Help

" CoDeSys Exercise
Control the drive
~ with a logic
.‘é G562e_a_b Part 11

DCS800 |
DC Drives

eLearning

page 1

AL DD
FRpm

® Copyright 11/8/2021 ABB. All rights reserved.

CODESYS_11R0101

Welcome to the CoDeSys training module for the DCS800, ABB DC Drives.

If you need help navigating this module, please click the Help button in the top right-hand corner. To view
the presenter notes as text, please click the Notes button in the bottom right corner.

Help

Basics

m Before starting the exercise, it is necessary to
know the following parts:

- Create a new program

- Task configuration

- Important functions and icons in CoDeSys

- Communication with the drive

- Memory Card handling

- Drive basics and commissioning (e.g. Wizard)
- Local controland IO handling

© Copyright 11/8/2021 ABB. All rights reserved

CODESYS_11RD101 page 2

Attention, this exercise is much more complex than the other parts. It's a complete project
which demands that the user have experience with the commissioning of DCS800 and the
local control of a drive.

It is necessary that the participant knows the approach to implement an application and
configuration.

Objectives

After completing this module, you will be able to

m Create a complete project with CoDeSys

© Copyright 11/8/2021 ABB. All rights reserved

CODESYS_11RD101 page 3

Help

After completing this module, you will be able to create a complete project with CoDeSys.

Help

Exercise

m We build a complete project with the following
themes:

- Wedesign a new function block

- We integrate this block in a program

- We are reading and writing parameters

- Wedefine a second program for new user events
- We control the drive with an application

- We start the application and test the response of the
drive

page 4

AL IDED
Mpmp

© Copyright 11/8/2021 ABB. All rights reserved

CODESYS_11RD101

The exercise includes several jobs which must be solved to get a whole project. So we design a new
function block and integrate them into a program. Also reading and writing parameters from the
standard firmware is a part of this project. If the program is ready and implemented it is necessary to
test it.

Help
Description
m The project is a start logic for a motor
m |t controls the speed reference and the actual speed

m Release of the drive is only possible if the speed
reference is lower than minimum speed (new
parameter)

m That means the drive will be controlled over speed
reference potentiometer

Main Contactor On Start

CONV4< M
AI > & Run
Speed Minimum ’_

RES S —

page 5

© Copyright 11/8/2021 ABB. All rights reserved

CODESYS_11R0101

.

‘

:

:

:

!

!

:

:

:

‘

:

!

:

!

‘

!

;

:

;

!

:

:

:

:

:

:
.h
s>
| |]
g
| |]
g

The project is a start logic for a motor. The motor logic controls the speed reference and the
actual speed of the motor. Idea of this logic is that the release of the drive is only possible if
the speed reference is lower than minimum speed. That means the drive will be controlled
over speed reference potentiometer.

Help

Overview

m Step 1: Open a new program

m Step 2: Design of the new function block
MotorLogic

m Step 3: Insert function blocks
m Step 4: Insert Events
m Step 5: Define new parameters

m Step 6: Commissioning step by step and
fault tracing

m Step 7: Test and Documentation

© Copyright 11/8/2021 ABB. All rights reserved

CODESYS_11RD101 page 6

This is the overview about the whole project.

In step 1 the new program must be created. Step 2 deal with the design of the new function block
called “MotorLogic”. After this the other function blocks must be implemented and connected. Step 4
and 5 gives you information about new user events and parameters.

Commissioning step by step is the next step in our program. Here it is important to find faults and
errors in the software. Last step is the test and documentation of the project.

Help

Step 1: Add a POU

Q File Edit Project Insert Extras Online ‘Window Hell

= Start a new program Bl=a| @.-.l_I ;s[g@ % ||
m Select DCS800 target

Edit Object
Copy Obiject

m Choose type Program and
language FBD

m POU name: PLC _PRG

Project database »

Name of the new POLI [|
® Click with right mouse button | 7™ e ==
. to POU b b
g Retun Type © sfc
g . oo C st
¢ m Select Add Object ||t &
- m Anew window opens
S
A DD
7 MmpD

Start a new project and select the DCS800 target. For this program we use the programming
language “Function Block Diagram”. This “POU” is used to build the program.

But we need a second “POU” for the new function block called “Motor Logic”.

