, contact the ABB service team or sales organization.

Modbus register	Parameter name	Data type [register length] /	Description
address		value range	
/ System Zero			
227	Manual	TFLOAT [2]	Sets the value for zero point adjustment in % of $Q_{\max}DN$
		-10 to 10 % from Q _{max} DN	
100, 76, 77, 229, 231,	Auto Adjust	ACTION [1] (100)	Start of automatic zero point adjustment for the mass and volume flow.
233, 235		TUSIGN8 (76, 77)	Adjustment lasts approx. 60 seconds.
		TFLOAT [2] (229, 231, 233, 235	i). Zero point adjustment is started via the address 100 (data type ACTION).
			 The progress counter (100 = adjustment complete) of zero point
			adjustment can be queried via the address 76 (data type TUSIGN8).
			 The status of adjustment is transmitted (0 = No error, 15 = Error in
			adjustment) via the address 77.
			The values determined by the device during automatic zero point
			adjustment can be queried via the addresses 229 (mean value),
			231 (standard deviation), 233 (max), 235 (min). The data type in each case is
			TFLOAT [2].
/Concentration	These parameters are	2	
	only available when		
	the DensiMass		
	function is activated.		
74	Medium	TUSIGN8 [1]	Selection of the matrix for calculating concentration.
		0: Variable matrix	For more detailed information, see chapter Concentration measurement
		1: Sodium hydroxide	DensiMass on page 87.
		2: Alcohol in water	
		3: Wheat starch	
		4: Maize starch	
		5: Sugar in water	
75	Sub Matrix Selection	TUSIGN8 [1]	Selection of the sub matrix for the DensiMass function.
		0: Sub matrix 1	
		1: Sub matrix 2	
331	Reference Temp.	TFLOAT [2]	Sets the reference temperature for calculating the process values 'Qv @ Tref'
		–100 to 250 °C	and 'Density @ Tref'.
/Field Optimizat	tion		
151	Density Correction	TFLOAT [2]	Sets the correction factor for field optimization of the density measurement.
		–500 to 500 g/l	This factor can be used to perform optimization in the field in order to achieve
			a degree of accuracy in the density measurement that closely approximates a
			repeatability of 0.0001 g/ml.
279	Qm Correction	TFLOAT [2]	Sets the correction factor for field optimization of the mass flow
		-20 to 20 %	measurement. The value is entered as a percentage of the current measured
			value.
			This factor can be used to perform optimization in the field in order to achieve
			a degree of accuracy in the flow measurement that closely approximates or
			even exceeds a repeatability of at least 0.1 % of the measured value.

Modbus register address	Parameter name	Data type / value range	Description
327	Conc. Zero Matrix 1	TFLOAT [2]	Setting indicating the correction factor for concentration measurement.
329	Conc. Zero Matrix 2	-1000 to 1000	This factor can be used to perform optimization in the field in order to achieve
			a degree of accuracy in the concentration measurement that closely
			approximates or even exceeds the repeatability.
			This value acts as a correction value for the current concentration measured
			value. The correction factor is entered in the unit that is currently set for
			concentration. The correction value is based on the concentration matrix
			currently selected.
			In the case of one fixed matrix, only one correction value is available.
			In case of variable matrices, both correction values are available.
			The parameter is only available when the DensiMass function is activated.
/Field Optimiz	ation /Hold Last Goo	od Val.	
335	Hold Time	TFLOAT [2]	Entry of the time for the function 'Keep last valid measured value'.
		0.0 to 600.0 sec	The function is deactivated by the setting of '0'.
337	Threshold Release	TFLOAT [2]	Sets the switching threshold for the function 'Keep last valid measured value'.
		Threshold Hold to 100mV	The current measured value is displayed if the sensor voltage is above the set
			value.
339	Threshold Hold	TFLOAT [2]	Sets the switching threshold for the function 'Keep last valid measured value'.
		2.0mV to Threshold Release	The last valid measured value for the duration of the set hold time is displayed
			if the sensor voltage is below the set value.

Modbus register address	Parameter name	Data type / value range	Description
/Field Optimiz	ation /Pressure Cor	rection	
51	Pressure Unit	TUSIGN 8 [1] Refer to Table 8: Pressure	Selection of the unit for the pressure (for example for the associated parameters and the corresponding process values).
333	Pressure Level	units on page 52. TFLOAT [2] 0.0 to 1000.0 [pressure unit].	Factory setting: bar Input of the process pressure of the medium in the meter tube. ABB used a special compensation algorithm which takes a variety of influence
			effects into account. As a result, the pressure effect on the vibration of the meter tube can be compensated. The compensation factors for mass and density measurement are constantly recalculated and updated.
3549	Flow Compens. fact	or TFLOAT [2]	Output of the current flow rate compensation factor that will be used in the device to calculate mass flow. Unit in % per selected pressure unit.
3551	Density Comp. facto	or TFLOAT [2]	Output of the current density compensation factor that will be used in the device to calculate mass flow. Unit in % per selected pressure unit.
3162	P.Comp.Status (PEC	CI) TUSIGN 8 [1] 1: CT (On) 2: TD (Off) 3: OS (Off) 4: N/A (Off)	 Selection of the pressure compensation mode. In accordance with API, the following states can be set. 1: CT - Compensation in the Coriolis flowmeter based on the current pressure entered in the 'Pressure Level' parameter. 2: TD - Compensation in the Coriolis flowmeter switched off - compensation is done externally (tertiary device) 3: OS - Compensation in the Coriolis flowmeter switched off - compensation is not done on site (off site) 4: NA - Compensation in the Coriolis flowmeter switched off - compensation is not deemed to be necessary, since the device is operating at a pressure for which the device has been proved.
3163	Unit	TUSIGN 8 [1] 101: %/Pa 104: %/kPa 108: %/Bar 109: %/mbar 165: %/psi	Output of the current unit of the flow rate and density compensation factor. Depends on the pressure unit set.

Modbus register address	Parameter name	Data type / value range	Description
	ation /CoriolisCont	rol	
3158	ECC Mode	TUSIGN 8 [1]	Activating the 'CoriolisControl (ECC)' function for applications with quick
		0: Off	density changes, for example in the case of gas bubbles in the measuring
		1: On	medium and for filling applications.
3159	ECC Level	TUSIGN 8 [1]	Selecting the interval for frequency estimation.
		0: Low	
		1: Medium	
		2: High	
3160	Flow Noise Reduction TUSIGN 8 [1]		Selecting the dead time for noise filters for mass measurement.
		0: Off	
		1: Filter 1 (0.5 s)	
		2: Filter 2 (1.0 s)	
		3: Filter 3 (2.0 s)	
		4: Filter 4 (4.0 s)	
		5: Filter 5 (8.0 s)	
3161	Density Noise Redu	c. TUSIGN 8 [1]	Selecting the dead time for noise filters for density measurement.
		0: Off	
		1: Filter 1 (0.5 s)	
		2: Filter 2 (1.0 s)	
		3: Filter 3 (2.0 s)	
		4: Filter 4 (4.0 s)	
		5: Filter 5 (8.0 s)	

... Parameter descriptions

Parameter range - Output

Modbus register	Parameter name	Data type [register length] /	Description
address		value range	
/Dig.Out 41/4	2		
20	Mode	TUSIGN8 [1]	Selection of the operating mode for the digital output 41 / 42.
		0: Off	Off: Digital output deactivated.
		1: Binary	• Binary: Digital output functions as binary output (for function, see the
		2: Pulse	parameter 'Logic Output Action').
		3: Frequency	• Pulse: Digital output functions as pulse output (for process value, see the
			parameter 'Output Value Pulse'). In pulse mode, pulses per unit are output
			(e.g. 1 pulse per m³).
			• Frequency: Digital output functions as frequency output (for process value
			see the parameter 'Output Value Freq'). In frequency mode, a frequency
			proportional to the flow rate is given as output. The maximum frequency
			can be configured in accordance with the upper range value.
21	Outp. Flow Direction	TUSIGN8 [1]	Selection of flow direction in which the pulse / frequency output issues the
		0: Forward flow / reverse	selected process value.
		flow.	The parameter is only available if the digital output has been configured as a
		1: Forward flow	pulse or frequency output.
		2: Reverse flow	• When '0' is selected, pulses are given in the forward flow and reverse flow directions.
			• When '1' is selected, pulses are given in the forward flow direction.
			• When '2' is selected, pulses are given in the reverse flow direction.

Modbus register address	Parameter name	Data type [register length] / value range	Description
/Dig.Out 41/42Setup Pulse Output			The following parameters are only available if the digital output 41 / 42 has been
			configured as a pulse output.
			The pulse output can be classically configured via the pulse value ('Pulses per Unit'
			parameter), alternatively you can also enter the pulse frequency at 100 % flow rate
			('Frequency @ Qmax' parameter).
22	Output Value Pulse	TUSIGN8 [1]	Selection of the process value issued via the pulse output.
		Refer to Available process	
		variables on page 53.	
321	Pulses per Unit	TFLOAT [2]	Setting and output of pulses per mass flow unit and per pulse width for the pulse
		0.001 to 100,000 pulses	_output.
323	Pulse Width	TFLOAT [2]	Note
		0.05 to 2000 ms	The pulse value and the pulse width are dependent on each other and on the limit
			frequency of the digital output and are calculated dynamically. The 'Frequency @
			Qmax' parameter is also adjusted in the process.
3531	Frequency @ Qmax	TFLOAT[2]	Setting and output of the pulse frequency in pulses/s at 100 % flow rate (mass or
			volume flow) for the current configuration of the device.
			Note
			The value can be changed within the 'Max Range / Min Range' limits. The 'Pulses
			per Unit' parameter is also adjusted in the process.
3533	Max Range	TFLOAT[2]	Output of the limits for the parameter 'Frequency @ Qmax'.
		xx to xx	The 'Frequency @ Qmax' parameter can be set within these limits. The limits are
3535	Min Range	TFLOAT[2]	calculated dynamically.
		xx to xx	
3154	Active Mode	TUSIGN8 [1]	Select switching properties for the pulse output.
		0: Active high (closed)	
		1: Active low (open)	

