

Kenneth Bengs, Product line manager

Content

Earth faults

Network system earthing methods

Compensated network

Earth fault protection in compensated network

New generation earth fault protection: Multi-Frequency Admittance method (MFA)

Earth fault

Why is earth fault protection important?

- Earth faults are the most common fault types in medium voltage distribution networks
- Safety for people and animals
- The demand for the quality and reliability of supply is constantly rising

Earth fault

Examples

- Trees touching overhead lines, permanently or temporarily
- Flashover from overhead line to an earthed distribution transformer
- Vehicles touching overhead lines
- Polluted or cracked insulators
- Cable insulation faults caused by aging or physical damage
- Overhead line fallen to ground

Network system earthing

Effectively earthed (1)

Also called "Solidly" earthed

High fault current

EF protection, low complexity

Low impedance (2)

Typically earthed with a resistor

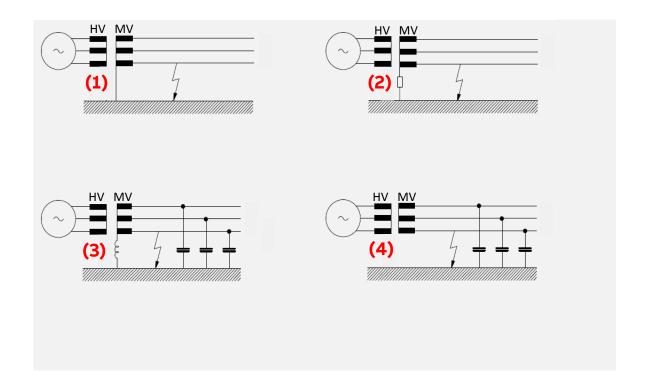
Medium fault current

EF protection, low complexity

Compensated (3)

Also called "Petersen coil" or resonant earthed

Minimal fault current
Overvoltage in healthy phases

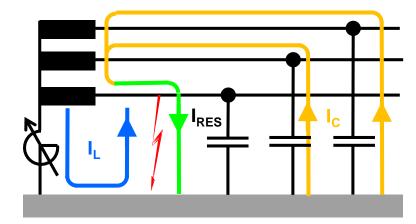

EF protection, high complexity

Unearthed (4)

Also called "Isolated"

Low fault current
Overvoltage in healthy phases

EF protection, medium complexity



Compensated network

Benefits

- Earth fault current is reduced to minimum
- Does necessarily not require immediate trip of the faulty feeder if touch and step voltages are low enough
- Arcing faults are typically self-extinguished
- Less power interruptions

Compensated network

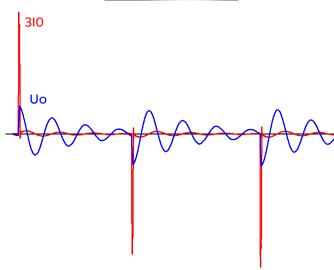
Trends towards compensated networks

- The interest of compensated networks is increasing globally due to operational and safety benefits
- Climate change driven
 - Storms in Nordic countries during last decades
 - Bush fires in Australia

Compensated networks (utility distribution networks)

Examples of countries using compensated networks

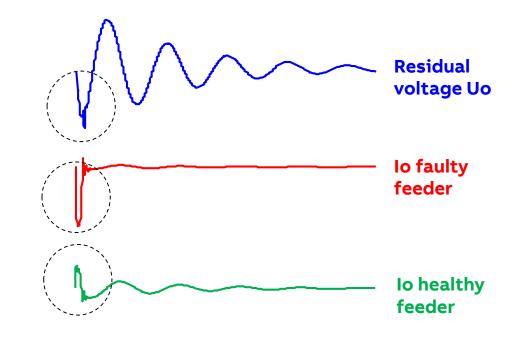
- Australia (piloting)
- Austria
- China
- Czech republic
- Denmark
- Estonia
- Finland
- France
- Germany
- Russia
- Slovakia
- Sweden
- Many countries with unearthed may shift to compensated


Compensated network

Protection challenge

Despite clear operational benefits with compensation, reliable earth fault protection is more challenging

- The fault currents are low and more difficult to detect
- Restriking (intermittent) earth faults

