

ABB MEASUREMENT & ANALYTICS | DATA SHEET

ProcessMaster wafer FEM610 Electromagnetic flowmeter

Measurement made easy The first choice for all industrial applications

Diagnostics for real-life situations

- To keep your process up and running
- Empty pipe detection and sensor temperature monitoring
- Clear text messages for simplified trouble shooting

On board Health Check

• Flowmeter sensor and transmitter integrity check utilizing fingerprint technology

Noise / Grounding Check

Verify the installation is correct from day one

Service Interval Monitoring

Receive timed notifications

Backwards Compatibility

- Protect your Investment in ABB flow metering
- Non-hazardous general purpose applications

ProcessMaster series

ProcessMaster is available in two series – ProcessMaster 610 the good fit for everyday applications and ProcessMaster 630 the first choice for all process industry applications delivering best in class functionality and options.

Applicability	FEM610 series	FEM630 series
	Good fit for everyday applications	The first choice for all industrial applications
Chemical Industry Corrosive liquids, acids, bases	\checkmark	\checkmark
Power Coal slurry, Lime slurry, Cooling	✓	✓
Mining Abrasive slurries, hydraulic transport	✓	\checkmark
Pulp & Paper Stock Flows, Latex, Clay, Liquor, Chemicals	Up to 2 % Stock	Up to 4 % Stock
Oil & Gas High pressure applications	✓	\checkmark
Food & Beverage Hygienic applications	✓	\checkmark
Measuring medium minimum conductivity	20 µS/cm	5 μS/cm
Measuring medium temperature	-13266 °F (-25130 °C)	-13266 °F (-25130 °C)
Pressure	ASME CL 150, 300 ASME CL 150, 300	
Hazardous area	-	Yes

Features	FEM610 series	FEM630 series
Accuracy	0.5 %	0.4 %
Nominal diameter	1/10" 4" (DN3 100)	1/10" 4" (DN3 100)
Liner material	ETFE	ETFE
I/O's	1 x analog, 2 x digital	1 x analog, 2 x digital, Option for add-in modules
Communication	High Speed Infrared Port Communication based on HART DTM	HART, PROFIBUS DP, Modbus
Process diagnostics	Empty pipe, grounding check, ambient temperature check	Empty pipe, Gas bubbles, Electrode Impedance, Conductivity
Backwards compatibility	-	Yes ¹

1 For general purpose (non -hazardous) installation areas only.

Overview – models

Flowmeter sensor

(1) Flowmeter sensor ¹/10" ... ³/8" (DN3 ... DN10)

2 Flowmeter sensor ½"...4" (DN15...DN100)

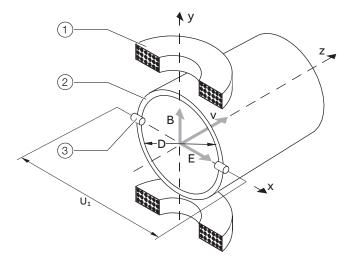
(3) Remote transmitter

Figure 1 Designs

Flowmeter sensor	
Model	ProcessMaster FEM611, FEM612
Housing	Integral mount design, remote mount design
Measuring accuracy for liquids	0.5 % of measured value
Permissible measuring medium temperature T _{medium}	-13 to 266 °F (-25 to 130 °C)
Minimum conductivity	> 20 µS/cm
Nominal pressure rating	ASME CL 150, CL 300
Nominal diameter	1/10" 4" (DN3 DN100)
Process connection	Wafer style connection
Liner material	ETFE
Electrode material	Hastelloy C®, Platinum-Iridium, Tantalum
IP rating	Integral mount design: IP 65 / IP 67; Remote mount design: IP 65 / IP 67 / IP 68 (sensor only)

Approvals for sensor		
CRN (Canadian Reg.Number)	Pending	
Further approvals	At www.abb.com/flow or on request.	

