Help

¥ CoDeSys Exercise
‘ Structured Text
" G562e_a _bPart9

DCS800 *
DC Drives

eLearning

page 1

Note:

This module is an exercise without a speaker! AL 1D D
Mpmw

® Copyright 11/8/2021 ABB. All rights reserved.

CODESYS_09R0101

Welcome to the CoDeSys training module for the DCS800, ABB DC Drives.

If you need help navigating this module, please click the Help button in the top right-hand corner. To view
the presenter notes as text, please click the Notes button in the bottom right corner.

Help

Objectives

After completing this module, you will be able to
m Build an application in programming language
Structured Text (ST)

© Copyright 11/8/2021 ABB. All rights reserved

CODESYS_03RD101 page 2

After completing of this module, you will be able to build an application using programming
language “Structured Text”

Help

Structured Text (ST)

m Structured Text is a text programming language
m |tis like PASCAL or C-Code

m Several functions are only possible in ST, because in
graphical languages it is too complicated

m Function calls and connections between variables are
different from graphical languages

m Learning of Structured Text is harder than graphical
languages. But after a little bit exercising, programming
is faster and more efficient like graphical languages

page 3

AL IDED
Mpmp

© Copyright 11/8/2021 ABB. All rights reserved

CODESYS_09RD101

“Structured Text” is a text-based programming language in CoDeSys. It is similar to
PASCAL or C-Code. Several functions are only possible in “Structured Text” because in
graphical languages it is too complex. Function calls and connections between variables are
different from graphical languages. Learning of “Structured Text” is harder than graphical
languages. But after a little bit exercising, programming is faster and more efficient like
graphical languages.

S

m Select programming language ST

= Now the function block Square Root L”i%‘if’a’?o@

Call a function block from a library

m Open a new project

SQUAREROOT

iMul1 : INT iOut: INT|—

hould be inserted

= Type in the following code:

0001

PROGRAM PLC_PRG

0002

VAR

0003

0004|

FB1: SquareRoof,
A INT; \

0005

B: INT: Instance FB1

0008}

Out: INT; Comment

0007

END_VAR

a0n0

page 4

[4 |

Inputs

© Copyright 11/8/2021 ABB. All rights reserved

CODESYS_09RD101

001|¢* call function block Square root™ & Output
002/FB1(iMul1:= A, iMul2 = B, bAbs = TRUE);

0
0 AL IDED
0003out = FB1.ioUt. < MIpmw

Help

In graphical languages a call of a function block is easy to do when you put in function
blocks. In a text language the function block isn’t visible at all. You see only a line with

variables and allocations. But with “Structured Text” you can do the same things and more
as with graphical languages.

If you will call a function block from the library type in an instance, for example “FB1”. Then
set brackets and click F2. Now you can select the function block from the library. What you

see inside the brackets are the inputs of the selected function block. Connection between an

input and other functions is possible with variables.

Outputs are not inside the brackets because it is easier to use the instance of the function
block with the selected output.

Help

Declare function block

. x|
= The function block e iz I
Square Root must be pret e e —
declared in CoDeSys G| i
m This is possible with the e — 1
same window as variable [z mowar i el
g User defined Function Bloc (8] DiiveState [FB)
declaration | 8 s ==
[B] Mubiv (FB)
= But the type must be é,:, J
selected B rownet
m Change to Standard /' B Toscronr) .
. Function Blocks / ® snos

m Select the DCS800 library
and choose Square Root

® Copyright 11/8/2021 ABB. All rights reserved

CODESYS_09RD101

Now we look deeper in the function block declaration. If a new instance is created, you can
set the type. To do this use the input assistant, please. Find the several libraries which are
included in item “Standard Function Blocks”. Then select the needed function block from the
list. Therefore, the function block is declared.

Declare function block

of inputs and outputs (iMul1 := ...,
iMul2 := ..., bAbs :=...)

m Outputs mustn’t be declared!

m For allocation of outputs, use the
instance name (here: FB1)

m Set a dot (FB1.)
m Select an output from the list

0001|(* call function block Square root *)
[0002/FB1(iMul1:= A, iMuI2 = B, bAbs = TRUE);

page 6

% iMult
rA

W iMul2
W iout <

© Copyright 11/8/2021 ABB. All rights reserved

CODESYS_09RD101

m |tis important to use the exact name SQUAREROOT

iMul1 : INT iOut: INT|—
iMul2 : INT
bAbs : BOOL

0001|PROGRAM PLC_PRG
AR

FB1: SquareRoot;

ALINT;

B: INT,

Out INT;
0007|END_VAR

|«
0001|¢* call function block Square root)
0002|FB1(iMul1:= A, iMul2 = B, bAbs = TRUE),

0003(Out = FB1.i0ut,

Help

Inside the brackets you can see the several inputs. After the equal sign you can set the
connection variable. It is important to use the exact name of inputs and outputs, otherwise
you get error messages. Outputs mustn’t be declared. For allocation of outputs, use the

instance name, here FB1.