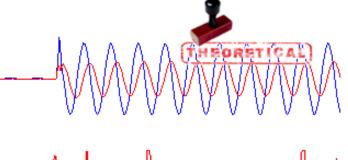


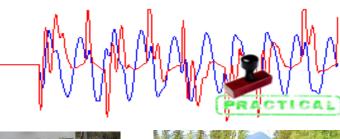
Compensated network

Conventional transient based protection

Challenges

- Comparison of the polarities of earth fault transients
 - Variation of transient magnitude and frequency
 - Disturbances in transients
- Risk of unselective operations and in worst case disconnection of an entire primary substation
- Requires special hardware
 - Expensive to invest in dedicated protection relays




Compensated network

User needs and next generation offering

- The distribution network operators (DNO) have for many decades been waiting for a reliable and cost efficient earth fault protection in compensated networks
 - This has become even more crucial, with the trend of increasing number of compensated networks globally
- Our new unique Multi-Frequency Admittance protection function is the solution with an outstanding fault detecting capability and reliability
 - Based on our deep theoretical understanding of earth fault phenomenon
 - Complemented with practical knowledge gained from numerous field tests and comprehensive disturbance analysis

New generation

Multi-Frequency Admittance

All major challenges have been solved in our novel approach

Challenge 1: non-sinusoidal waveforms

Solution: Utilization of harmonics

Challenge 2: Intermittent characteristics

Solution: Utilization of Cumulative Phasor Summing (CPS)

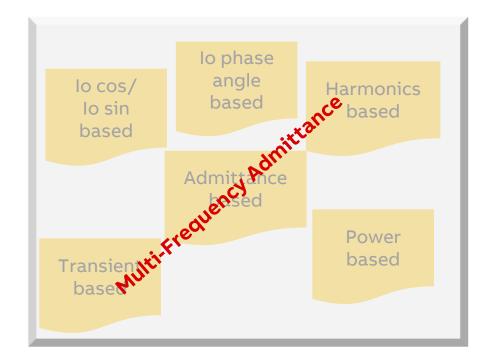
Challenge 3: Sensitivity of protection

Solution: Admittance calculation, utilization of fundamental

frequency

Challenge 4: Changes in network compensation degree

Solution: Extended operation characteristics

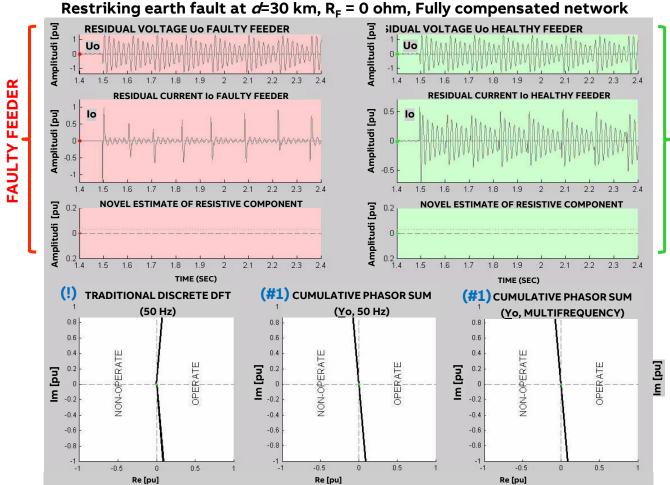


Multi-Frequency Admittance

Full application coverage

One protection function MFADPSDE with full application coverage

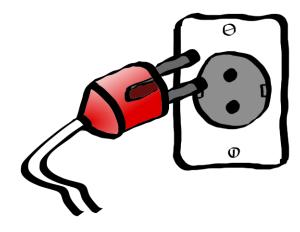
- Used in compensated and unearthed networks
- For cable and overhead lines
- Senses low ohmic and high ohmic earth faults
- Detects all earth fault types
 - Permanent
 - Transient
 - Intermittent
- Fault direction indication for easy fault location
- High reliability and selectivity



Multi-Frequency Admittance

Outstanding performance

- Multi-Frequency Admittance (#1) ensures:
 - Detection of fault in faulty feeder
 - No activation in healthy feeder and gives information of fault seen in backward direction, i.e. there is a fault in another feeder
- Traditional method (!) is risking:
 - Unselective trip of healthy feeders
 - Lack of fault detection or a delayed operation in faulty feeder