Transmitter		
Model	FET612	
Housing	Integral mount design (see Fig. 1), remote mount design.	
IP rating	IP 65 / IP 67	
Cable length	Maximum 164 ft (50 m), remote mount design only	
Danna ann a h-	100 240 V AC (-15 / +10 %),	
Power supply	24 48 V DC (-10% / +10 %)	
	Current output: 4 20 mA, active	
Outputs	Digital output 1: passive, configurable as pulse, frequency or switch output	
	Digital output 2: passive, configurable as pulse or switch output	
Local display	Configurable graphical display (option)	


A	pprovals for transmitter	

Further approvals	At www.abb.com/flow or on request.

...Overview – models

Measuring principle

Measurements performed by the electromagnetic flowmeter are based on Faraday's law of induction. A voltage is generated in a conductor when it moves through a magnetic field.

This principle is applied to a conductive fluid in the meter tube through which a magnetic field is generated perpendicular to the flow direction (see Fig. 2). The voltage induced in the fluid is measured by two electrodes located diametrically opposite each other. This signal voltage is proportional to the magnetic induction, the electrode spacing and the average flow velocity. Considering that the magnetic induction and the electrode spacing are constant values, a proportionality exists between the signal voltage U1 and the average flow velocity. From the equation for calculating the volume flowrate, it follows that the signal voltage is linearly proportional to the volume flowrate. The induced voltage is converted by the transmitter to standardized, analog and digital signals.

Figure 2 Electromagnetic flowmeter schematic

Pos.	Description
1	Magnet coil
2	Meter tube in electrode plane
3	Signal electrode

Table 1 Legend

U ₁ ~ B x D x v	$q_v = \frac{D^2 \times \pi}{4} \times v$	$U_1 \sim q_v$
U1 Signal voltage	v Average flow velocity	
B Magnetic induction q_v Volume flow		
D Electrode spacing		

Measuring accuracy

Reference conditions

According to EN 29104	Description
Measuring medium temperature	20 °C (68 °F) ±2 K
Ambient temperature	20 °C (68 °F) ±2 K
Power supply	Nominal voltage acc. to name plate U = ± 1 %, Frequency f = ± 1 %
Installation condition	 Upstream >10 x DN, straight section Downstream >5 x DN, straight section
Warm-up phase	30 min

Repeatability, resp	Repeatability, response time		
Repeatability	\leq 0.11 % of measured value, $t_{\rm meas}$ = 100 s, v = 0.5 10 m/s		
Response time ¹	As step function 0 99 % 5 t \ge 200 ms at 25 Hz excitation frequency 5 t \ge 400 ms at 12.5 Hz excitation frequency 5 t \ge 500 ms at 6.25 Hz excitation frequency		

Table 5 Repeatability, response time

1. Of current output with damping of 0.02 seconds.

Measuring error

Measuring error and repeatability

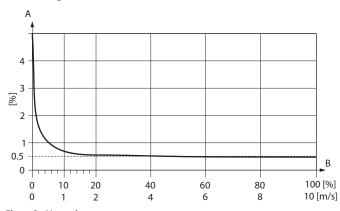


Figure 3 Measuring error

Pos.	Description
A	Accuracy ± of measured value in %
В	Flow velocity v in m/s, Q / Q_{max} DN in %

Table 2 Legend

Impulse output	
± 0.5% of measured value ± 0.02% Q _{max} DN ¹	

Table 3 Measuring error impulse output

1. QmaxDN: See table in chapter "Measuring range table" on page 9

Current output

Same as pulse output plus ± 0.1 % of measured value ± 0.01 mA

Table 4 Measuring error current output

Permitted pipe vibration

In accordance with EN 60068-2-6.

Applicable to sensors in remote mount design and sensors in integral mount design.

Maximum deflection: 0.15 mm (0.006 inch) in the 10 \dots 58 Hz range

Maximum acceleration: 2 g, in the 58 ... 150 Hz range

IP rating

- IP 65 / IP 67 in accordance with EN 60529
- IP 68 in accordance with EN 60529 (for remote mount design only)

Signal cables

For remote mount design only.

The maximum signal cable length between flowmeter sensor and transmitter 164 ft (50M).

A 5 m (16.4 ft) cable is included in the scope of delivery.