Modbus register	Parameter name	Data type [register length] /	Description
address		value range	
/Dig.Out 41/42 /Setup Freq Output			The following parameters are only available if the digital output 41 / 42 has
			been configured as a frequency output.
			The frequency output can be classically configured via the frequency for 100 %
			flow rate ('Upper Frequency' parameter), alternatively you can also enter the
			pulse value at 100 % flow rate ('Pulses per Unit' parameter).
23	Output Value Freq.	TUSIGN8 [1]	Selection of the process value issued via the frequency output.
		Refer to Available process	
		variables on page 53.	
325	Upper Frequency	TFLOAT	Set and output the frequency for the upper range value. The entered value
		0.25 to 10500 Hz	corresponds to 100 % flow.
3537	Pulses per Unit	TFLOAT[2]	Set and output the pulse per flow unit.
			The value (in 1/unit) will be dynamically calculated from the 'Upper Frequency'
			parameter, the mass or volume flow rate and Q_{max} .
			Note
			• The value can be changed within the 'Max Range / Min Range' limits. The
			'Upper Frequency' parameter is also automatically adjusted in the process.
			The parameter is available only for the following process variables:
			Mass Flow [%], Volume Flow [%], Net Mass Flow [%], Net Vol. Flow [%], Vol.
			Flow @ Tref [%]
3156	Unit	TUSIGN8 [1]	Output of the unit for the parameter 'Pulses per Unit'.
		Refer to Table 9: Pulses per	The unit depends on the selected flow unit and the selected process variable
		flow unit on page 52.	for the frequency output.
			Example:
			Process variable 'Output Value Freq.' = Volume Flow [%]
			'Unit' = '1/MI (1 pulse per megaliter)'
			Output to the frequency output in the made with 1 pulse per megaliter.
3533	Max Range	TFLOAT[2]	Output of the limits for the parameter 'Pulses per Unit'.
		xx to xx	The 'Pulses per Unit' parameter can be set within these limits. The limits are
3535	Min Range	TFLOAT[2]	calculated dynamically.
		xx to xx	

Modbus register	Parameter name	Data type [register length] /	Description
address		value range	
/Dig.Out 41/42 /Setup Logic Output			The following parameters are only available if the digital output 41 / 42 has
			been configured as a binary output.
24	Logic Output Action	 TUSIGN8 [1] Off F/R signal Alarm signal Two measuring ranges End contact fill function Concentration matrix selection 	 Selection of binary output function. F/R signal: the binary output signals the flow direction. Alarm signal: the binary output functions as an alarm output. The alarm type is selected with the parameters 'Alarm Config'. Two measuring ranges: The binary output is activated when measuring range 2 (QmMax 2 / QvMax 2) is selected. This selection is only available if the parameter 'Range Mode Config' has been configured to Qm or Qv. End contact fill function: the binary output is activated when the set fill quantity is reached (only if the FillMass function is activated). Concentration matrix selection: the binary output signals the selected concentration matrix (only with the DensiMass function activated and if the variable matrix has been selected).
25	Active Mode	TUSIGN8 [1] 0: Active high (closed)	Select switching properties for the binary output.
		1: Active low (open)	
26	Actual Value	TUSIGN8 [1] 0: Output low 1: Output high	Display of the current output status. The parameter is read only.
/Dig.Out 41/4	12 /Alarm Config		
27	General Alarm	TUSIGN8 [1]	Selection of error messages signaled via the binary output 41 / 42.
28	Qm Massflow Max	0: Off	Only if the parameter 'Logic Output Action' has been set to 2 - Alarm signal.
29	Qm Massflow Min	1: On	
3078	Density Max	_	
3079	Density Min	_	
30	Density Low Check	_	
31	Sensor Signal Min	_	
32	Driver Output Max		

Modbus register	Parameter name	Data type [register length] /	Description
address		value range	
/Dig.Out 51/5	2		
56	Outp. Flow Direction	 TUSIGN8 [1] O: Forward flow / reverse flow. 1: Forward flow 2: Reverse flow 	 Selection of flow direction in which the frequency output 51/52 issues the selected process value. The parameter is only available if digital output 51/52 has been configured as a frequency output. When '0' is selected, a frequency is given in the forward flow and reverse flow directions. When '1' is selected, a frequency is given in the forward flow direction.
			• When '2' is selected, a frequency is given in the reverse flow direction.
/Dig.Out 51/52 /Setup Freq Output			The following parameters are only available if the digital output 51 / 52 has been configured as a frequency output.
23	Output Value Freq.	TUSIGN8 [1] Refer to Available process variables on page 53.	See description of digital output 41 / 42.
325	Upper Frequency	TFLOAT 0.25 to 10500 Hz	_
3537	Pulses per Unit	TFLOAT[2]	_
3156	Unit	TUSIGN8 [1] Refer to Table 9: Pulses per flow unit on page 52.	
3533	Max Range	TFLOAT[2] xx to xx	_
3535	Min Range	TFLOAT[2] xx to xx	
/Dig.Out 51/5	2 /Setup Logic Outpu	t	The following parameters are only available if the digital output 51 / 52 has been configured as a binary output.
57	Logic Output Action	TUSIGN8 [1]	See description of digital output 41 / 42.
58	Active Mode	TUSIGN8 [1]	_
59	Actual Value	TUSIGN8 [1]	_
/Dig.Out 51/5	2 /Alarm Config		
60	General Alarm	TUSIGN8 [1]	Selection of error messages signaled via the binary output 51 / 52.
61	Qm Massflow Max	0: Off	Only if the parameter 'Logic Output Action' has been set to 2 - Alarm signal.
62	Qm Massflow Min	1: On	
3081	Density Max	_	
3080	Density Min	_	
63	Density Too Low	_	
64	Sensor Signal Min	_	
65	Driver Output Max	_	

... Parameter descriptions

Parameter range – Process alarm

Modbus register address	Parameter name	Data type [register length] / value range	Description
2048 to 2095	Diagnostic History	TUSIGN8 [1]	Display of the alarm history.
			See also chapter Alarm status und alarm history status on page 96.
			The addresses indicated here are read only.
120	Clear Alarm History	ACTION [1]	The writing of any value deletes the alarm history saved in the device.
/Group Maskir	ng		
66	Maintenance	TUSIGN8 [1]	Alarm messages are divided into groups. If masking is activated for a group
	Required	0 - Masking deactivated	(On), no alarm occurs.
67	Function Check	1 - Masking activated	For more detailed information, see chapter Diagnosis / error messages on
68	Out Of Specification		page 93.
/Alarm Limits			
211	Qm Massflow Min	TFLOAT [2]	Setting of the alarm limits for the mass flow.
		0 to 130 %	If the standard volume flow up-scales or down-scales the values set in the
213	Qm Massflow Max	TFLOAT [2]	parameters 'Qm Massflow Min' and 'Qm Massflow Max,' error message no. 46
		0 to 130 %	'Mass flow too high / low' is generated.
215	Qv Volumeflow Min	TFLOAT [2]	Setting of the alarm limits for the volume flow.
		0 to 130 %	If the volume flow up-scales or down-scales the values set in the parameters
217	Qv Volumeflow Max	TFLOAT [2]	'Qv Volumeflow Min' and 'Qv Volumeflow Max,' error message no. 44 'Volume
		0 to 130 %	flow too high / low' is generated.
199	Density Min	TFLOAT [2]	Selection of the alarm limits for the density.
		0.0 to 3.5 g/cm ³	If the density up-scales or down-scales the values set in the parameters
201	Density Max	TFLOAT [2]	'Density Min' and 'Density Max,' error message no. 43 'Density too high / low' is
		0.0 to 3.5 g/cm ³	generated.
219	Temperature Min	TFLOAT [2]	Setting of the alarm limits for the measuring medium temperature.
		–100 to 250 °C	If the measuring medium temperature up-scales or down-scales the values set
221	Temperature Max	TFLOAT [2]	
		–100 to 250 °C	no. 32 'Sensor temperature too high / low' is generated.
287*	Concentrat. [%] Min	TFLOAT [2]	Setting of the alarm limits for the concentration measurement.
		-5 to 105.0 %	If the measured concentration is less than or exceeds the values set in the
289*	Concentrat. [%] Max	TFLOAT [2]	parameters 'Concentrat. [%] Min' and 'Concentrat. [%] Max' or 'Concentrat. [u]
		-5 to 105.0 %	Min" und "Concentrat. [u] Max', error message no. 41 'Concentration in % too
293*	Concentrat. [u] Min	TFLOAT [2]	$^-$ low / high' or no. 40 'Concentration in unit too low / high' is generated.
		0 to 200 msec	
295*	Concentrat. [u] Max	TFLOAT [2]	_
		0 to 200 msec	

 * $\,$ These parameters are only available when the DensiMass function is activated.

Modbus register address	Parameter name	Data type [register length] / value range	Description
223	Driver Output Max	TFLOAT [2]	Setting of the alarm limit for the driver current.
		0 to 100 mA	If the driver current up-scales the value in the parameter 'Driver Output Max'
427	Driver Output Time	TFLOAT [2]	for the time set in the parameter 'Driver Output Time', error message no. 35
		5 to 864000 sec	'Driver current too high' is generated.
225	Sensor Signal Min	TFLOAT [2]	Setting of the alarm limit for the sensor amplitude.
		0 to 100 mV	If the sensor amplitude is less than the value in the parameter 'Sensor Signal
429	Sensor Signal Time	TFLOAT [2]	
		5 to 600 sec	no. 34 'Sensor amplitude too low' is generated.
237	Density Low Check	TFLOAT [2]	Sets the alarm limit for the density alarm.
		0.00 to 3.5 g/cm ³	If the density down-scales the value set in the parameter 'Density Low Check',
			the process values Qm and Qv are set to '0' and error message no. 39 'Density
			set to 1 g/cm ³ ' is generated.