Help

Step 1: POU “Motor Logic”

[MotorLoged
m Select type Function block LT
Cw
= Type in a Name of POU o
MotorLogic e
= Choose language FBD R Y A e AT W
B8] 0|@|eADIS(SAGR] * |06 [
| C||Ck OK _I 0001]FUNCTION_BLOCK MotorLogic
ar_nPuT
[0} MotorLoge (FB) ggg END,V::
PLC_PRG (PRG) 0004VAR_OUTPUT
_ = The new POU can be ¢ o e
§ found in the root directory -
i AL D HD
D

Select the type “Function Block” for this “POU” and programming language “Function Block
Diagram”. All “POUSs” of the project are shown in the root directory on the left side. In
CoDeSys it is possible to define many “POUSs” which can be programs, function blocks or
functions.

Help

Step 1: POU “Events”

. Name of the new POU [Evertd IL]
m Add the third POU (see e b b I
slides before) P 2
Retun Type: £ SFE
|i w
= Select Program 2 e

m Type in the name of the

POU E Ven tS Q File Edt Project Insert Extras Online Window Help
B8 0|@]eADIISAR * [58|5%%
m Choose language FBD = QR E
) Events (PRG) 0003END_VAR

0] MotorLogic (F8)

m CIle OK “[d] PLC_PRG (PRG) _(
= The new POU is added

page 9

® Copyright 11/8/2021 ABB. All rights reserved

CODESYS_11R0101
|
.
|
g

Now we need a third “POU” which is used to work with user events. It's from type program
which work with programming language “Function Block Diagram”. So, the project is split
into 2 parts with a defined function block.

Help

Step 2: New function block

m With CoDeSys it is possible to create a new
function block

m Firstit is important to define all inputs and outputs
with variables

4, CoDeSys - project1.pro - [MotorLogic (FB-FBD)]
@) Fie Edt Project Insert Extras Onine Window Help

2= D@0 8AR| & %@ [7* =] w8 [odeald] |

0001]FUNCTION_BLOCK MotorLogic (* function block MOTOR LOGIC 7)
= POUs 0002/VAR_INPUT .
1) Events [PRG) 0003 iN_RefINT; (" speed reference e.g. 2.01 %) Text INf)ut
| 000 iN_Act INT; (* actual 9.1.047 2 ; .
{@) PLC_PAG (PAG) || [D008 iN_Min: INT; ¢ minimu) iN_Ref: INT;
3 000! bTachoLoss: BOOL; (*signal if R
4 000 iTimeDel: INT, (" time dela
g 000! bReset BOOL,; {* reset motor logic %)
@ 000! bRel: BOOL, (" release signal drive ™)
5 0010END_VA
T 0011|VAR_OUTPUT
@ = 001 bStand: BOOL, (* motor is standing still %)
<8 001 bConvSig: BOOL,; (erter signal)
=2 *s s ayed ™ iti -
S gg: EN;S\l,aAr:Delay BOOL,; (*stand signal delayed *) Deﬂnltlon TVQe
S92 .
op 0016VAR i=i
: = 001 blockt: TON; (* delayed output signal %) I Integer ‘l .. l.
g2 0018END_VAR b = boolean "l.l.
i
S8
LR}

If you will define new function blocks it is an important questions which inputs and outputs
are necessary. You can see after the variables the type of the variable. This is also an
important information for the design of the block.

Define all input and output variables like in the picture below. For good documentation, add a
comment, please.

10

Help

Step 2: Declaration window

m There are 3 types of classes:

- VAR_INPUT: input of function blocks
- VAR_OUTPUT: output of function blocks
- VAR: local variables

m Define the class in Declare Window

Declare Variable

§ Symbol st Initial Vahue Address i’

] [=il =]l I~ CONSTANT

1;; Codtirant I~ RETAIN

-

g5

2§

A DD
e MmpD
63

If you type in variables, you get the declaration window in which the class and the type has
to be defined. The class “VAR” accord to local variables which are only available in the
function block. Class “VAR INPUT and OUTPUT” defines connection variables on the
function block.

11

Help

Step 2: Build FB “Motor Logic”

m Build the program with function blocks

m Start with the function block on the right

4, CoDeSys - project1.pro - [MotorLogic (FB-FBD)]
@) Fle Edt Project Insert Extras Onlne Window Help

—Mﬂﬂ]ﬂﬂﬂ ﬂ%@]ﬂﬂ 7% :l' "IB"{M|~;|M.|.¢||;II 1
{0 Events (PRG) Aotor logic with starting condtions to safe the drive
-t MotorLogic (FB)
{0) PLC_PRG (PRG)

-lm_m_ws

page 12

® Copyright 11/8/2021 ABB. All rights reserved

CODESYS_11R0101
|
g
|
g

Next step is to create the function block “Motor Logic”. Insert all function blocks in network 1
which are shown on the picture. Start with the last function block ease the approach to build
the program.