If more than 5 m (16.4 ft) is required, the cable can be ordered separately (Part no. 3KQZ407123U0100).

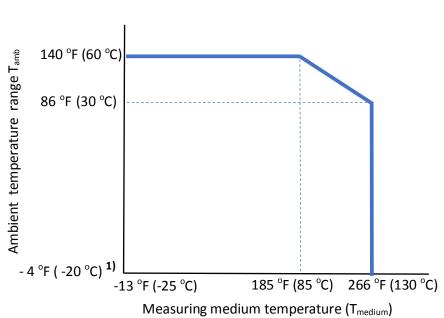
Temperature data

Storage temperature range

-4 ... 149 °F (-20 ... 65 °C)

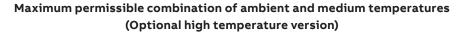
The temperature range offered depends on a number of different factors.

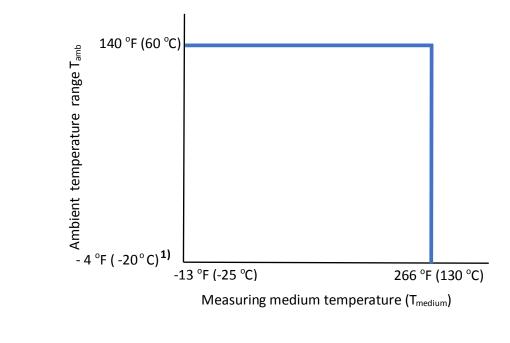
These factors include the measuring medium temperature T_{medium} , the ambient temperature T_{amb} , the operating pressure P_{medium} , the liner material and the approvals for the explosion protection.


Maximum permissible cleaning temperature

CIP medium	Liner material	Cleaning temperature
Steam	ETFE	266 °F (130 °C)
Cleaning fluid	ETFE	266 °F (130 °C)

- The specified cleaning temperature applies for a maximum ambient temperature of 77 °F (25 °C).
 If the ambient temperature is > 77 °F (>25 °C), the difference to the actual ambient temperature must be subtracted from the maximum cleaning temperature.
- The specified cleaning temperature may be applied for a maximum of 60 minutes.


Ambient temperature as a function of measuring medium temperature


Integral design:

Maximum permissible combination of ambient and medium temperatures (Standard version)

Remote mount design:

1 Minimum ambient temperature is 14 °F (-10 °C) with carbon steel mating flanges. Stainless steel mating flanges must be used to reach the - 4 °F (-20 °C) temperature.

Measuring range table

The flow range end value can be set between 0.02 x $\rm Q_{max}DN$ and 2 x $\rm Q_{max}DN.$

Nominal diameter		Minimum flow range end value	QmaxDN	Maximum flow range end value
DN	inch	0.02 x QmaxDN (≈ 0.66 ft/s or 0.2 m/s)	0 ≈ 33 ft/s or 10 m/s	2 x QmaxDN (≈ 66 ft/s or 20 m/s)
3	1/10	0.02 US gal/min (0.08 l/min)	1.06 US gal/min (4 l/min)	2.11 US gal/min (8 l/min)
4	5/32	0.04 US gal/min (0.16 l/min)	2.11 US gal/min (8 l/min)	4.23 US gal/min (16 l/min)
6	1/4	0.11 US gal/min (0.4 l/min)	5.28 US gal/min (20 l/min)	10.57 US gal/min (40 l/min)
10	3/8	0.24 US gal/min (0.9 l/min)	11.9 US gal/min (45 l/min)	23.78 US gal/min (90 l/min)
15	1/2	0.53 US gal/min (2 l/min)	26.4 US gal/min (100 l/min)	52.8 US gal/min (200 l/min)
25	1	1.06 US gal/min (4 l/min)	52.8 US gal/min (200 l/min)	106 US gal/min (400 l/min)
40	1 1/2	3.17 US gal/min (12 l/min)	159 US gal/min (600 l/min)	317 US gal/min (1200 l/min)
50	2	5.28 US gal/min (1.2 m3/h)	264 US gal/min (60 m3/h)	528 US gal/min (120 m3/h)
80	3	15.9 US gal/min (3.6 m3/h)	793 US gal/min (180 m3/h)	1585 US gal/min (360 m3/h)
100	4	21.1 US gal/min (4.8 m3/h)	1057 US gal/min (240 m3/h)	2113 US gal/min (480 m3/h)

Process connections

Meters are wafer style and clamp between customer's pipeline flanges.