... Parameter descriptions

Parameter range – Communication

Modbus register address	Parameter name	Data type [register length] / value range	Description
/Modbus			
33	Address	TUSIGN8 [1]	Setting of the Modbus device address.
			Factory setting: See chapter Parameterization via the Modbus interface on
			page 38.
34	IEEE Format	TUSIGN8 [1]	Selection of the byte order for the Modbus communication.
		0: IEEE format activated	• If the IEEE format is activated (1), the data words are sent in the 'little-
		1: IEEE format deactivated	endian' format, with the lowest value word transmitted first.
			• If the IEEE format is deactivated (0), the data words are sent in the
			standard Modbus 'big-endian' format.
			Factory setting: IEEE format activated
35	Baud Rate	TUSIGN8 [1]	Selection of the transmission speed (baud rate) for the Modbus
		0: 2400 Bd	communication.
		1: 4800 Bd	Factory setting: 9600 Baud.
		2: 9600 Bd	
		3: 19200 Bd	
		4: 38400 Bd	
		5: 56000 Bd	
		6: 57600 Bd	
		7: 115200 Bd	
36	Parity	TUSIGN8 [1]	Selection of the parity for the Modbus communication.
		0: None	Factory setting: Odd (odd)
		1: Even	
		2: Odd	
37	Stop Bits	TUSIGN8 [1]	Selection of the stop bits for the Modbus communication.
		0: One stop bit	Factory setting: One stop bit
		1: Two stop bits	
38	Response Delay	TUSIGN8 [1]	Setting of the pause time in milliseconds after receiving a Modbus command.
		0 to 200 ms	The device sends a response no earlier than expiration of the set pause time.
			Factory setting: 10 ms

Parameter range – Diagnosis

Modbus register	Parameter name	Data type [register length] /	Description
address		value range	
/Diagnosis Co	ontrol		
459	Preset Maint. cycle	TUSIGN32 [2]	Sets the service interval.
		0 to 50000 h	After the maintenance interval has expired, the corresponding error message
			'Maintenance interval is reached' is set. The setting '0' deactivates the
			maintenance interval.
			Factory setting: 0 h
463	Maint. Remain. Time	TUSIGN32 [2]	Time remaining in the maintenance interval until the error message
			'Maintenance interval is reached' is set.
			The parameter is read only.
101	Start New Cycle	ACTION [1]	Resetting of the maintenance interval.
			By writing any value to this address, the maintenance interval is reset to the
			value set under 'Preset Maint. cycle'.
/Diagnosis Va	lues		
291	Driver Output	TFLOAT [2]	Output of the current driver current in mA.
			The parameter is read only.
283	Sensor Signal Sa	TFLOAT [2]	Output of current amplitude (sensor voltage) for sensor A in mV.
			The parameter is read only.
285	Sensor Signal Sb	TFLOAT [2]	Output of the current amplitude (sensor voltage) for sensor B in mV.
			The parameter is read only.
275	Tube Frequency	TFLOAT [2]	Output of the current meter tube frequency in Hz.
			The parameter is read only.
277	Pipe Temperature	TFLOAT [2]	Output of current meter tube temperature in °C.
			The parameter is read only.
281	Sensor Housing Tem	pTFLOAT [2]	Output of current housing temperature in °C.
			The parameter is read only.
3501	Electr. (FEB) Temp	TFLOAT [2]	Issue of the current frontend board temperature in °C.
	•		The parameter is read only.

Modbus register address	Parameter name	Data type [register length] / value range	Description
/Drag Indicato	ors	value range	
124	Reset Indicators	ACTION [1]	Reset all drag indicators.
			The drag indicator is reset by writing any value to this address.
/Drag Indicato	ors /Process Indicato	rs	
3503	Mass Flow Min	TFLOAT [2]	Display of the minimum / maximum mass flow measured value since the last
3505	Mass Flow Max	TFLOAT [2]	reset of the drag indicators.
3507	Density Min	TFLOAT [2]	Display of the minimum / maximum density measured value since the last
3509	Density Max	TFLOAT [2]	 reset of the drag indicators.
/Drag Indicato	ors /Sensor Indicators	5	
3511	Driver Output Max	TFLOAT [2]	Display of the maximum transmitter driver current since the last reset of the
			drag indicators.
3513	Sensor Amp. Sa Min	TFLOAT [2]	Display of the minimum transmitter sensor amplitude since the last reset of
3515	Sensor Amp. Sb Min	TFLOAT [2]	
/Drag Indicato	ors /Temperature Ind	ic.	
3517	Medium Min	TFLOAT [2]	Display of the minimum / maximum measuring medium temperature since the
3519	Medium Max	TFLOAT [2]	last reset of the drag indicators.
3521	Sensor Housing Min	TFLOAT [2]	Display of the minimum / maximum sensor housing temperature since the last
3523	Sensor Housing Max	TFLOAT [2]	reset of the drag indicators.
3525	Electr. (FEB) Min	TFLOAT [2]	Display of the minimum / maximum frontend board temperature since the last
3527	Electr. (FEB) Max	TFLOAT [2]	 reset of the drag indicators.

Modbus register	Parameter name	Data type [register length] /	Description
address		value range	
/Simulation M	lode		
70	Simulation Switch	TUSIGN8 [1]	Manual stimulation of measured values / outputs.
		0: Off	The simulated output values correspond to the set measured value (Modbus
		1: Qm mass flow [unit]	addresses 71, 72, 341-359).
		2: Qm mass flow [%]	Only one measured value / output can be selected for simulation.
		3: Qv volume flow [unit]	After power-up / restart of the device, the simulation is switched off.
		4: Qv volume flow [%]	
		5: Density [unit]	
		6: Density [%]	
		7: Temperature [unit]	
		8: Temperature [%]	
		12: Digital output 41/42	
		13: Digital output 51/52	
341	Mass Flow [unit]	TFLOAT [2]	Setting of the simulated measured values. The simulated value is selected with
		0 to 2 x QmMax DN	the parameter 'Simulation Switch'.
343	Mass Flow [%]	TFLOAT [2]	
		-200 to 200 %	_
345	Volume Flow [unit]	TFLOAT [2]	
		0 to 2 x QvMax DN	_
347	Volume Flow [%]	TFLOAT [2]	
		-200 to 200 %	_
349	Density [unit]	TFLOAT [2]	
		0.0 to 3.5 g/cm³	_
351	Density [%]	TFLOAT [2]	
		-200 to 200 %	_
353	Temperature [unit]	TFLOAT [2]	
		–100 to 250 °C	
355	Temperature [%]	TFLOAT [2]	_
		-200 to 200 %	_
71	DO 41/42 State	TUSIGN8 [1]	_
		0: Off	
		1: On	

Modbus register address	Parameter name	Data type [register length] / value range	Description
/Simulation M	ode		
357	Dig.Out 41/42 Freq.	TFLOAT [2]	The respective simulated output value is dependent on the operating mode
	Dig.Out 41/42 Pulse	0 to 10500 Hz	(pulse / frequency) of the digital output 41 / 42.
		0 to 10000 pulses	
72	Dig.Out 51/52 State	TUSIGN8 [1]	
		0: Off	
		1: On	
359	Dig.Out 51/52 Freq.	TFLOAT [2]	The respective simulated output value is dependent on the operating mode
	Dig.Out 51/52 Pulse	0 to 10500 Hz	(pulse / frequency) of the digital output 51 / 52.
		0 to 10000 pulses	
/Output Readi	ngs		
419	Dig.Out 41/42 Freq.	TFLOAT [2]	Output of the current output values. The available values are dependent on the
		0 to 10500 Hz	configuration of the digital outputs.
26	DO 41/42 State	TUSIGN8 [1]	The parameters are read only.
		0: Off	
		1: On	
421	Dig.Out 51/52 Freq.	TFLOAT [2]	_
		0 to 10500 Hz	
59	Dig.Out 51/52 State	TUSIGN8 [1]	_
		0: Off	
		1: On	

Modbus register address	Parameter name	Data type [register length] / value range	Description
/Meter Erosio	n Mon.		These parameters are only available when the VeriMass function is activated.
93	Control Type	TUSIGN8 [1] 0: Manual 1: Automatic	 Selection of the operating mode for the erosion monitor. Manual: Manual input of limit values for the erosion monitor. Automatic: The transmitter calculates the limit values for the erosion monitor automatically.
223	Driver Output Max	TFLOAT [2]	Factory setting: manual. Sets the maximum limit value for driver current. If the driver current exceeds the limit value for the time set under the parameter 'Driver Output Time', alarm 'Sensor driver current to high.' is triggered. This parameter is only available if the value 'Manual' has been selected for the parameter 'Control Type'.
427	Driver Output Time	TFLOAT [2]	Sets the delay time for the alarm "35 - Driver current too high". This parameter is only available if the value 'Manual' has been selected for the parameter 'Control Type'.
94	Status Adjust	TUSIGN8 [1]OutstandingRequestedSelf adjust activeCompleted	 Output of the status for automatic adjustment of the erosion monitor. Outstanding: The limit value is not set, the erosion monitoring is not active Requested: Automatic adjustment of the erosion monitor is activated but has not yet been performed. Self adjust active: Automatic adjustment of the erosion monitor is active. Complete: Automatic adjustment of the erosion monitor is complete; erosion monitoring is active. This parameter is only available if the value 'Automatic' has been selected for the parameter is read only.
601	Self Adjust Time	TFLOAT [2]	Sets the runtime for automatic adjustment of the erosion monitor. The setting depends on the application and should cover several days or, if necessary, weeks.
123	Start Adjust	ACTION [1]	Manual start of automatic calibration of the erosion monitor. Automatic calibration is started by writing any value to this address.
469	New Value left Time	TUSIGN32 [2]	Output of the time remaining for the current automatic calibration of the erosion monitor. The parameter is read only.
223	Meter Erosion Level	TFLOAT [2]	Output of the erosion monitor's automatically calculated erosion value. The parameter is read only.
603	Adjusted Limit	TFLOAT [2]	Output of the erosion monitor's automatically calculated limit value. The limit value is calculated from the erosion value from the automatic adjustment process and a tolerance value. The parameter is read only.
605	Actual Value	TFLOAT [2]	Output of the current erosion value for comparison with the learned limit. The parameter is read only.

Modbus register	Parameter name	Data type [register length] /	Description
address		value range	
/Alarm Simula	tion		
69	хххх	TUSIGN8 [1]	Manual simulation of alarms / error messages.
		0: Off, no alarm simulation	The simulated alarm is selected by setting the parameter to the corresponding
		1: Mass flow too high.	error number of the desired error.
		2: Volume flow rate too high.	. See also chapter Alarm status und alarm history status on page 96.
		3: Simulation activated	
		4: Flow rate set to 0	
		5: Service interval reached	
		6: All counters stopped	
		7: Counter reset	
		8: Flow rate <1600h to Qmax	
		9: Device not calibrated	
		10: SensorMemory faulty	
		11: SensorMemory data error	
		16: Pulse output overshot	
		27: DSP error frontend board	
		28: Density error	
		29: Sensor temperature	
		outside of specified range	
		30: Sensor temperature	
		measuring error	
		31: Sensor amplitude too sma	Ш
		32: Driver current too high	
		33: Density too low	
		34: Density too low / high.	
		35: Medium temperature too	
		low / high	
		36: Density set to 1 g/cm ³	
		37: Concentration [unit] too	
		low / high	
		38: Concentration [%] too low	
		/ high	