Help

Loops and special functions

m |n Structured Text there are special
functions which are only available
in this language

00138 =0,
0014{END_IF;

m |F — ELSE steps o
- E.g. switches

m CASE function

m FOR-Loop
% - WHILE-LOOp FORA:=1TOSBY1D0
£ |0026(8 =B +1
g3 ™ Repeat-Loop HEND_FOR;
%é dout =8
22 AL 1D ED
D

Next special function are the loops. In “Structured Text” it is easy to define loops directly like
in C-Code or Pascal. Another important function is the “IF-ELSE-Construction”. With this it's
easy to program switches. Also important is the “CASE-Command”. You can use it for
selections from a volume.

Help

IF — ELSE construction

m With an IF-ELSE construction it is possible to check
conditions for execution of some code

m Example: Speed control in 3 steps

m |s switch A true - speed value 1

= |s switch B true - speed value 2

= When all switches are false or true - speed is zero

0 1 2
A | L/H| H L
Ezg.. L/H L H
8 i i i % iont AL HDHED
gg We solve this exercise with an IF-ELSE construction! FRIDED

IF-ELSE construction

» Withan IF-ELSE construction it is possible to check conditions for execution of some
code.

Help
IF-ELSE construction
0001|(* exercise IF-ELSE construction ®)
0002|(* select correct speed ®)
m 1 condition (A & NOT B) 0003
0004|(* select speed value 1 %)
- Speed value 1 —Mgw A= TRUE AND B = FALSE
N 0008 THEN
m 2 condition (B & NOTA) 0007|speed = speed_vall;
0008;
- Speed value 2 0009|(* select speed value 2 %)
- \._nngLSlF B=TRUE AND A= FALSE
m All other conditions cause 0011|THEN
that Speed value O is 0012|speed = speed_val2;
0013
. selected 004" select speed value 0%
g 0015ELSE
I The end of an IF-ELSE 0016|speed = speed_vall;
2 ton i . 0017]
Hp construction is END _IF; —
22 AL ID D
FROBID

Let’s have a look to the “IF-ELSE-Construction”. Each “IF-Condition” has a boolean
expression to select if the expression is fulfilled. If it's fulfilled the command will be executed.
Otherwise, the next step is checked. The whole construction ends with the command
“END_IF". So, you can define a stairs with several steps which can be executed or not.

CASE construction

Help

The distinguish between IF and CASE is that there is
only 1 condition variable

Example: Counter with defined range

Between 1...100 = Light 1 is active

Between 101...200 = Light 2 is active
Outside the range - Light 1 and 2 are inactive

Counter <1 1...100 | 101...200 >200
Light 1 Low High Low Low
Light 2 Low Low High Low

© Copyright 11/8/2021 ABB. All rights reserved

CODESYS_08R0101 page 10

Now we change to the “CASE-Construction”. The distinguish between “IF” and “CASE” is
that there is only 1 condition variable. This variable has more than 2 conditions and the
“CASE-Construction” checks the actual state of the variable. Then it comes a decision!

An example is a counter with a defined range. The selection works between the defined
ranges. So, the counter goes up and down and the result is shown at light 1 or 2 if the
counter is inside the defined range.

10

CASE construction

U

0020|(* exercise CASE construction®
0021|(* select between the range

= Range 1...100 oy 9e%)
0023|(* range 1...100 %
0024|CASE count OF
0025/1..100: Light1 == TRUE;

- Light 1 is active

= Range 101...200 0026|Light2 = FALSE;
. y . 0027,
B ngh'[2 is active 0028|(* range 101...200 %)
. 0029]101..200: Light2 = TRUE;
® Qutside range 0030|Light! = FALSE:;
. . . 0031
- Both lights are inactive 803" outside range
;- . 0033|ELSE
; = The CASE construction ends 0034|Light! = FALSE;
£ with command END_CASE S iont2 = FALSE:
é 5 0037|END_CASE;
5o nnag
e
i AL ID D
i MIpmw

The “CASE-Construction” looks like the picture on the right side. We have 1 variable, here
“count”, and the several steps with the defined range. It ends with the command
“END_CASE".