12

Help

Step 2: Build FB “Motor Logic”

m [f the actual speed InAct of the motor is lower than a
defined minimum value

m &-Connection

m If the speed reference (Al) InRef is greater than
minimum value

m The motor start if the condition is fulfilled
m That means the motor will be controlled via analog input

m |f the motor is standing still a special delayed signal will
be generated

page 13

m The other inputs are features

AL IDED
Mpmp

© Copyright 11/8/2021 ABB. All rights reserved

CODESYS_11RD101

The new function block controls the motor. If the actual speed “InAct” of the motor is lower
than a defined minimum value. This function is connected with an AND-element. If the speed
reference “InAct” is greater than minimum value. The motor start if the condition is fulfilled.
That means the motor will be controlled via analog input. If the motor is standing still a
special delayed signal will be generated. The other inputs are features.

13

Help

Step 2: FB “MotorLogic”

m After development of a new block, it can be used
in the main program PLC_PRG

m The name MotorLogic is the name of this block
and must be called in PLC_PRG

m |In PLC_PRG you can see the function block in the
visualization with inputs and outputs

- MotorLogic

e iN_Ref bStand-
£ iN_Act bConvSigl
E” iN_Min bStandDelay
=3 bTachoLoss

% g iTimeDel

% bReset

= hRel

5

e

CODESYS_11RD101

After development of a new block, it can be used in the main program “PLC_PRG”. The
name “Motor Logic” is the name of this block and must be called for using in main program
“PLC_PRG". If you use a graphical programming language the new function block is shown
as box with inputs and outputs. The function of this block is hidden inside.

14

Help
Step 3: Build main program
m [nsert the function blocks and the variables in
POU PLC_PRG like in the picture below:
o001 7”] Variables:
n?(ﬂj;wunuurvg:;;él(\;\ (SpeedRef2) physical value SPEED_REF: |NT; (VAR_GLOBAL)
z_bvemup"“ wal SPEED.REF SPEED_ACT: INT; (VAR_GLOBAL)
1-Joyindex iErrCode— REL: INT; (VAR_GLOBAL)
0002
read parameter 1.04 (ProcessSpeed) physical value
s Description:
arrea L)
1:‘&1&?&“ W S Block1: Read speed reference 2.01
E . physical value in rpm
g DARETE Block2: Read actual speed 1.04
8 ParGet physical value in rpm
8% Al i Block5: Read digital inputs 8.05
;E‘ FALSE—bIndirect wPointerpar—
£ ADD
FADDID

Next step is to build the main program “PLC_PRG". Put in the function blocks like in the
picture and define the variables. We need global variables for the variables speed reference,
speed actual and “REL” because they should be connected later to another POU.

The functionality of this three blocks are the directly reading of parameters.

15

Help

Step 3: Insert FB “Motor Logic”

@ File Edit Project
B8 Be]edas

0Us
Events [PRG)
MotorLogic (FE)

m Enlarge the program
with FB Motor Logic

®m Type in the variables

LI

motoNgaic function block
hlock3
VariabIeS: speed_ref-iN_Ref Ve hStand
N_MIN: INT; (VAR_GLOBAL) sne;d:alx—lm::\n;t ey CEEE
tachosig: BOOL; (VAR) s JpTathotoss |
DELAY: INT; (VAR_GLOBAL) DELA el
3 RESET: BOOL; (VAR_GLOBAL) REL7{bRel
g REL: INT; (VAR_GLOBAL) e
B CONVSIG: BOOL; (VAR_GLOBAL) Setbit T in main ool word
g5 STANDDELAY: BOOL; (VAR_GLOBAL)
j g CONVSIG: mew. 11
nnn
52 pmp

Now the main program must be enlarged with the new function block “Motor Logic”. Connect
the the variables like in the picture and write comments in the several networks. Network 5
shows a conversion between a boolean and a word type. With this operation it is possible to
set a bit in a word with a boolean value. In this exercise we set bit 11 in main control word.

16

Help

Step 3: Bit selection

RESET:'bReset
REL.7—bRel
) 005 ‘
o Select a Blt Of a Word: set hit 11 in main contral word
- This is a typical conversionin CONVSIG—mewd1
CoDeSys e o
- A Boolean value set a bit ina/ L
Word (b|t 11 |n mcw) 8-byGroup wOutputf REL
S-bylndesx IEnCodef—=w—¥
FALSE—blIndirect aReirErpar—
m The other way:
. . " |motor logic function black
- REL is a word variable blocks
MotorLogic
. N d_ref-{iN_Ref bStand|
— Bit 7 of this word should be set :S:Sd:;i1—;N:A; hCon\gg—CONVSIG
input bRel of FB MotorLogic Moo e
DELAYiTimeDel
\ RESET-|bReset
[™ REL7-bRel

© Copyright 11/8/2021 ABB. All rights reserved

CODESYS_11R0101 page 17

The picture on the top explained again the conversion between bits and words. Another way
to do this is the possibility to use a a function block from the special library which is available
from the CD.