Parameter range – Counter

Modbus register	Parameter name	Data type [register length] /	Description
address		value range	
/Operation			
115	Start all Totalizer	ACTION [1]	Start all counters of the device.
116	Stop all Totalizer	ACTION [1]	Stop all counters of the device.
/Reset Totaliz	er		
114	All Totalizer	ACTION [1]	Reset the device counter
112	All Mass Totalizer		
113	All Volume Totalizer	_	
106	Massflow Fwd		
107	Massflow Rev	_	
102	Volumeflow Fwd	_	
103	Volumeflow Rev	_	
108	Net Massflow Fwd	ACTION [1]	These parameters are only available when the DensiMass function is activated.
109	Net Massflow Rev		
110	Net Volumeflow Fwd		
111	Net Volumeflow Rev	_	
104	Volumeflow		
	Fwd@Tref	_	
105	Volumeflow Rev@Tre	f	
/Preset Totali	zer		
305	Massflow Fwd	TFLOAT [2]	Default setting of the device counter.
307	Massflow Rev	_	
297	Volumeflow Fwd	_	
299	Volumeflow Rev		
309	Net Massflow Fwd	TFLOAT [2]	These parameters are only available when the DensiMass function is activated.
311	Net Massflow Rev	_	
313	Net Volumeflow Fwd	_	
315	Net Volumeflow Rev	_	
301	Volumeflow		
	Fwd@Tref	_	
303	Volumeflow Rev@Tre	f	

Modbus register	Parameter name	Data type [register length] /	Description
address		value range	
/FillMass			These parameters are only available when the FillMass function is activated.
73	Batch Process Value	TUSIGN8 [1]	Selection of the process value used for the fill operation.
		0: Off	The process variables 'net forward flow volume' and 'net forward flow mass'
		64: Forward flow volumes	are only available when the DensiMass function is activated.
		65: Forward flow standard	
		volumes	
		66: Forward flow mass	
		67: Forward flow net volumes	
		68: Forward flow net mass	
317	Preset Batch Total.	TFLOAT [2]	Sets the fill quantity using the selected unit.
		XX to XX	When the defined fill quantity is reached, the configured binary output is
			activated.
			Note
			Before setting the fill quantity, the corresponding process value must be
			selected with the parameter 'Batch Process Value'.
119	Reset Cur.Batch Tot.	ACTION [1]	Resets the parameter 'Current Batch Total.' to zero and prepares the next fill
			operation.
117	Start Batching	ACTION [1]	Starts the fill operation by writing any value to the corresponding Modbus
			address.
847	Current Batch Total.		Output of the current fill quantity.
		XX to XX	Once a fill operation has been started, the quantity already filled is shown
			here. The counter restarts at zero for each fill operation initiated and then
			counts up to the set fill quantity.
			This parameter is read only.
118	Stop Batching	ACTION [1]	Stops the fill operation by writing any value to the corresponding Modbus
			address.
465	Batch Counts	TUSIGN32 [2]	Output of the number of fill operations since the last reset.
			This parameter is read only.
121	Reset Batch Counts	ACTION [1]	Resets the counter 'Batch Counts' by writing an arbitrary value into the
			corresponding Modbus address.

Modbus register address	Parameter name	Data type [register length] / value range	Description
/FillMass /I	Lag Correction		These parameters are only available when the FillMass function is activated.
90	Mode	TUSIGN8 [1]	Selection of overrun correction.
		0 - Manual	Closing the fill valve takes some time and as a consequence more liquid is
		1 - Automatic	added, even though the fill quantity is reached and the contact for closing the
			valve is actuated.
			Automatic: The overrun quantity is calculated by the transmitter
			automatically.
			• Manual: The overrun quantity must be determined manually and entered in
			the selected unit via the parameter 'Quantity.'
319	Quantity	TFLOAT [2]	Manually sets the overrun quantity correction value in the selected unit.
		-0.0 to 100.0	Closing the fill valve takes some time and as a consequence more liquid is
			added, even though the fill quantity is reached and the contact for closing the
			valve is actuated.
			Only if the parameter 'Mode' has been set to 2 - Manual.
435	Quantity automatise	ch TFLOAT [2]	Output of the overrun quantity automatically calculated by the transmitter.
		Read only or set to 0.0.	Only if the parameter 'Mode' has been set to 1 - Automatic.
437	Factor	TFLOAT [2]	Sets the weighting of the last filling process during automatic calculation of
		0.0 to 1.0	the overrun quantity.
		Factory setting: 0.25	The calculation is based on the following formula:
			New correction value = last correction value + (Factor × correction value during
			the last fill operation)
			0.0: No change to correction value.
			• 1.0: The correction value is immediately adjusted to the overrun quantity
			calculated during the last fill operation.
439	Time	TFLOAT [2]	Sets the time for the overrun quantity correction after the fill valve is closed.
		0.1 to 10 s	
		Factory setting: 0.1 s	

Software history

In accordance with NAMUR recommendation NE53, ABB offers a transparent and traceable software history.

FCx1xx device software					
Version	Issue date	Description	Ordering number		
01.00.01	05.2014	Functional improvement	3KXF000405U0100		
01.01.00	08.2014	Quality & functional improvement			
01.01.01	09.2014	Quality & functional improvement			
01.02.02	03.2016	Internal diagnostic functions added			
01.03.00	01.2017	Quality & functional improvement, new Modbus register added			
01.04.02	03.2018	Drag indicator added			
01.05.00	12.2019	Second independent frequency output 51/52 added.			
01.06.00	03.2020	ECC function added.			
01.09.00	02.2022	Improvement of measuring rate in ECC mode and further diagnostic options			
01.09.02	04.2022	New DensiMass "antifreeze" medium option			

Zero point balance under operating conditions

Devices in the CoriolisMaster series do not necessarily require zero point adjustment. Performing a zero point adjustment is only recommended in the following cases:

- For measurements in the lower flow range (below 10 % of Q_{max}DN).
- If particularly high accuracies are required (0.1 % or better).
- If the operating conditions (pressure and temperature) deviate greatly from the reference conditions (see data sheet).

For zero point adjustment under operating conditions, make sure the following conditions are present:

- The meter tube is completely filled with the measuring medium.
- For liquid measuring media, no gas bubbles or air pockets may be present in the meter tube.
- For gaseous measuring media, no liquid components or condensates may be present in the meter tube.
- The pressure and the temperature in the meter tube correspond to standard operating conditions and are stable.

In case of an increased zero point (> 0.1 %), check the installation for 'best praxis' and make sure that no gas content is contained in liquids, or that there are no liquids or particles in gases. See also **Turn-off devices for the zero point adjustment** on page 27.

To perform zero point adjustment via the Modbus interface, see **System Zero** on page 62.

Measurement of standard volumes

Coriolis mass flowmeters can only measure the mass flow of gaseous measuring media.

The operating density of gases is too low to be measured. Consequently the flowmeter is also unable to measure the operating volume.

However, an appropriate standard volume can be calculated by entering a fixed density for the measuring medium.

Setup

The following steps must be taken to enable the transmitter to calculate the standard volume flow for gases:

- 1. Set the parameter "Density Mode" to "Fixed density value".
- 2. Set the parameter 'Density Fixed Value' to the standard density of the measuring medium.
- 3. Volume flow (Volume Flow [unit] / Volume Flow [%]) must be selected as the process variable for the output. Selecting a standard volume will not work in this case!

See also **Parameter range - config. Device** on page 57 and **Available process variables** on page 53.

The transmitter uses the measured mass flow and the input standard density to calculate the standard volume flow of the measuring medium.

(standard volume = mass / standard density).

The calculation can also be performed for liquid measuring media.

VeriMass erosion monitor

The integrated diagnosis function VeriMass allows the status of the meter tube to be monitored. This enables changes due to material erosion and the formation of deposits on the meter tube walls to be identified at an early stage.

If the set limit value is exceeded, an alarm is triggered, for example via the programmable digital output or HART, depending on the configuration.

The limit value for the erosion monitor can be set either automatically or manually.

Automatic adjustment

The transmitter monitors the sensor's driver current over a prolonged period and creates a 'fingerprint' for the relevant application. The transmitter generates a corresponding tolerance value for deviations in the driver current. The transmitter compares the behavior of the driver current with the generated fingerprint and triggers the relevant error message in the event of prolonged deviations.

Manual adjustment

For applications where automatic adjustment of the erosion monitor does not provide a satisfactory result, the erosion monitor can be adjusted manually.

For more information, please contact ABB Service or the sales organization.

Setup

The following process conditions must be observed to ensure that the transmitter can perform the adjustment process successfully:

- The measuring medium has a viscosity similar to that of water and is below 10 cP.
- For liquid measuring media, no gas bubbles or air pockets may be present in the meter tube.
- The pressure and temperature in the meter tube correspond to standard operating conditions.
- The process conditions during the adjustment period correspond to standard conditions for the selected application.

Automatic adjustment via the transmitter menu

The following steps must be performed when adjusting the erosion monitor automatically:

- 1. The VeriMass function must be active. See also parameter range **...Feature Settings** on page 61.
- 2. Set the parameter "Control Type" to "Automatic". See also parameter range **VeriMass erosion monitor** on page 85.
- 3. Set the parameter "Self Adjust Time" to the required duration of the adjustment process. See also parameter range **VeriMass erosion monitor** on page 85.

Recommended settings	
Self Adjust Time	Several days or weeks depending on the
	application

4. Start the automatic adjustment process via the parameter "Start Adjust".

The transmitter now generates the 'fingerprint' for the erosion value and an appropriate tolerance value for the specified time. Once automatic adjustment is complete, the driver current is monitored constantly and compared with the 'fingerprint' generated.

... VeriMass erosion monitor

Manual adjustment

For more information, please contact ABB Service or the sales organization.

The following steps must be performed when adjusting the erosion monitor manually:

- 1. The VeriMass function must be active. See also parameter range **...Feature Settings** on page 61.
- 2. Set the parameter "Control Type" to "Manual". See also parameter range **VeriMass erosion monitor** on page 85.
- 3. Set the parameters "Driver Current Max" and "Driver Current Time" to the required values. See also parameter range **VeriMass erosion monitor** on page 85.

Recommended settings Driver Current Max Approx. 0.3 mA above the driver current under normal operating conditions Driver Current Time Several days or weeks depending on the application

Adjustment via Device Type Manager (DTM)

Alternatively, automatic and manual adjustment of the erosion monitor can also be performed via the local user interface with a HART DTM (see also **Parameterization via the local operating interface** on page 39).

Detailed information on operating the software is available in the relevant operating instructions and the DTM online help.

Enhanced Coriolis Control (ECC)function

The Enhanced Coriolis Control (ECC)function has been specially developed for demanding applications, such as:

- Liquids with gas phase
- Liquids with rapidly changing densities
- Fill operations with surge phases at the beginning or end
- Liquids with high viscosity

After the ECC function is activated, the device applies a particularly quick control algorithm to control the oscillating tubes in the device and therefore provide significantly better behavior in the applications listed above.