11

Help

FOR-Loop construction

m With a FOR-Loop construction can programmed
repeating processes

m Example: Count-up
m Addin each step 1

X=X+1

© Copyright 11/8/2021 ABB. All rights reserved

CODESYS_08R0101 page 12

Another important function is the “FOR-Loop-Construction”. It have the functionality like a
counter because the loop will be executed as long as the condition is fulfilled. An example is
an upward counter. The user defined the starting point and the end point. Later the loop runs
from the starting point to the end and increase the counter value with each cycle.

12

page 13

© Copyright 11/8/2021 ABB. All rights reserved

CODESYS_09RD101

FOR-Loop construction

To count-up it is necessary to
set an initial (X) value to 0! 00201

0021

The count variable (Z) will be [o022

set to 0 in the loop initialization |52

0025

(* exercise FOR-Loop construction ®)
(* initial value *)
X=0;

(* for loop ™)

The end value of FOR-Loop is [aozefForz=0T0 20

20, that means it counts from 0 2221

to 20 (21 steps!!!) 0029
0030

In each step there will be 1 o

added

After the 20st step the loop

ends

DO
X=X+1;

END_FOR;

Help

FOR loop construction

* The picture shows the FOR-loop construction.

» It begins with FOR, the initialization value and the limit.
* The command in the loop starts after the DO command.

13

Help

While-Loop construction
m While the condition is fulfilled the loop will be
executed

m That means the FOR-Loop is similar to WHILE-Loop
but without a counter

m Example: Count-up with WHILE

Condition fulfilled Condition not fulfilled
(Boolean TRUE) (Boolean FALSE)
E Execution of Stop execution of
WHILE-Loop WHILE-Loop
=2 AL 1D ED
§2 D

WHILE-Loop construction
* While the condition is fulfilled the loop will be executed.
» That means the FOR-Loop is like the WHILE-Loop but without a counter

14

WHILE-Loop construction

m Set initial value to 0

= Now the loop will be executed
until value1 is lower than 100

m [f this Boolean expression is
False, the execution stops

m With EXIT it is possible to stops
the execution before the loop
condition is fulfilled

page 15

© Copyright 11/8/2021 ABB. All rights reserved

CODESYS_09RD101

Uudy|

0051|(* exercise WHILE-Loop construction ®

0052|(* setinitial value)

0053}valuel =0,

0054

0055|(* while-loop ®

VWHILE value1 <100

Help

WHILE-Loop construction

* An example for a WHILE-Loop shows the picture.

15

Help

REPEAT-Loop construction

m REPEAT-Loop is similar to WHILE-Loop but the
break-off condition will be checked after an execution

m This means that the loop will run through at least
once, regardless of the wording of the break-off
condition

m Example: Count-down until O

yuu i
0062|(* exercise REPEAT-Loop construction ®)
0063|(" initial value, value2= 1007
0064|value2 = 100;

0065

. 0066|(* repeat loop ™
Loop execution 0067|REPEAT

mﬁavaluez =value2-1;
006

0070|(* break-off condition ®)

End of loop smumm

Break-off condition

page 16

0072jvalue2=0 ‘l I' ..
0073 MRipp

|0874/END_REPEAT;

© Copyright 11/8/2021 ABB. All rights reserved

CODESYS_09RD101

REPEAT loop construction

» The REPEAT-Loop is like the WHILE-Loop, but the break-off condition will be checked
after an execution.

» This means that the loop will run through at least once, regardless of the wording of the
break-off condition.

16

Help

Summary

Key points of this module
m Build an application in programming
language Structure Text (ST)

This module don’t replace a
course on ABB Academy!

® Copyright 11/8/2021 ABB. All rights reserved
age

CODESYS_09R0101 page 17
|
|
]
L
]
L J

 If you will learn more about CoDeSys application programming, use a course on ABB
Academy, please.

17

© Copyright 11/8/2021 ABB. All rights reserved

CODESYS_08R0101 page 18

Additional information

® Links to related information
- 3S-software.com

- DC-Drive-News (Intranet)

m Additional references
- Application Manual (3ADW 000 199)
- Firmware Manual (3ADW 000 193)
- Hardware Manual (3ADW 000 194)
- Training Material

Help

18

© Copyright 11/8/2021 ABB. All rights reserved

CODESYS_08R0101 page 18

Glossary

m CoDeSys
Controller Development
System (software tool)

= Memory Card
Flash memory

= DriveWindow Light
Software Tool for
commissioning and
maintenance using AC/DC

= Target
Interface between Drive
and CoDeSys tool

Help

Control Builder
Whole system with
software and hardware

PLC_PRG
Main program which is
used in all applications

POU
Program Organization Unit

Library

It includes function blocks
which are given or
designed by other users

19

AL EID D
MW

Power and productivity
for a better world ™

Thank you for your attention. You may now go ahead and move on to the next unit.

20