Installation length

For further details, refer to chapter "Dimensions" on page 15.

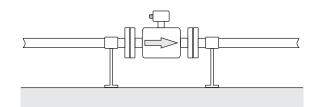
Materials

Wetted parts		
Part	Standard	Option
Liner material	ETFE	
Measurement and gro	unding electrode for liner	material
Electrode material	Hastelloy C-4 (2.4610)	Tantalum, Platinum- Iridium,
Grounding ring	Stainless steel	On request

	T I I I I I I I I I I I I I I I I I I I
Component	Standard
Housing	Cast aluminum, painted, paint coat > 80 μm thick, light gray, RAL 9002
Terminal Box	Plastic, gray white, RAL 9002
Meter Tube	304 Stainless steel
Cable gland ¹	Polyamide, Stainless steel

Flowmeter sensor housing

1. Cable gland with M 20 x 1.5 or NPT thread, to be selected via the order model number


Installation conditions

General information

The following points must be observed during installation:

- The flow direction must correspond to the marking, if present.
- The maximum torque for all flange screws must be complied with.
- Secure the flange screws and nuts against pipe vibration.
- The devices must be installed without mechanical tension (torsion, bending).
- Install flange devices / wafer-type devices with plane parallel counterflanges and use appropriate gaskets only.
- Only gaskets made from a material that is compatible with the measuring medium and measuring medium temperature may be used.
- Gaskets must not extend into the flow area, since possible turbulence could influence the accuracy of the device.
- The piping may not exert any inadmissible forces or torques on the device.
- Make sure temperature limits are not exceeded operating the device.
- Vacuum shocks in the piping should be avoided to prevent damage to the liners. Vacuum shocks can destroy the device.
- Do not remove the sealing plugs in the cable glands until you are ready to install the electrical cable. Make sure the gaskets for the housing cover are seated correctly. Carefully gasket the cover. Tighten the cover fittings.
- The transmitter with a remote mount design must be installed at a largely vibration-free location.
- Do not expose the transmitter and sensor to direct sunlight. Provide appropriate sun protection as necessary.
- When installing the transmitter in a control cabinet, make sure adequate cooling is provided.

Flow direction

Figure 4 Flow direction

The device measures the flowrate in both directions. Forward flow is the factory setting, as shown in Fig.4.

Electrode axis

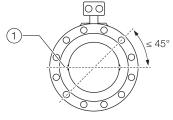
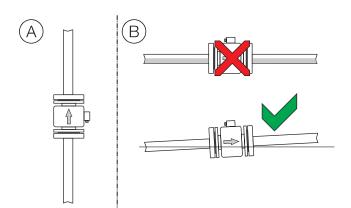


Figure 5 Orientation of the electrode axis


The electrode axis (1) should be horizontal if at all possible or no more than 45° from horizontal as shown in Fig. 5.

Gaskets

The following points must be observed when installing gaskets:

- For achieve the best results, ensure the gaskets fit concentrically with the meter tube
- To ensure that the flow profile is not distorted, the gaskets must not protrude into the piping.
- The use of graphite with the flange or process connection gaskets is prohibited, because an electrically conductive coating may form on the inside of the meter tube.

Mounting position

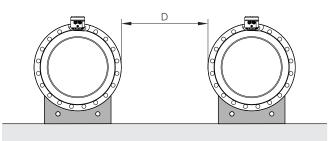


Figure 6 Mounting position

- ${\textcircled{\sc A}}$ \quad Vertical installation for measuring abrasive fluids, preferably with flow in upward direction.
- B In case of horizontal installation, the Meter tube must always be completely full. Provide for a slight incline of the connection for degassing.