In addition, the ECC function offers a special noise suppression filter for mass flow measurement and density measurement.

In the case of particularly demanding applications, disruptions can thus be actively filtered and the measurement can be implemented in a considerably more stable manner. For the filters, a variety of time constants between 0.5 s and 8 s can be selected.

Since Coriolis mass flowmeters measure the mass flow and density separately, the CoriolisMaster features a separate filter each for mass flow measurement and density measurement.

Applications in accordance with API (American Petroleum Institute)

For applications in accordance with API Chapter 5.6, the CoriolisMaster FCB100, FCH100 provides special parameters:

- Calibration Pressure: Measuring medium pressure at which the device was calibrated at ABB.
- Calibration Temp.: Measuring medium temperature at which the device was calibrated at ABB.
- Pressure Level: Parameters for entry of the current operating pressure in the device by the user.
- Flow Compens. factor: Display / output of the current compensation factor for mass flow calculation.
- Density Comp. factor: Display / output of the current compensation factor for density calculation.
- P.Comp.Status (PECI): In accordance with API, the user can set the following states:
 - 1: CT: Compensation in the Coriolis flowmeter based on the current pressure entered in the 'Pressure Level' parameter.
 - 2: TD: Compensation in the Coriolis flowmeter switched off – compensation is performed externally (Tertiary Device)
 - 3: OS: Compensation in the Coriolis flowmeter switched off – compensation is not performed on site (Off Site)
 - 4: NA: Compensation in the Coriolis flowmeter switched off – compensation is not deemed to be necessary, since the device is operating at a pressure for which the device has been proved.

Concentration measurement DensiMass

Only for FCB150 / FCH150

The transmitter can calculate the current concentration from the measured density and temperature using concentration matrices.

The following concentration matrices are preconfigured in the transmitter as standard:

- Concentration of sodium hydroxide in water
- Concentration of alcohol in water
- Concentration of sugar in water
- Concentration of maize starch in water
- Concentration of wheat starch in water
- Concentration of antifreeze in water

In addition, the user can enter two user-defined matrices:

- Up to 100 values with one matrix
- Up to 50 values per matrix with two matrices

Calculating standard volumes and standard densities of liquids

If a suitable matrix is available, the DensiMass function also allows the measured volume to be corrected for any selected temperature.

The measured density can also be corrected for a given temperature.

However, this is only possible when measuring liquids and after entering an appropriate matrix.

This correction can also be performed using the default matrices (see above).

The calculated standard volumes and standard densities can also be issued for all other process variables.

The software 'DensiMatrix' is available for the easy input of the matrix.

... Concentration measurement DensiMass

Accuracy of the concentration measurement

The accuracy of the concentration measurement is determined in the first instance by the quality of the matrix data entered. However, as the calculation is based on temperature and density (the input variables), the accuracy of the concentration measurement is ultimately determined by the measuring accuracy of the temperature and the density.

Example:

Density of 0 % alcohol in water at 20 °C (68 °F): 998.23 g/l Density of 100 % alcohol in water at 20 °C (68 °F): 789.30 g/l

Concentration	Density	
100 %	208.93 g/l	
0.48 %	1 g/l	
0.96 %	2 g/l	
0.24 %	0.5 g/l	

Thus, the accuracy class of the density measurement directly determines the accuracy of the concentration measurement.

Creation of the concentration matrix

The concentration matrix for the DensiMass function can be created in two ways:

- The desired ABB matrix is indicated when ordering the device. The device is then delivered with the corresponding preconfiguration.
- The matrix is created using the 'DensiMatrix' software and transferred to the device via the local operating interface.

For more information, please contact ABB Service or the sales organization.

Structure of the concentration matrix

The software supports two different concentration values:

- Concentration in unit (e. g.: % or°Bé)
 The range of values is not limited, the value can be provided at the current output, the value can be selected in the Units submenu.
- Concentration in percent (%)
 The range of values is limited to 0 to 103.125 %. This value is only used for the internal calculation of the net mass flow. The net mass flow can be output at the current and pulse outputs.

Concentration MIN / MAX limit: -5.0 to 105.0.

The matrix for calculating the concentration looks like this:

		Temperature 1	 Temperature n
Value 1 concentration in %	Value 1 concentration in unit	Value 1, 1 density	 Value n, 1 density
	(e.g., % or°Bé)		
•••			
Value m concentration in %	Value m concentration in unit	Value 1, m density	 Value n, m density
	(e.g., % or°Bé)		

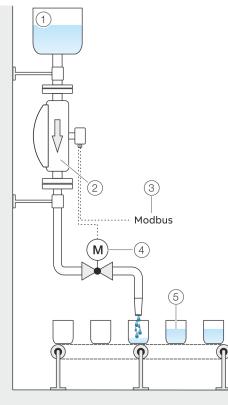
The following rules apply when entering values in the matrix:

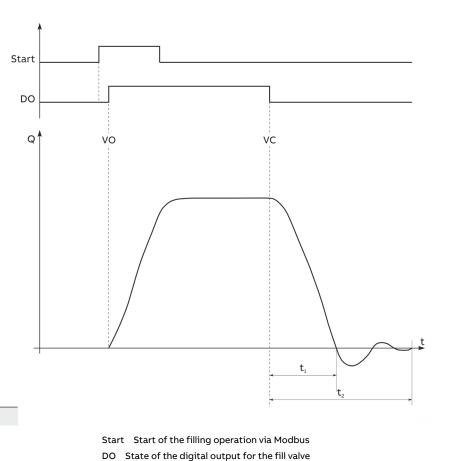
- With one matrix: 2 \leq N \leq 20; 2 \leq M \leq 20; N * M \leq 100
- With two matrices: 2 \leq N \leq 20; 2 \leq M \leq 20; N * M \leq 50

The density values in a column must be in ascending order due to the algorithm used in the transmitter software. Density x,1 < ... < Density x,2 <... < Density x,M for 1 ≤ x ≤ M

The temperature values must be in ascending order from left to right due to the algorithm used in the transmitter software. Temperature 1 <... < Temperature x <... < Temperature N for 1 ≤ x ≤ N

The concentration values must be monotonically ascending or monotonically descending from top to bottom due to the algorithm used in the transmitter software.


Concentr. $1 \le \dots \le C$ oncentr. $x \le \dots \le C$ oncentr. N for $1 \le x \le N$ or Concentr. $1 \ge \dots \ge C$ oncentr. X $\ge \dots \ge C$ oncentr. N for $1 \le x \le N$


Example:

		10 °C (50 °F)	20 °C (68 °F)	30 °C (86 °F)
0 %	0 °BRIX	0.999 kg/l	0.982 kg/l	0.979 kg/l
10 %	10 °BRIX	1.010 kg/l	0.999 kg/l	0.991 kg/l
40 %	30 °BRIX	1.016 kg/l	1.009 kg/l	0.999 kg/l
80 %	60 °BRIX	1.101 kg/l	1.018 kg/l	1.011 kg/l

FillMass batch function

Only for FCB150 / FCH150

- (1) Supply tank
- 2 Sensor
- (3) Start / stop fill operation (Modbus)
- (4) Fill valve
- 5 Filling tank
- Figure 35: FillMass fill function

The integrated FillMass fill function allows filling operations with filling times of > 3 s.

For this purpose, the filling quantity is given via an adjustable totalizer.

The Modbus interface is used to configure and control the fill function.

The valve is triggered via one of the digital outputs and closed again once the preset filling quantity is reached. The transmitter measures the overrun quantity and calculates the overrun correction from this.

Q Flow rate

VO Valve open (filling started)

t₁ Valve closing timet₂ Overrun time

VC Valve closed (fill quantity reached)

Additionally, the low flow cut-off can be activated if required.

Setup

For the configuration of the fill mass function, the following steps must be performed:

- 1. The FillMass function must be active. See also parameter range **...Feature Settings** on page 61.
- One of the two digital outputs 41 / 42 or 51 / 52 must be configured as a binary output with the function "Batch end contact". See also parameter range **Parameter range** - **Output** on page 66.
- 3. The parameters for the fill mass function must be configured. See also parameter range **...FillMass** on page 82.

Note

During fast filling processes, the damping should be set to the minimum value to ensure the greatest possible accuracy of the fill quantity.

See also parameter range **Parameter range - config. Device** on page 57.

Filling operation run

Initialization

The following steps must be performed before the initial start of a filling operation and e.g. in case of changes to the fill quantity:

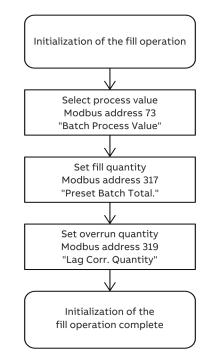
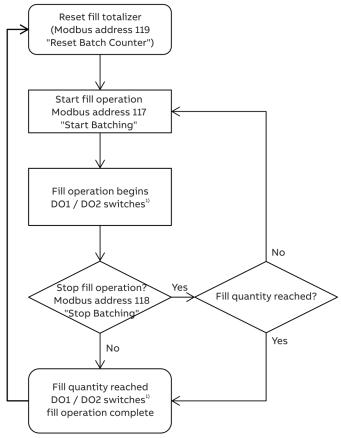


Figure 36: Initialization


Note

The value for the outflow amount "Lag Corr. Quantity" depends on a number of factors (valve close time, flow velocity, pressure, etc.) The value must therefore be experimentally determined for every application.

... FillMass batch function

Fill operation

The following steps must be performed for every fill operation:

* The digital output DO1 / DO2 must be configured as 'Batch end contact' for this purpose.

Figure 37: Filling operation

The current fill quantity for the present fill operation can be read out via the Modbus address 847 "Current Batch Total.". The number of fill operations performed can be read out via the Modbus address 465 "Current Batch Counts". The counter can be reset via the Modbus address 119 "Reset Batch Totalizer".

10 Diagnosis / error messages

NOTICE

All Modbus addresses in this chapter are indicated in the format "PLC Base 1".

General

Errors encountered are itemized in tabular form on the following pages. The response of the transmitter on error detection is described therein.

The table lists all possible errors together with a description of their impact on the value of measurement variables, the properties of current outputs and the alarm output.

If no entry is indicated in the table field, there is no effect on the measurement variable or no alarm signal for the particular output. The sequence of the errors in the table corresponds to the error priorities.

The first entry has the highest priority and the last has the lowest.

If multiple errors are detected simultaneously, the error with the highest priority determines the alarm condition of the measurement variable and the current output. If an error with a higher priority does not affect the measurement variable or the output status, the error with the next highest priority determines the status of the measurement variable and the output.

The following critical errors are indicated by slow flashing (frequency: 1 second) of the service LED in the transmitter terminal box. See also **Service LED** on page 37.