This approach is from a boolean value to word. But with CoDeSys it is possible to do this in
the inverse direction. Take a word variable and write it to a boolean connection. Select the
needed bit after the dot.

The picture on the bottom shows the connection of variable “REL” to function block “Motor
Logic”. We need for this application only bit 7. So we have to set the notation “REL dot 7” to
input “REL" of function block “Motor Logic”.

17

Help

Step 3: Complete PLC_PRG

m Put in the last function block ParSet and check

your declaration window:
[copesys projectiaro- e pRGeRGrON

@) File Edt Project Insert Extras Online Window Help

0| €| 0|@] e OIS (BAR| (/BRG] [0% <] 8] w]8]e|o]ea =] 5

0001|PROGRAM PLC_PRG (" main program *)
3 POUs 0002VAR
g Events (PRG) 000: blockl: ParRead, (* parameter get = read a parameter value from firmware *)
@) MotorLogic (F8) 000: block2: ParRead, ("~
PLC_PRG (PRG) | [LG block3: MotorLogic; (* call function block MOTOR LOGIC %)
000 blockd: ParSet; (* set a selected parameter)
000 block5: ParGet, (" parameter get™)
000 mew: INT, (*variable type integer)
 000¢ tachosig: BOOL, (" tacho loss signal)
(0011 FITI‘) VAR
Kl |
0006
°
g rite new bit combination to main contr ord (7.01); connect in group 10 (START/STOP) bit 11 from main cont
8 blockd
5 ParSet
£ 7-{byGroup ECodef—
s =
Ze . Mii—bwndex wPointerpart—
a5 FALSE=bIndirect
<§ 0—wAND
§ s mew-wOR
a2
2R
A DD
£
58 Mpmp
S8
LR}

Now we have to complete the main program with network 6. This network includes function
block parameter set because we will write to parameter 7.01, the main control word of the
drive.

The picture shows also the declaration window with the documentation. Correct your
application that it looks like the picture. If you have done this the main program is ready and
we can go to the next step.

18

Help

Step 4: Event initialization

m Change to POU Events

m Put in the function blocks

nitialization of all &

blockl

Eventinit

60-byF aultTextGroup
7byF aulttextindex

60-{byAlarmTextGroup
8-byAlarmTextindex

60-{byNoticeTextGroup
G—{byNoticeTextindex

Variables:

LIMIT1: INT; (VAR_GLOBAL)
lock: BOOL; (VAR)

LIMIT2: INT; (VAR_GLOBAL)

poo2

block2

ws|
SPEED_ACT.

GT

AND

EventSet

LIMITTH

lockay

bActivate hState
310-iEvent

DELAY-iDelay

poo3

page 19

SPEED_ACT

© Copyright 11/8/2021 ABB. All rights reserved

CODESYS_11RD101

eed is more thar

wsl

GT

block3
EventSet
bActivate bState

LIMIT2+

I—Iock

DELAY—iDelay

610-iEvent

Our next job is to define the POU “Events”. Here we will define the trigger signals for all
events and the initialization.

First function block in network 1 is the event initialization. With this block the event texts are

allocated to the events. In this exercise we save the event messages in parameters 60.06,

60.07 and 60.08.

Network 2 gives information about the trigger signals. Event 310 should be set if the actual

speed of the drive is greater than the limit. The same procedure is in network 3. There event

610 will be triggered.

19

Help

Step 4: Event activation

m Complete the program with network 4

m Check your declaration window

. CoDeSys - project1.pro - [Events (PRG-FBD)] : i
@ Fie Edt Project Insert Extras Onlne Window Help

o =L _Iﬂlzlﬂlélé‘lﬂl 3|00 B] [100% ~] o]] o] |]

block1: Eventinit, (* event initialization)

block2: EventSet; (* activate alarm message 310 %)
block3: EventSet, (* activate fault message 610 ™)
block4: EventSet; (* activate notice 810 ™)

;, @ a
1 g MolovLogc[FB]
Q PLC_PRG (PRG)

lock: BOOL, (" lock signal %)
eiEen
block3
) ABS I GT EventSet
T SPEED_ACT- L tivate bState!
g LIMIT2-| lock 610-JiEvent E
e DELAY-{iDelay
5
=
g 0004
] 2 notice: motor is standing still; drive start is possible
:‘ g blockd
gs EventSet
ep STANDDELAY—bActivate bState,
IS 810iEvent AL 1D D
=3
DELAY—iDel
i o oD
S8
8o

Last eventis the notice message 810. Check the declaration window so that it looks like the
picture.