Minimum distance

ProcessMaster FEMxxx

Distance D: \geq 1.0 m (3.3 ft)

Figure 7 Minimum distance

- In order to prevent the devices from interfering with each other, a minimum distance as shown in Fig. 7 must be maintained between the devices.
- The flowmeter sensor may not be operated in the vicinity of powerful electromagnetic fields, e.g., motors, pumps, transformers, etc. A minimum spacing of approx. 1 m (3.28 ft) should be maintained.
- For installation on or to steel parts (e.g. steel brackets), a minimum spacing of approx. 100 mm (3.94 inch) should be maintained (based on IEC801-2 and IECTC77B.

2 Turn-off device

Figure 8 In- and outlet section, turn-off component

Description

Double elbow

Table 6 Legend

Pos.

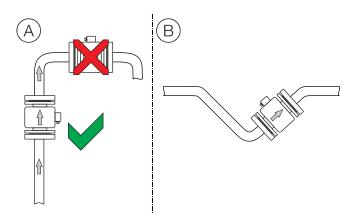
(1)

The metering principle is independent of the flow profile as long as standing eddies do not extend into the metering section, such as may occur after double elbows, in the event of tangential inflow, or where half-open gate valves are located upstream of the flowmeter sensor.

In such cases, measures must be put in place to normalize the flow profile.

- (A) Do not install fittings, manifolds, valves, etc., directly in front of the flowmeter sensor.
- ${}_{\textstyle{(B)}}$ \qquad Inlet and outlet section: Length of straight inlet and outlet section of the flowmeter sensor.

Experience has shown that, in most installations, inlet sections 3 x DN long and outlet sections 2 x DN long are sufficient (DN = nominal diameter of the flowmeter sensor).


For test stands, the reference conditions of 10 x DN inlet section and 5 x DN outlet section must be provided, in accordance with EN 29104 / ISO 9104.

Valves or other turn-off components should be installed in the outlet section.

Butterfly valves must be installed so that the valve plate does not extend into the flowmeter sensor.

Inlet and outlet sections

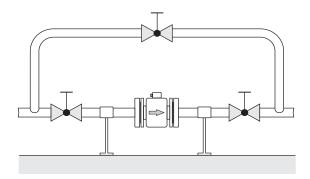
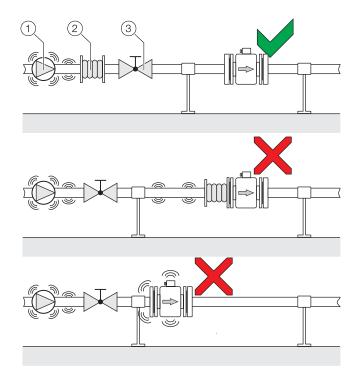

Free inlet or outlet

Figure 9 Free inlet or outlet

- A Do not install the flowmeter at the highest point or in the draining off side of the pipeline, flowmeter runs empty, air bubbles can form.
- ${\textstyle \textcircled{B}}$ ${\textstyle }$ Provide for a siphon fluid intake for free inlets or outlets so that the pipeline is always full.

Strongly contaminated measuring media


Figure 10 Bypass connection

For strongly contaminated measuring media, a bypass connection according to the figure is recommended so that operation of the system can continue to run without interruption during the mechanical cleaning.

Grounding

The flowmeter sensor must be connected to ground potential. For technical reasons, this potential should be identical to the potential of the measuring medium. For plastic or insulated lined pipelines, the measuring medium is grounded by installing ground plates. When there are stray potentials present in the pipeline, a ground plate is recommended on both ends of the flowmeter sensor.

Installation in the vicinity of pumps

Figure 11 Vibration damping

Pos.	Description
1	Pump
2	Damping device
3	Shut-off device

Table 7 Legend

Strong vibrations in the pipeline must be damped using flexible damping devices.

The damping devices must be installed beyond the supported flowmeter section and outside of the section between the shut-off devices.

Do not connect flexible damping devices directly to the flowmeter sensor.