Fault message	Priority / error no.	Modbus address "Active alarm"
DSP Failure on Frontend Board.	96 / 29	2029
Sensor amplitudeout of range.	93 / 33	2033
Sensor temperature measure error	90 / 32	2032
NV data defect. Data storage irreparable.	84 / 10	2010
Density failure	80 / 30	2009
Sensor driver current to high.	60 / 34	2015
Sensor temperature out max range	57 / 31	2018
Sensor memory defective.	38 / 09	2009

... 10 Diagnosis / error messages

Overview

The counter readings and the states of the current outputs and the alarm output are represented by symbols; please see the table below.

Symbol	Description
(STOP)	Counter stop
_	No change
1)	When the error occurs, the corresponding measurement variable is calculated with the temperature 20 °C.
2)	When the error occurs, the corresponding measurement variable is set to the value with density = 1.
Λ	Alarm (general)
	High alarm
∠\.	Low alarm

					Mea	asuremer	nt varia	bles			Counter Pu	ulse / frequenc	cy output	Digital output
Priority	Error no.	Error text	Qm [%]	Qv [%]	Density [g/cm³]	Temperature [°C]	Concentration [%]	Net mass flow	Standard density g/cm³]	Standard volume [20 °C]	All counters	Qm [%, unit]	Qv [%, unit]	Configured alarm
96	29	DSP Failure on Frontend Board.	0	0	1	_	0	0	1	0	_	0	0	Â
93	33	Sensor amplitudeout of range.	0	0	_	_	_	0	_	0	_	—	—	Â
92	41	FEB voltages outside range.	0	0	1	20 °c	0	0	1	0	_	0	0	
90	32	Sensor temperature measure error	1)	1)	1)	20 °C	1)	1)	1)	1)	_	—	—	
84	10	NV data defect. Data storage irreparable.	0	0	1	20 °c	0	0	1	0	_	0	0	
80	30	Density failure	_	2)	1g	_	2)	2)	2)	2)	_	_	_	<u>^</u>
78	3	Flowrate to zero	0	0	_	_	_	0	_	0	_	0	0	
76	5	All totalizer stopp.	_	_	_	_	_	_	_	_	STOP	_	_	<u>^</u>
74	6	Totalizer reset. Reset of one or more Totalizer	_	_	_	_	_	_	_	_	0	—	—	
72	2	Simulation is on. Simulating process/output value.	_	_	_	_	_	_	_	_	_	—	—	_
70	26	An alarm is simulated.	_	_	_	_	_	_	_	_	_	_	_	
60	34	Sensor driver current to high.	_	_	_	_	_	_	_	_	_	_	_	Â
59	35	Density too low.Empty pipe, gas	0	0	_	_	_	0	_	0	_	_	_	_
58	38	Density to 1g/cm ³	_	2)	1g	_	2)	2)	2)	2)	_	_	_	_
57	31	Sensor temperature out max range	1)	1)	1)	20 °C	1)	1)	1)	1)	_	_	_	_
54	41	FEB voltages outside range.	—	—	_	_	_	_	_	_	_	_	_	_

					Mea	sureme	nt varia	bles			Counter	Pulse / freq	uency output	Digital output
Priority	Error no.	Error text	Qm [%]	Qv [%]	Density [g/cm³]	Temperature [°C]	Concentration [%]	Net mass flow	Standard density g/cm³]	Standard volume [20 °C]	All counters	Qm [%, unit]	Qv [%, unit]	Configured alarm
47	15	Pulse output is cut off.	_	_	_	_	_	_	_	_	_	_	—	
46	0	Mass flowrate exceeds limits.	_	_	_	_	_	_	_	_	_	_	—	⚠♠⚠ـ₩
44	1	Volume flowrate exceeds limits.	_	_	_	_	_	_	_	_	_	_	_	⚠♠⚠ـ₩
43	36	Density exceeds min/max limits.	_	_	_	_	_	_	_	_	_	_	_	_
42	37	Medium temperat exceeds limits.	_	_	_	_	_	_	_	_	_	—	_	_
41	39	Concentration inunit exceeds	_	_	_	_	_	_	_	_	_	_	_	_
40	40	Concentration in percent exceeds	_	_	_	_		_	_	_		_	_	_
38	9	Sensor memory defective.	_	_	_	_	_	_	_	_	_	_	_	_
26	4	Maintenance interval is reached	_	_	_	_	_	_	_	_	_	_	_	Â
24	8	Device not calibrated.	_	_	_	_	_	_	_	_		_	_	

... 10 Diagnosis / error messages

Alarm status and alarm history status

Fault message	Modbus	address	Byte / Error no. /		Description	NAMUR class	
	Active	History	Bit pos.	priority			
F096.029	2029	2077	3/5	29 / 96	DSP error in frontend board (FEB) of the sensor.	Failure	
DSP Failure on Frontend					Frontend board defective.		
Board.					Restart the device.		
					Replace frontend board.		
					Contact ABB Service.		
F093.033	2033	2081	4/1	33 / 93	Gas bubbles in the measuring tube.	Failure	
Sensor amplitudeout of					Viscosity of the measuring medium is too high.		
range.					Hardware error in sensor.		
					Reduce gas content, change measuring medium.		
					Contact ABB Service.		
F092.041	2041	2089	5/1	41 / 92	Frontend board power supply defective. Frontend board	Out of	
FEB voltages outside rang	ge.				defective.	specification	
					Replace frontend board.		
					Contact ABB Service.		
F090.032	2032	2080	4/0	32 / 90	Internal temperature sensor measuring error / defective.	Failure	
Sensor temperature					Contact ABB Service.		
measure error							
F084.010	2010	2058	1/2	10 / 84	Error in SensorMemory.	Failure	
NV data defect. Data					Faulty memory module.		
storage irreparable.					Contact ABB Service.		
F080.030	2030	2078	3/6	30 / 80	The resonant frequency of the measuring tube is outside the	Failure	
Density failure					permissible limits. Damage to the measuring tube due to abrasic	n	
					or deposit formation in the measuring tube.		
					 Check setting of the density parameters. 		
					Check application, clean meter tube and check for damage du	e	
					to abrasion.		
					Contact ABB Service.		
C078.003	2003	2051	0/3	3 / 78	External switch-off active via digital input.	Functional check	
Flowrate to zero					Check status of digital input.		
					Check parameterization.		
C076.005	2005	2053	0/5	5 / 76	External switch-off active via digital input.	Functional check	
All totalizer stopp.					Check status of digital input.		
					Check parameterization.		
C074.006	2006	2054	0/6	6 / 74	Reset of one or more counters.	Functional check	
Totalizer reset. Reset of o	ne				Check status of digital input.		
or more Totalizer					Check parameterization.		

Fault message	Modbus	address	Byte /	Error no. /	Description	NAMUR class	
	Active	History	Bit pos.	priority			
C072.002	2002	2050	0/2	2 / 72	Simulation mode is active.	Functional chec	
Simulation is on. Simulatir	ng				Deactivate simulation mode in the 'Diagnostics /Simulation		
process/output value.					Mode' menu.		
C070.026	2026	2074	3/2	26 / 70	The alarm simulation is active.	Functional chec	
An alarm is simulated.					Deactivate alarm simulation in the 'Diagnostics /Alarm		
					Simulation' menu.		
S060.034	2034	2082	4/2	34 / 60	Gas bubbles in the measuring tube.	Out of	
Sensor driver current to					 Reduce gas content in the measuring medium. 	specification	
high.					Deactivate error message by setting the parameter 'Driver		
					Output Max' in the 'Process Alarm /Alarm Limits' menu to '0	•	
S059.035	2035	2083	4/3	35 / 59	Empty measuring tube. Gas bubbles in the measuring tube.	Out of	
Density too low.Empty					 Reduce gas content in the measuring medium. 	specification	
pipe, gas					 Make sure that the meter tube is always completely full. 		
					Deactivate error message by setting the parameter 'Density		
					Low Check' in the 'Process Alarm /Alarm Limits' menu to '0'.		
S058.038	2038	2086	4/6	38 / 58	Density has been set to 1 g/cm^3 by the transmitter due to an error	^r Out of	
Density to 1g/cm ³					message.	specification	
					Contact ABB Service.		
S057.031	2031	2079	3/7	31 / 57	Ambient or measuring medium temperature is too high.	Out of	
Sensor temperature out					 Check ambient or measuring medium temperature. 	specification	
max range							
S054.042	2042	2090	5/2	42 / 54	The sensor amplitude is below or above the parameterized limit	Out of	
Sensor amplitude out of					values 'Sensor Signal Min' and 'Sensor Signal Time'.	specification	
ranges					Multi-phases measuring medium. Viscosity of the measuring medium is too high.		
					• Check the settings of the parameters in the 'Process Alarm /Alarm Limits' menu and adjust if necessary.		
S047.0015	2015	2063	1/7	15 / 47	The pulse rate or the frequency at the pulse output is outside the	Out of	
Pulse output is cut off.			-, :	,	permissible limits.	specification	
· · · · · · · · · · · · · · · · · · ·					 Check configuration of the parameters for the pulse output. 		
S046.000	2000	2048	0/0	0/46	The mass flow is below or above the configured limit values 'Qm	Out of	
Mass flowrate exceeds			-		Massflow Min' and 'Qm Massflow Max'.	specification	
limits.					• Check the settings of the parameters in the 'Process Alarm /	-	
					Alarm Limits' menu and adjust if necessary.		
					Check mass flow.		