Multi-Frequency Admittance

Simplicity

Easy to engineer and use

- One device, everything integrated into the feeder protection relay
- One protection function to handle
- Easy to define setting values by using basic network data
- Same protection characteristic can be used for compensated and unearthed networks
- Easier commissioning and system integration

integration simplicity

Multi-Frequency Admittance

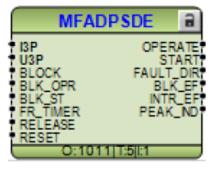
Cost efficient

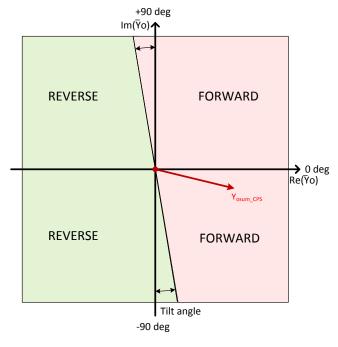
- Part of normal feeder protection relay
 - No additional protection systems or single function protection relay are needed
- Less investment costs
- Less maintenance costs
- Less training of engineers and operators needed
- Less risks in the operation of the network

Multi-Frequency Admittance

Summary

One protection function that covers all with high reliability, selectivity and sensitivity

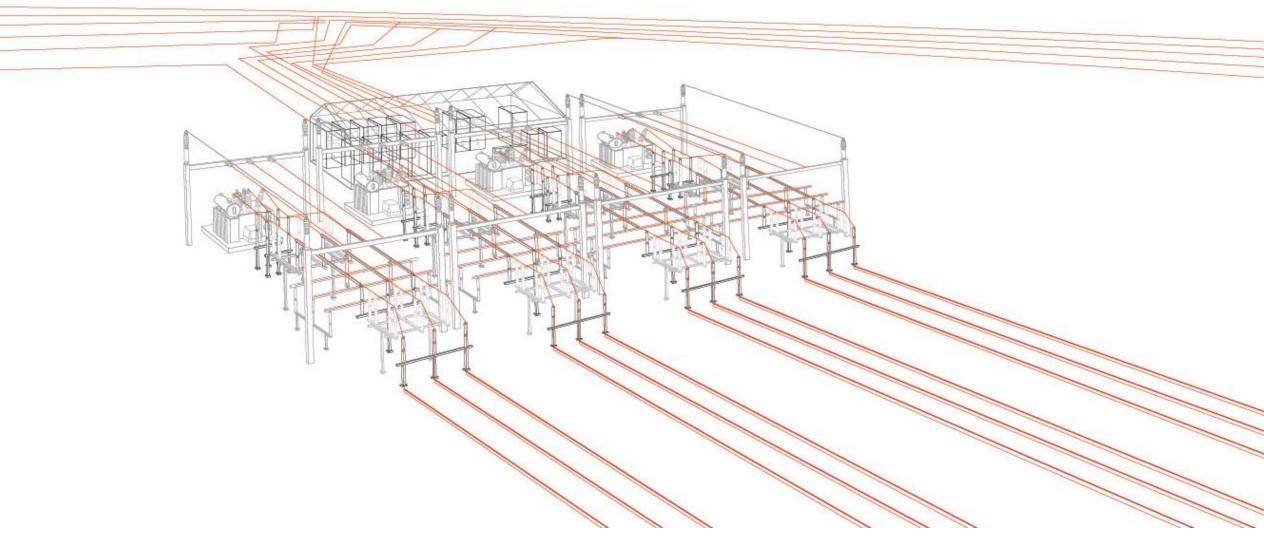

- Used in compensated and unearthed networks
- Low ohmic and high ohmic earth faults
- Permanent, transient and intermittent earth faults


Easy to use

- One protection function
- Basic network data to be used for settings
- Same characteristic for compensated and unearthed networks
- Fault direction indication for easy fault location

Part of normal feeder protection relay

- Very cost efficient
- No extra protection systems or single function protection relay are needed



Multi-Frequency Admittance offering

Relion® product family

	615 series	620 series	630 series	RIO600
	REF615 5.0 FP1 L and N	REF620 2.0 FP1	REF630 1.3	RIO600 1.7 SIM8F
Application	Feeder protection	Feeder protection	Feeder protection	Fault passage indication
Multi-Frequency Admittance	Yes	Yes	Yes	Yes

#