Installation in pipelines with larger nominal diameters

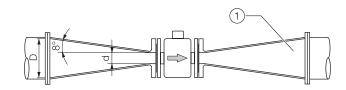


Figure 12 Using reduction pieces

Determine the resulting pressure loss when using transition pieces $(\widehat{1})$:

- 1 Calculate the diameter ratio d/D.
- 2 Determine the flow velocity based on the flow rate nomogram (Fig. 13).
- **3** Read the pressure drop on the Y-axis in Fig. 13.

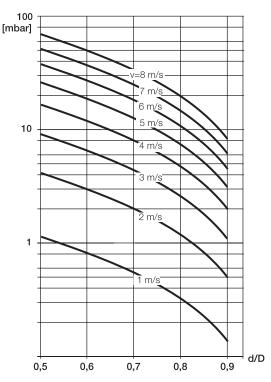
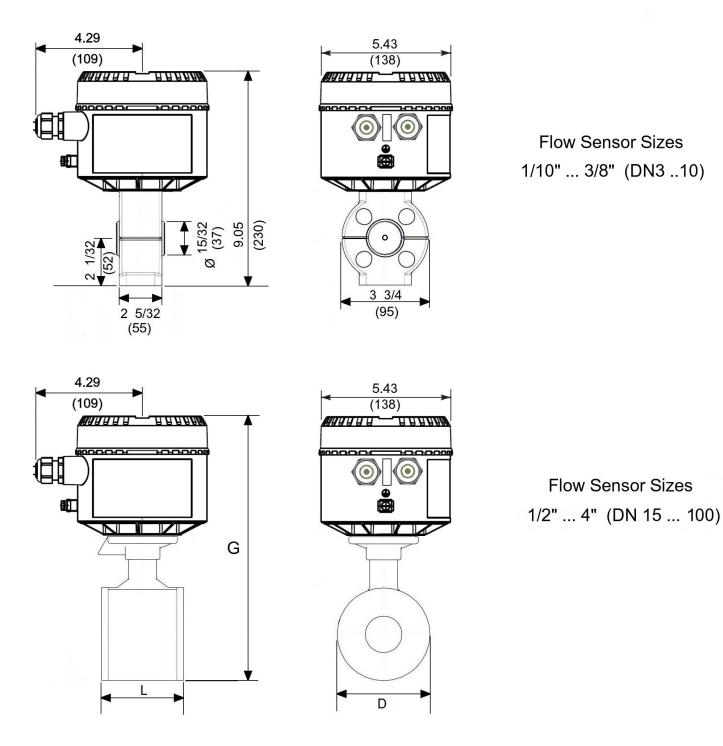



Figure 13 $\,$ Flow rate nomogram for pressure drop calculations for flange transition piece with $\alpha/2$ = 8° $\,$

Dimensions

Dimensions - inches / (mm)			Approximate weight lb / (kg)		
Size Inch / (DN)	D	L	G	Integral mount design	Remote mount design
1/2 (15)	1-7/8 (48)	2-5/32 (55)	9-1/16 (230)	10.5 (4.8)	6 (2.7)
1 (25)	2-5/8 (67)	2-5/32 (55)	9-27/32 (250)	11.5 (5.2)	7 (2.7)
1-1/2 (40)	3-3/8 (86)	2-3/4 (70)	10-1/2 (268)	12.5 (5.7)	7 (3.2)
2 (50)	4 (102)	3-11/32 (85)	11-3/16 (284)	13.5 (6.1)	9 (4.1)
3 (80)	5-1/4 (133)	4-23/32 (120)	12-13/32 (315)	17.5 (7.7)	12 (5.5)
4 (100)	6-1/2 (165)	5-29/32 (150)	13-21/32 (347)	23.5 (10.7)	18 (8.2)

Transmitter

Features

- 4 ... 20 mA current output
- Current output in the event of an alarm can be configured to 21 ... 22.6 mA (NAMUR NE43)
- Measuring range: Can be configured between 0.02 ... 2 x $$\rm QmaxDN$$
- Operating mode for flow measurement can be configured
- Programmable digital output. Can be configured as
- frequency output, pulse output or binary output.
- Empty pipe detection ¹
- Simulation of current and binary output (manual process execution)

LCD indicator (option)

- High-contrast LCD indicator
- Display of the current flow rate as well as the total flow rate
- Application-specific visualizations which the user can select. Two operator pages can be configured to display multiple values in parallel.
- Plain text fault diagnostics
- Menu-guided parameterization with four buttons
- "Easy Set-up" function for fast commissioning
- Parameterization of the device through the front glass with the housing closed

Isolation of outputs

The current output and the digital outputs are electrically isolated from each other.