... 10 Diagnosis / error messages

... Alarm status and alarm history status

Fault message	Modbus address		Byte / Error no. /		Description	NAMUR class	
	Active History		Bit pos.	priority			
S044.001	2001	2049	0/1	1/44	The volume flow is below or above the configured limit values 'Qv	Out of	
Volume flowrate exceeds					Volumeflow Min' and 'Qv Volumeflow Max'.	specification	
limits.					Check the settings of the parameters in the 'Process Alarm /		
					Alarm Limits' menu and adjust if necessary.		
					Check volume flow rate.		
S043.036	2036	2084	4/4	36 / 43	The density is below or above the configured limit values 'Density	Out of	
Density exceeds min/max					Min' and 'Density Max'.	specification	
limits.					Check the settings of the parameters in the 'Process Alarm /		
					Alarm Limits' menu and adjust if necessary.		
					Check density.		
S042.037	2037	2085	4/5	37 / 42	The measuring medium temperature is below or above the	Out of	
Medium temperat exceeds					configured limit values 'Temperature Min' and 'Temperature Max'	specification	
limits.					Check the settings of the parameters in the 'Process Alarm /		
					Alarm Limits' menu and adjust if necessary.		
					Check measuring medium temperature.		
S041.039	2039	2087	4/7	39 / 41	The concentration in units is below or above the configured limit	Out of	
Concentration inunit					values 'Concentrat. [u] Min' and 'Concentrat. [u] Max'.	specification	
exceeds					Check the settings of the parameters in the 'Process Alarm /		
					Alarm Limits' menu and adjust if necessary.		
					Check concentration.		
S040.040	2040	2088	5/0	40 / 40	The concentration in % is below or above the configured limit	Out of	
Concentration in percent					values 'Concentrat. [%] Min' and 'Concentrat. [%] Max'.	specification	
exceeds					Check the settings of the parameters in the 'Process Alarm /		
					Alarm Limits' menu and adjust if necessary.		
					Check concentration.		
M038.09	2009	2057	1/1	9 / 38	SensorMemory in frontend board defective.	Maintenance	
Sensor memory defective.					Check if the SensorMemory is defective.	required	
					Contact ABB Service.		
M026.004	2004	2052	0/4	4 / 26	Maintenance interval reached.	Maintenance	
Maintenance interval is					Perform maintenance work.	required	
reached					Start new maintenance interval in the 'Diagnostics /		
					Diagnosis Control' menu.		
M024.008	2008	2056	1/0	8 / 24	Contact ABB Service.	Maintenance	
Device not calibrated.						required	

11 Maintenance

Safety instructions

A DANGER

Danger of explosion if the device is operated with the transmitter housing or terminal box open!

Before opening the transmitter housing or the terminal box, note the following points:

- A valid fire permit must be present.
- Make sure that there is no explosion hazard.
- Switch off the power supply and wait for t > 20 minutes before opening.

Risk of injury due to live parts!

When the housing is open, contact protection is not provided and EMC protection is limited.

• Before opening the housing, switch off the power supply.

Risk of burns due to hot measuring media

The device surface temperature may exceed 70 °C (158 °F), depending on the measuring medium temperature!

• Before starting work on the device, make sure that it has cooled sufficiently.

NOTICE

Damage to components!

The electronic components of the printed circuit board can be damaged by static electricity (observe ESD guidelines).

• Make sure that the static electricity in your body is discharged before touching electronic components.

Corrective maintenance work may only be performed by trained personnel.

- Before removing the device, depressurize it along with any adjacent lines or vessels.
- Check whether hazardous materials have been used as measuring medium before opening the device. Residual amounts of hazardous material may still be present in the device and could escape when it is opened.

Within the scope of operator responsibility, check the following as part of a regular inspection:

- pressure-carrying walls / pressure equipment liner
- the measurement-related function
- the leak tightness
- the wear (corrosion)

Cleaning

When cleaning the exterior of meters, make sure that the cleaning agent used does not corrode the housing surface and the seals.

To avoid static charge, a damp cloth must be used for cleaning.

Sensor

Essentially no maintenance is required for the sensor. The following items should be checked annually:

- Ambient conditions (air circulation, humidity).
- Tightness of the process connections,
- Cable entries and cover screws,
- Operational reliability of the power supply, lightning protection, and station ground.

12 Repair

Safety instructions

A DANGER

Danger of explosion if the device is operated with the transmitter housing or terminal box open!

Before opening the transmitter housing or the terminal box, note the following points:

- A valid fire permit must be present.
- Make sure that there is no explosion hazard.
- Switch off the power supply and wait for t > 20 minutes before opening.

WARNING

Risk of injury due to live parts!

When the housing is open, contact protection is not provided and EMC protection is limited.

• Before opening the housing, switch off the power supply.

ACAUTION

Risk of burns due to hot measuring media

The device surface temperature may exceed 70 °C (158 °F), depending on the measuring medium temperature!

• Before starting work on the device, make sure that it has cooled sufficiently.

Note

For measuring devices for potentially explosive areas, observe the relevant operator guidelines.

See also Use in potentially explosive atmospheres on page 6.

Repair and maintenance activities may only be performed by authorized customer service personnel.

When replacing or repairing individual components, use original spare parts.

Spare parts

Note

Spare parts can be ordered from ABB Service. www.abb.com/contacts

Returning devices

Use the original packaging or a secure transport container of an appropriate type if you need to return the device for repair or recalibration purposes.

Fill out the return form (see **Return form** on page 103) and include this with the device.

In accordance with the EU Directive governing hazardous materials, the owner of hazardous waste is responsible for its disposal or must observe the following regulations for shipping purposes:

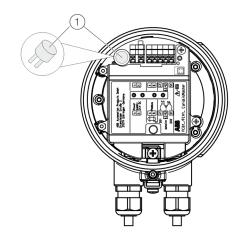
All devices delivered to ABB must be free from any hazardous materials (acids, alkalis, solvents, etc.).

Address for returns:

Please contact Customer Center Service according to page 5 for nearest service location.

Replacing the fuse

A DANGER


Danger of explosion if the device is operated with the transmitter housing or terminal box open!

Before opening the transmitter housing or the terminal box, note the following points:

- A valid fire permit must be present.
- Make sure that there is no explosion hazard.
- Switch off the power supply and wait for t > 20 minutes before opening.

Note

For devices for use in potentially explosive atmospheres in Zone 1 / Div. 1, the fuse is sealed and cannot be replaced.

(1) Fuse

Figure 38: Fuse in the terminal box

There is a fuse in the transmitter terminal box (order number: 3KQR000443U0100).

Perform the following steps to replace the fuse:

- 1. Switch off the power supply.
- 2. Open the transmitter terminal box.
- 3. Pull out the defective fuse and insert a new fuse.
- 4. Close the transmitter terminal box.
- 5. Switch on the power supply.
- 6. Check that the device is working correctly.

If the fuse blows again on activation, the device is defective and must be replaced.

13 Dismounting and disposal

Dismounting

Risk of injury due to process conditions.

The process conditions, for example high pressures and temperatures, toxic and aggressive measuring media, can give rise to hazards when dismantling the device.

- If necessary, wear suited personal protective equipment during disassembly.
- Before disassembly, make sure that the process conditions do not pose any safety risks.
- Depressurize and empty the device / piping, allow to cool and purge if necessary.

Bear the following points in mind when dismantling the device:

- Switch off the power supply.
- Disconnect electrical connections.
- Allow the device / piping to cool and depressurize and empty. Collect any escaping medium and dispose of it in accordance with environmental guidelines.
- Use suited tools to disassemble the device, taking the weight of the device into consideration.
- If the device is to be used at another location, the device should preferably be packaged in its original packing so that it cannot be damaged.
- Observe the notices in **Returning devices** on page 100.

... 13 Dismounting and disposal

Disposal

Note

Products that are marked with the adjacent symbol may **not** be disposed of as unsorted municipal waste (domestic waste).

They should be disposed of through separate collection of electric and electronic devices.

This product and its packaging are manufactured from materials that can be recycled by specialist recycling companies.

Bear the following points in mind when disposing of them:

- As of 8/15/2018, this product will be under the open scope of the WEEE Directive 2012/19/EU and relevant national laws (for example, ElektroG - Electrical Equipment Act - in Germany).
- The product must be supplied to a specialist recycling company. Do not use municipal waste collection points. These may be used for privately used products only in accordance with WEEE Directive 2012/19/EU.
- If there is no possibility to dispose of the old equipment properly, our Service can take care of its pick-up and disposal for a fee.

14 Specification

Note

The device data sheet is available in the ABB download area at www.abb.de/flow.

15 Additional documents

Note

All documentation, declarations of conformity, and certificates are available in ABB's download area. www.abb.com/flow

Trademarks

Modbus is a registered trademark of Schneider Automation Inc. Hastelloy C-4 is a trademark of Haynes International Hastelloy C-22 is a trademark of Haynes International Windows is a registered trademark of Microsoft Corporation.

16 Appendix

Return form

Statement on the contamination of devices and components

Repair and/or maintenance work will only be performed on devices and components if a statement form has been completed and submitted.

Otherwise, the device/component returned may be rejected. This statement form may only be completed and signed by authorized specialist personnel employed by the operator.

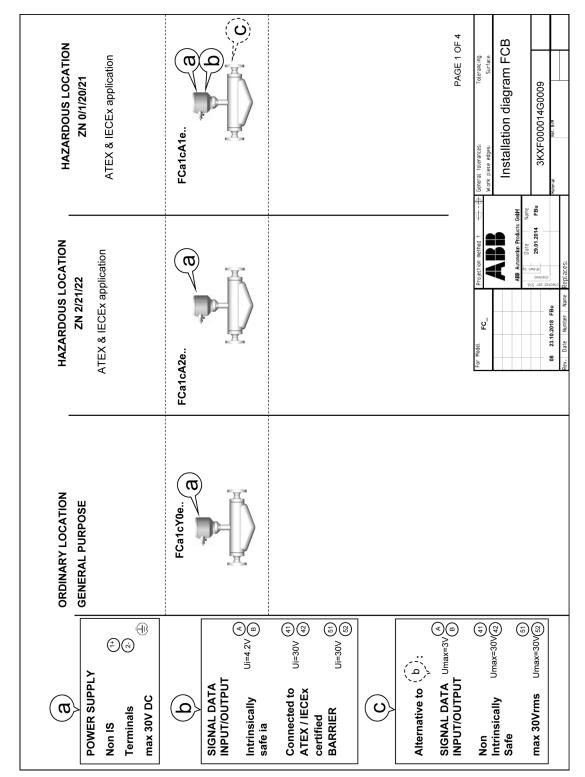
Customer details:

Company:		
Address:		
Contact person:	Telephone:	
Fax:	Email:	
Device details:		
Туре:		Serial no.:
Reason for the return/description of the defect:		

Was this device used in conjunction with substances which pose a threat or risk to health?