Now the event program is ready.

20

Help

Step 4: Data types for events

< CoDeSys - project1.pro - [Parameter|

(4 File Edit Project Insert Extras Onine

m Parameter texts must be declared | ols]E] Di@lBEIE
as data type Enum 1'jnanatypes [

B8 ALARM (ENUM)

= Select Data Types \4
Click with the right mouse button | Ermdaou v

|
\ [pata types]
to Data types —
. (g File Edit Project Insert Extras
" Select Add Object —__jpin s
3 =
; e
£ IR e Object
E “MEN Copy Object
<5
“t
&
§ % Project database »
A DD
%g New Folder " .' ..
63

Before we defined the events. Now we must set the message texts for this project. Message
texts have a own data type in CoDeSys. So, we must change to item “Data types” and add
new objects. Each object is a new data type.

21

Help

Step 4: Event Texts

New data type

Name of the new data ype: [FAULT [Cox]
m Type in FAULT and click [
OK _
Q File Edit Project Insert Extras Online Window Help
= |nthe same way add B 3 [
NOTICE and ALARM Sosswe ‘ 0003 woamumpoe
- 0003/END_TYPE
. B8 FAULT (ENUM) 000!
m Click to ALARM and type = NOTICE ENUM) | o
nthetext ...

Q File Edit Project Insert Extras Online Window Help

- CoDeSys - project1.pro - [NOTICE]

®) Fie Edit Project Insert Extras Online Wind:

LT It

0001|TYPE NOTICE :

| 0002|(Mot_stalled);
|0003|END_TYPE

A Data types
B8 ALARM (ENUM)
L

- ® & NOTICE (ENUM)

4 Data types
b8 ALARM (ENUM)

page 22

8 FAULT (ENUM)

® Copyright 11/8/2021 ABB. All rights reserved

CODESYS_11RD101

We need a name for the new data types, and it will be avoided to choose a name which
associate with the event. So, we use names like “Fault, Alarm and Notice”. In this new data
types, we must set the event messages.

Delete the structure and write a message text into brackets. Note, only 12 characters are
allowed! If you need more than 1 text, set a comma between the texts in the bracket. The
first string in the bracket accord to the first event number.

22

Help

Step 5: Global variables

m Connection of variables and parameters are
possible if the variable is a global one!

m Check your global variables!

4 CoDeSys - project1.pro - [Globale_Variablen]

@) File Edt Project Insert Extras Online Window Help

EEL] (2] 8

- | 0001f¥AR_GLOBAL
3&'33930“'095 SPEED_REF: INT, (* speed reference: parameter 60.01 %)
-3 Global Variables SPEED_ACT: INT, (* actual speed parameter 60.02%)
I Gle » Variablen IN_MIN: INT; (* minimum speed: parameter 61.01 %)
L . Variablen_Konfiguration (VAR_CCI DELAY: INT, (* time delay: parameter 61.02%)
(2 brary DCSBO0ID.ib 2.3.06 03:3744: ¢ 225‘5';1_500“ ;ﬁ’*sm oSl i it
B -0 W \ feli 1 10:23:26: gl . P main control word: parameter 60.03 %)
c U_v__—' hs'a"’ S“?_;T'b ZGILb stﬁj 023_2;3 i’c' LIMIT1: INT; (* alarm limit parameter 61.04 %)
]) library Sys! el s 1 - LIMIT2: INT; (* fault limit parameter 61.05 %)
£ B0 brany Sy&raﬂdr_"u’l'b 8100316:33:4 CONVSIG: BOOL; (* converter signal: parameter 60.04 %)
E (8 Alarm configuration STANDDELAY: BOOL, (* stand signal parameter 60.05%)
<g (i Library Manager applnotice: NOTICE; (" notice texts parameter 60.06 *)
§ % " m Log applfault: FAULT; (" fault texts parameter 60.07 ™)
ot - 3 Parameter Manager applalarm: ALARM; (* alarm texds: parameter 60.08)
g ~(§ PLC Configurat END_VAR
& | igueation
=
2
s
I3
o
°

CODESYS_11R0101
|
.
|
g

Global variables are used to connect programs and parameters. So, we defined before
parameters as global ones which are shown in the list. The last 3 rows shows the new data
types of the events which are set 1 slide before. Fill in the global variables for this events so
that they can be connected to parameters. This variables are needed later in the parameter
manager.