...Transmitter

IP rating

In accordance with EN60529: IP 65 / IP 67

Vibration

In accordance with EN 60068-2

- In the 10 ... 58 Hz range, max. deflection 0.15 mm (0.006 inch)¹
- In the range of 58 ... 150 Hz, max. acceleration 2 g¹)
 Peak load

Temperature data

	Standard	
Ambient temperature	-22 °F 140 °F (-30 °C 60 °C)	
Storage temperature	-22 °F 158 °F (-30 °C 70 °C)	

NOTICE

When operating below -4 °F (-20 °C), the LCD display can no longer be read. Full functionality is assured at temperatures above -4 °F (-20 °C).

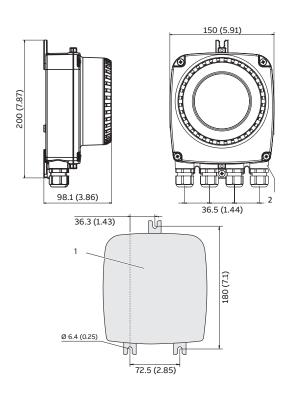
Housing design

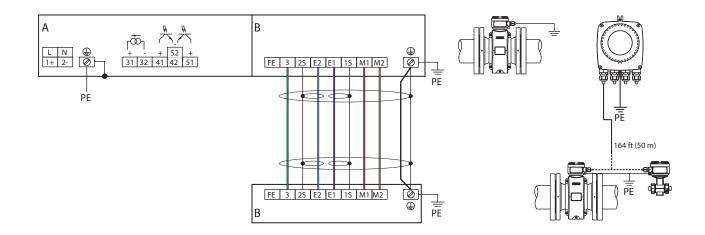
Integral mount desig	gn
Housing	Plastic, RAL 9002 (light gray)
Cable gland ¹	Polyamide
Remote mount desig	an

Remote mount desi	gn
Housing	Cast aluminum, painted
Paint	\geq 80 μ m thick, RAL 9002 (gray white)
Cable gland ¹	Polyamide
Weight	Stainless steel
weight	3.97 lb (1.8 kg)

1. Cable gland with M 20 x 1.5 or NPT thread, to be selected via the order number.

...Transmitter




Figure 14 Mounting dimensions single-compartment housing

Pos.	Description
1	Hole pattern for mounting holes
2	Female thread (either 1/2" NPT or M20 x 1.5) refer to model coding. With 1/2" NPT there will be a plug instead of the PG cable inlet

Table 8 Legend

Electrical connections

Connection diagram

Figure 15 Electrical Connections

Pos.	Description
A	Connections for power supply and outputs
B	Connections for signal cable (remote mount design only)

Table 9 Legend

NOTICE

For detailed information about grounding the transmitter and the flowmeter sensor, please refer to chapter "Grounding" in the operating instruction.

Connections for the power supply

AC voltage	
Terminal	Function / comments
L	Phase
N	Neutral conductor
PE / 🖨	Protective earth (PE)

DC voltage	
Terminal	Function / comments
1+	+
2-	-
PE / 🖨	Protective earth (PE)

Connections for inputs and outputs

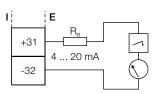
Terminal	Function / comments
31 / 32	Active current output The current output is "active" mode. The source to drive the 20mA loop is in-built in the transmitter.
41 / 42	Passive digital output DO1 The output can be configured as a pulse output, frequency output or switch output on site.
51 / 52	Passive digital output DO2 The output can be configured as a pulse output, frequency output or switch output on site.
	Functional earth

Connecting the signal cable

Only for remote mount design.