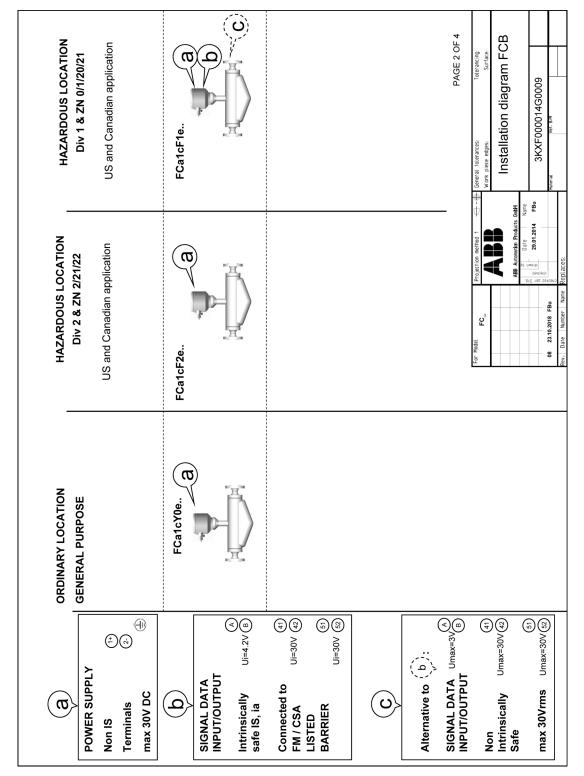
🗌 Yes 🔄 No		
If yes, which type of contamina	tion (please place an X next to the applicable ite	ems):
Diological	corrosive / irritating	combustible (highly / extremely combustible)
	explosive	other toxic substances
🗌 radioactive		
Which substances have come ir 1.	to contact with the device?	
2.		
3.		

We hereby state that the devices/components shipped have been cleaned and are free from any dangerous or poisonous substances.


Town/city, date

Signature and company stamp

... 16 Appendix


Installation diagram 3KXF000014G0009

Page 1 of 4

CoriolisMaster FCB100, FCH100 CORIOLIS MASS FLOWMETER | OI/FCB100/FCH100-EN REV. I

Page 2 of 4

... 16 Appendix

... Installation diagram 3KXF000014G0009

Page 3 of 4

	No	Notes: ATEX & IECEx application	Notes	Notes: US and Canadian application	tion
	.	THE INTRINSIC SAFETY ENTITY CONCEPT ALLOWS THE INTERCONNECTION OF TWO ATEX/IECEX APPROVED INTRINSICALLY SAFE DEVICES WITH ENTITY PARAMETERS NOT SPECICALLY EXAMINED IN COMBINATION AS A SYSTEM WHEN: UO OR Voc OR VI < V MAX, IO OR IOC OR II < I MAX; UO OR Voc OR VI < V MAX, IO OR IOC OR II < I MAX; Ca OR Co > CI + Ccable; La OR Lo > LI + Lcable; Po < PI.	÷	THE INTRINSIC SAFETY ENTITY CONCEPT ALLOWS THE INTERCONNECTION OF TWO FM AND/OR CSA APPROVED IN SAFE DEVICES WITH ENTITY PARAMETERS NOT SPECICALL COMBINATION AS A SYSTEM WHEN: Uo OR Voc OR V1 < V MAX, Io OR Ioc OR It < I MAX; Ca OR Co > C1 + CCable; La OR Lo > L1 + Lcable; Po <i< td=""><td>THE INTRINSIC SAFETY ENTITY CONCEPT ALLOWS THE INTERCONNECTION OF TWO FM AND/OR CSA APPROVED INTRINSICALLY SAFE DEVICES WITH ENTITY PARAMETERS NOT SPECICALLY EXAMINED IN COMBINATION AS A SYSTEM WHEN: UO OR VOC OR VI < V MAX, IO OR IOC OR II < I MAX; Ca OR Co > CI + Ccable; La OR Lo > LI + Lcable; Po < Pi.</td></i<>	THE INTRINSIC SAFETY ENTITY CONCEPT ALLOWS THE INTERCONNECTION OF TWO FM AND/OR CSA APPROVED INTRINSICALLY SAFE DEVICES WITH ENTITY PARAMETERS NOT SPECICALLY EXAMINED IN COMBINATION AS A SYSTEM WHEN: UO OR VOC OR VI < V MAX, IO OR IOC OR II < I MAX; Ca OR Co > CI + Ccable; La OR Lo > LI + Lcable; Po < Pi.
	N	DUST-TIGHT CONDUIT SEAL MUST BE USED WHEN INSTALLED IN Zone 21/22 ENVIROMENTS.	N	DUST-TIGHT CONDUIT SEAL MUST E AND III ENVIROMENTS.	DUST-TIGHT CONDUIT SEAL MUST BE USED WHEN INSTALLED IN CLASS II AND III ENVIROMENTS.
	က်	CONTROL EQUIPMENT CONNECTED TO THE ASSOCIATED APPARATUS MUST NOT USE OR GENERATE MORE THAN 250 Vrms OR Vdc WITH RESPECT TO EARTH.	'n	CONTROL EQUIPMENT CONNECTEE MUST NOT USE OR GENERATE MOF RESPECT TO EARTH.	CONTROL EQUIPMENT CONNECTED TO THE ASSOCIATED APPARATUS MUST NOT USE OR GENERATE MORE THAN 250 Vms OR Vdc WITH RESPECT TO EARTH.
g der Pröfstelle		INSTALLATION SHOULD BE IN ACCORDANCE WITH THE RELEVANT INTERNATIONAL OR NATIONAL REGULATIONS "INSTALLATION OF INTRINSICALLY SAFE FOR HAZARDOUS LOCATIONS" REGULATIONS.	4.	INSTALLATION FOR U.S. AND CANADIAN APPROVED EQUIPMEN BE IN ACCORDANCE WITH ANSI/ISA RP12.6 "INSTALLATION OF INTRINSICALLY SAFE SYSTEMS FOR HAZARDOUS (CLASSFIED) LOCATIONS", THE NATIONAL ELECTRICAL CODE (ANSI/NFPA 70) 504, 505 AND THE CANADIAN ELECTRICAL CODE (C22.1-02).	INSTALLATION FOR U.S. AND CANADIAN APPROVED EQUIPMENT SHOULD BE IN ACCORDANCE WITH ANS/ISA RP12.6 "INSTALLATION OF INTRINSICALLY SAFE SYSTEMS FOR HAZARDOUS (CLASSIFIED) LOCATIONS", THE NATIONAL ELECTRICAL CODE (ANS/INFPA 70) SECTIONS 504, 505 AND THE CANADIAN ELECTRICAL CODE (C22.1-02).
		THE CONFIGURATION OF ASSOCIATED APPARATUS MUST BE ATEX or IECEX APPROVED UNDER ENTITY CONCEPT.	ù.	THE CONFIGURATION OF ASSOCIATED APF CSA APPROVED UNDER ENTITY CONCEPT.	THE CONFIGURATION OF ASSOCIATED APPARATUS MUST BE FM AND/OR CSA APPROVED UNDER ENTITY CONCEPT.
		ASSOCIATED APPARATUS MANUFACTURER'S INSTALLATION DRAWING MUST BE FOLLOWED WHEN INSTALLING THIS EQUIPMENT.	۰. ف	ASSOCIATED APPARATUS MANUFA MUST BE FOLLOWED WHEN INSTAL	ASSOCIATED APPARATUS MANUFACTURER'S INSTALLATION DRAWING MUST BE FOLLOWED WHEN INSTALLING THIS EQUIPMENT.
lable to	~	THE ASSOCIATED APPARATUS MUST BE INSTALLED IN ACCORDANCE WITH BARRIER MANUFACTURE'S INSTALLATION DIAGRAM	7.	THE ASSOCIATED APPARATUS MUST BE INSTALLED IN ACCORDANCE WITH BARRIER MANUFACTURE'S INSTALLATION DIAGRAM	ST BE INSTALLED IN ACCORDANCE NSTALLATION DIAGRAM
t. Without our previous reproduced or made avai anner. Violations will be si	α. · mej /	SELECTED ASSOCIATED APPARATUS MUST BE THIRD PARTY LISTED AS PROVIDING INTRINSICALLY SAFE CIRCUITS FOR THE APPLICATION. IT MUST MEET THE REQUIREMENTS LISTED IN TABLE OF THIS INSTALLATION DIAGRAM:	œ	SELECTED ASSOCIATED APPARATU PROVIDING INTRINSICALLY SAFE CI MUST MEET THE REQUIREMENTS LI DIAGRAM:	SELECTED ASSOCIATED APPARATUS MUST BE THIRD PARTY LISTED AS PROVIDING INTRINSICALLY SAFE CIRCUITS FOR THE APPLICATION. IT MUST MEET THE REQUIREMENTS LISTED IN TABLE OF THIS INSTALLATION DIAGRAM: PAGE 3 OF 4
other ma y not be	iq əldsna		For Mode	FC_ Projection method 1	General tolerances: Tolerancing: Work piece edges: Surface:
em tnemi Yns ni be	iund əq A				Installation diagram FCB
t this docu	iew pue si				
greemer ind parti	itleneq (8		
41 Se	01		Rev. Da	tev. Date Number Name Replaces:	

1	MINT F_atcAtefghijB_ F_atcAtefghijT_ F_atcFtefghijB_ F_atcFtefghijT_	EX (Ex e / XP	Ope Vɛ	Operating Value	Ex n	Ex nA / NI			Exié	Exia/IS		
	Modbus communication variants	NΩ	I _M [mA]	ŠΣ	ام [mA]	ΝN	I _N [mA]	Ν°	اہ [mA]	P _o [mW]	Co [nF]	C _{OPA} [nF]	Lo [µH]
								4,2	150	150	13900		20
	Modbus active	30	30	ŝ	30	e	30	'nΣ	ار [mA]	[mW]	CI [nF]	C _{IPA} [nF]	L L
	Terminal A / B							+/- 4,2	150	150	13900		20
		MS	I _M [mA]	ŠΣ	I _N [mA]	ŠΣ	I _N [mA]	'n∑	ار [mA]	[mW]	CI [nF]	CIPA [nF]	[hH]
	Digital DO1 Output Terminal passive 41/42	30	25	30	25	30	25*	30	25	187	20	1	200
	Digital DO2 Terminal Output 51/52 passive	30	25	30	25	30	25*	30	25	187	20	1	200
						5 0	For Model	Project	ion method 1		General foterances:		PAGE 4 OF 4
							2		AB Automation Products OmbH	V ork	work piece edges. Surface Installation diagram FCB	on diag	ram FC
								per Std. tked tked	drawn by 29.01.2014	Name FBu	JKXEUUC	3K XE000014G0000	g

CoriolisMaster FCB100, FCH100 CORIOLIS MASS FLOWMETER | OI/FCB100/FCH100-EN REV. I

ABB Measurement & Analytics

For your local ABB contact, visit: **www.abb.com/contacts**

For more product information, visit: **www.abb.com/flow**

We reserve all rights in this document and in the subject matter and illustrations contained therein. Any reproduction, disclosure to third parties or utilization of its contents – in whole or in parts – is forbidden without prior written consent of ABB.

We reserve the right to make technical changes or modify the contents of this document without prior notice. With regard to purchase orders, the agreed particulars shall prevail.

ABB does not accept any responsibility whatsoever for potential errors or possible lack of information in this document.