Now the variable definitions are complete, and we can do the next step.

23

Help
Step 5: Parameter Manager

_:iFiIe Edit Project Insert Extras Online Window Help

m Change to parameter Ble|E 0|9 0|SIEAF ‘xllal £

ist... Ins

man ager $2 Resources K

B3 Global Variables
. Globale_Variablen Cut list Strg+%

. = -] @ Variablen_Konfiguration (VAR_CO Copy list Strg+C
O C“Ck with the I'Ight B3] fibrary DCS 800 b 2.3.06 03:37:44 et :
- ibrary lecSfe b 26.11.02 10:23:26: g Delete kst Del
mouse button to the -0 iy SyeLTime b 1003 173340
(3 library SysTaskinfo b 8.10.03 16:334

Wh ite Wi n dOW o EAlarm configuration

3 m Library Manager
- Log
@

Parame nager

m Select Insert new list

PLC Configuration
- g Sampling Trace

[| Type |n AppLPara - 4 Target Settings

Insert list @
@ Variables
" Parameters
" Template

" Instance

page 24

(" System parameters

= A DI
: FAIDID

® Copyright 11/8/2021 ABB. All rights reserved

CODESYS_11RD101

Change to the parameter manager in folder resources and insert a new list. Select variables
and set the name “Application Parameters” in a short notation to the list. A new list is
created!

24

Help

Step 5: Application parameters

m Fill in the variables and numbers!
- Name: This name is the parameter name

- Var: This is the connection to a variable
m Don'’t forget the dot! Press F2 to select a variable!
- Def: This is the default value

Min/Max: Minimum / maximum value

— Unit: This unit is shown in the parameter list

Manager] B@@
H Window Help -8 %
g & B @]
E Group | Index Name | var Def Min | Max | Unit
2 Appl_Signals 61 1 MinSpeed N_MIN 50 0 2000 om
=3 61 2 TimeDel DELAY 3000 0 30000 ms
@' 61 3 ResetMot RESET 0 0 1 No
< E 61 4 Speedlim1 .LIMIT1 1300 0 2000 mm
§ - 61 5 SpeedLim2 LIMIT2 1400 100 2000 pm
&
A DD
37 Mpmp
S8

o

There are several fields to declare parameters. Fill in the variables and numbers from the
picture on the bottom. The field “Name” is the parameter name and “Var” the connection to
the variable in CoDeSys. Range of the data is given by the minimum and maximum fields.
All fields are parameters that means the tick in field “Read Only “ isn't set.

25

Help
Step 5: Application signals
m Add a second list named Appl_Signals
m Fill in the variables and numbers!
- [Parameter Manager] B =18 x|
t Extras Online Window Help =18 x|
B é@| & ||ﬁ|‘5h|§h
Appl_Para Group I Indexl Name I\iar] Def l Min | Max I Unit Disp... | DecPt | Rea...
60 1 SpeedRef .SPEED_REF 0 -32768 32767 No =lint =0 ;E
60 2 SpeedAct .SPEED_ACT 0 -32768 32767 No xlint =0 ;El
60 3 UsedMCW REL 0 -32768 32767 No it o =&
60 4 ConvSignal .CONVSIG 1} 1} 1 No xlint =0 ;
60) StandDelay .STANDDELAY 0 1} 1 No xlint =0 ;
60 B MNoticeText .applnotice Mot_stalled ~| Mot_stalled x| Mot_stalled xiNo xlint =0 |}
60 7 FaultText .applfault SpeedMaxStop %SpeedMaxStop gsmedMaxStop %No xlint =0 :_El
60 8 AlarmText .applalarm MaximumSpeed x|MaximumSpeed x|MaximumSpeed x|No =x|int =|0 i [z}
3 Further Settings:
e These are signals. That means you cannot write to this
B parameters. In this case select Read Only!!!
85 Parameter 60.6, 60.7 and 60.8 includes the texts for
<@ -
5o the events. Select the first row in the fields!
a2
3
A DD
Mppw
b o]
®0

Add a second list named “Application Signals” and add lines to the list. Fill in the variables
and numbers like in the picture. Set a tick in the fields “Read Only” because these are
signals, which aren’t writeable.

Now the application is ready and we can go to the next step.

26

Help

Step 6: Fault Tracing

m Build your program (F11)

m [f you see this message, you
can be happy: The program is
ok!

sed glohal data 462 of 32768

m Otherwise you have to find the
errors in the program. This is
not easy!

ImplementatioMof POU 'PLC_FPRG'
Error 4001 dentifier BLOCK' not defined
Error 4052: PLC_PRG (2): 'block' must be a declared instance of function blo

page 27

© Copyright 11/8/2021 ABB. All rights reserved

CODESYS_11RD101

An important thing in CoDeSys is fault tracing. In bigger projects it is normal that they are
any errors in program. CoDeSys shows the user all errors with the applied line or network.

Build your program and look to the message window. If you see the message “0 errors and O
warnings” you can be happy. Otherwise, you must find the errors in the program.

27

Help

Step 6: Find errors

Implementation of POU 'PLC_PRG'
Error 4001: PLC_PI Identifier BLOCK' not defined

. A dou ble CI iCk to Error 4052: PLC_P! ‘hlock' must be a declared instance of function block ‘ParRead’
the red error shows
the FB

In this case the program cannot find identifier Block. If you look into declaration
window, the name of the block must be BLOCK2. Other faults are not correct
names (BLOCK& - BOLCK) or a missing identifier in the list.

0001[PROGRAM PLC_PRG (* main program *)

[000Zvar
3| blockl:ParRead; (" parameter get= a parameter value from firmware *)
4 hlock2: ParRead, =l

block3: MotorLogic; (* call function block MOTOR LOGIC *)

blockd: ParSet, (* seta selected parameter %)
hlocks: ParGet; (* parameter get ™)
mew: INT, (*variable type integer®)

tachosig: BOOL; (*tacho loss signal)
AntalENn AR

g

g

2q .

Bg Attention:

gs This is only an example for an error. There are many errors in

Eg CoDeSys! If you have more than 10 errors, check the errors A DI
2§ stepbystep. FAPpD
68

Find the errors when you click to the error line and the editor window jump to the applied line
or network.

If there are many errors check the correct declaration and the several characters and types
to find the errors.

28

Help

Step 6: Errors in parameter list

m The fields Def, Min and Max must be a value of
the variable:

- REL: INT; (-32768 < REL < 32767)
- Conv: BOOL; (0 <Conv <1)
- Applnotice: ENUM; (Mot_stalled == Mot_stalled)

Group | Indexl Name I War | Def | Min I Max | Unit | Disp...] DecPt | Rea...
60 1 SpeedRef SPEED_REF 0 -32768 32767 No [}
60 2 SpeedAct SPEED_ACT 0O -32768 32767 No x|
60 3 UsedMCW REL 0 -32768 32767 No =|
60 4 ConvSignal .CONVSIG 1} 0 1 No [}
60 5 StandDelay .STANDDELAY 0 1} 1 No =
B
7
8

NoticeText .appinotice Mot_stalled | Mot_stalled x| Mot_stalled x|No
FaultText .applfault SpeedMaxStop x| SpeedMaxStop =|SpeedMaxStop x|MNo

% B0 AlarmText .applalarm MaximumSpeed x|MaximumSpeed x|MaximumSpeed x|Mo

5

E’m Display: don’t care

8¢ DecPt: decimal point

ég Read only: This is only for signals

%g No Save: Save parameter to Flash (cycle saving is not allowed!) A DD
oD
63

Errors in the parameter list are dangerous, because incorrect parameters will not be
generated. Check the maximum and minimum of the selected variables. Boolean variables
gets the character 0 and 1. In Enum variables it is necessary to select the first entry.

29

© Copyright 11/8/2021 ABB. All rights reserved

CODESYS_11RD101

Step 6: Task configuration

m Select the task cycle like the picture below

8@ a
#dTask configuration j . “I
B~ #!PLC_Task skatidbok
[] PLC_PRGO; Neow &
B # EventTask
[B) Events(; Prioryf0.31): -
- e
PLC Task: e
-5 mscycle clt
c
G tiggered by extemal event
Properties
Event Pomoe =]
B (@ Task configuration il - “I
B— g PLC_Task S
8] PLC_PRGO: Nome: B —
B— | EventTask
(8 Events(; Prioity(0..31} -
Type
g Event Task: Z
o4 = oo
g ©
g

- 100 ms cycle

€ trigy
& tiggered by exteinal event

Properties
4] 100ms cycle ~

Event

Help

If the program is ready, we must configure the task configuration. In this application we need
two different tasks. The main program PLC_PRG work with the 5 ms cycle. The event
program needs the 100 ms task.

30

Help

Step 6: Drive configuration

m |tis necessary that the drive is in Local Mode

m Change Parameter settings with the panel, DW or DWL

10.01: Local Mode (drive controlled via DI's)
10.15: DI7 (main contactors ON)
10.16: MCW11 (release drive with application program)

Check also your speed reference settings:
Al1 must be connected with a potentiometer

Check your speed feedback and the controller settings:
e.g. Startup assistant (Wizard)

page 31

© Copyright 11/8/2021 ABB. All rights reserved

CODESYS_11R0101
|
.
|
g

It is necessary that the drive is in “Local Mode”. Change parameter settings with the panel,
DriveWindow and DriveWindow light.

31

Help

Step 6: Download

m Select your communication

4 CoDeSys - project1.pro* - [MotorLogic (F-FBD)]

channel and download the e
) —x
program iy =

BRG] MotorLoge [FB)
0 PLC_PRG [FRG)

m Click Run

m Select Create Boot Project

m Check the message that
- the program is saved

Semudation Mode
Communication Parameters. ..

- the parameters are generated

page 32

© Copyright 11/8/2021 ABB. All rights reserved

CODESYS_11R0101
|
.
|
g

Select your communication channel and download the program. Click “Run” and select
“Create Boot Project” to save the program on the Memory Card. When the program is saved
correctly you get the message that the program is saved and the user parameters are
generated.

32

Help

Step 7: Test the program

m Close the main contactor with DI7

m DI8 must be active; inactive DI8 disable the motor
logic (bypass)

m Turn the potentiometer until the motor is running
®m Add the speed until you see the alarm message
®m More speed activate the fault

m Check also the notice if the drive is standing still

m Change the new parameters and play

AL IDED
Mpmp

© Copyright 11/8/2021 ABB. All rights reserved

CODESYS_11R0101 page 33

Now we have to test the program with the hardware. Close the main contactors with digital
input 7. Digital input 8 must be active. An inactive digital input 8 disables the motor logic and
close a bypass.

Turn the potentiometer until the motor is running. Increase the speed reference until you see
the alarm message. If the motor speed increased more and more until a fault is activated.
Check also the notice if the drive is standing still. Change the new parameters and play with
the application.

33

Help

Step 7: Documentation

m For all applications it is necessary to document it for

other users and for your own protection

4, CoDeSys - project1.pro* - [MotorLogic (FB-FBD) = Sesi o
®y File Edit | project Insert Extras Online Windoy Lt (SR
Bl=la Build Fi1
———— Rebuidall .
oo Ceandl Parameter:

== POl Load download information Title: [Motor L Statistics l
) Even e o Loge 4.03
o[Obect > Autho: [Jan Thoms icense info

“§f PLC_ Project database »

Version: 1.0
Options... I 4 1 2
Desciiption: | Motor protection with standing stil messag =~ |

Translate into other languages »

Document. ..

Export...

Import...

Siemens Import »
Merge...

Compare...

Global Search...

page 34

© Copyright 11/8/2021 ABB. All rights reserved

CODESYS_11R0101
|
.
|
g

For all applications it is necessary to document it for other users and for your own protection.
You can find “Project Information” in menu Project. The field “Title” appears in parameter
4.03 and “Version” in parameter 4.12.

34

Summary

Key points of this module
m Learn to create a complete project in
CoDeSys

© Copyright 11/8/2021 ABB. All rights reserved

CODESYS_11R0101 page 35

Help

Key point of this module is learning to create a complete project in CoDeSys.

35

® Copyright 11/8/2021 ABB. All rights reserved.

CODESYS_11R0101 page 36

Additional information

m Further information:
- Application Manual (3ADW 000 199)
- Firmware Manual (3ADW 000 193)
- Hardware Manual (3ADW 000 194)

m CoDeSys support:
- www.3s-software.com

m Drive support and libraries:
- ABB DC-Supportline

AL DD
FRpm

Help

36

© Copyright 11/8/2021 ABB. All rights reserved

CODESYS_11R0101 page 37

Glossary

m CoDeSys
Controller Development
System (software tool)

= Memory Card
Flash memory

= DriveWindow Light
Software Tool for
commissioning and
maintenance using AC/DC

= Target
Interface between Drive
and CoDeSys tool

Control Builder
Whole system with
software and hardware

PLC_PRG
Main program which is
used in all applications

POU
Program Organization Unit

Library

It includes function blocks
which are given or
designed by other users

AL IDED
Mpmp

37

AL EID D
MW

Power and productivity
for a better world ™

Thank you for your attention. You may now go ahead and move on to the next unit.

38