Terminal	Function / comments	Color
FE	Not connected	-
3	Measurement potential	green
25	Signal line	-
E2	Signal line	blue
E1	Signal line	violet
1S	Shield for E1	-
M1	Magnet coil	brown
M2	Magnet coil	red
<u>+</u>	Shield	-
-	Not connected	orange/yellow

...Electrical connections


Electrical data for inputs and outputs Power supply L / N, 1+ / 2-

AC power supply	
Terminals	L/N
Operating voltage	100 240 V AC (-15 % / +10 %), 47 64 Hz
Power consumption	Smax: < 20 VA
Switch-on current	18.4 A, t < 3 ms

DC voltage supply	
Terminals	1+/2-
Operating voltage	24 48 V DC (-10 % / +10 %)
Ripple	< 5 %
Power consumption	10 W
Inrush current	5.6 A

Current output 31 / 32

Can be configured for outputting mass flow and volume flow.

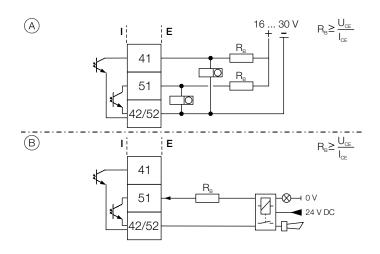


Figure 16 Connection example active current output (I = internal, E = external, $R_{_B}$ = load)

Current output	Active
Terminals	31/32
Output signal	420 mA
Load R _B	$0 \Omega \leq RB \leq 650 \Omega$

Digital output 41 / 42, 51 / 52

Can be configured as pulse, frequency or binary output.

Figure 17 Connection example (I = internal, E = external, R_{B} = load)

- ${\rm (A)}$ $\,$ Passive digital output 41 / 42, 51 / 52 as pulse or frequency output
- (B) Passive digital output 51 / 52 as binary output

NOTICE

- Terminals 42 / 52 have the same ground potential. Digital outputs 41 / 42 and 51 / 52 are not electrically isolated from each other.
- If you are using a mechanical counter, we recommend setting a pulse width of \ge 30 ms and a maximum frequency of $f_{max} \le$ 3 kHz.

Pulse / frequency	v output (passive)
Terminals	41 / 42, 51 / 52
U _{max}	30 V DC
I _{max}	25mA
f _{max}	10.5 kHz
Pulse width	0.1 2000 ms

Binary output, pasive	2
Terminals	41 / 42, 51 / 52
U _{max}	30 V DC
I _{max}	25mA
Switching function	Can be configured using software as: System alarm, empty pipe alarm, max. / min. alarm, flow direction signaling, others

Ordering information

ProcessMaster FEM611

Electromagnetic Flowmeter system, integral mount

ProcessMaster Wafer FEM611	7,8	9,10	11	12,13,14,15	16,17	18,19	20	21	22	23	
Explosion Protection Certification											
Without	Y0										
Housing Type / Housing Material / Cable Glands		-									
Integral / Single compartment / Plastic / M20 x 1.5		V1									
Integral / Single compartment / Plastic / NPT 1/2 in.		V2									
Sensor Style											
Standard sensor housing			F								
Meter size											
DN 3 (1/10 in.)				0003							
DN 4 (5/32 in.)				0004							
DN 6 (1/4 in.)				0006							
DN 10 (3/8 in.)				0010							
DN 15 (1/2 in.)				0015							
DN 25 (1 in.)				0025							
DN 40 (1-1/2 in.)				0040							
DN 50 (2 in.)				0050							
DN 80 (3 in.)				0080							
DN 100 (4 in.)				0100							
Process Connection Type											
Wafer Style					W1						
Liner Material											
ETFE						E1					
Process Connection Material											
Without process connection, without gasket and without mounting brack	ket						Y				
Electrode Design											
Standard								1			
Measuring Electrodes Material											
Hast. C-4 (2.4610)									D		
Tantalum									G		
Platinum-Iridium									J		
Grounding Electrode / Full Pipe Detection											
No grounding electrode / No full pipe detection										0	

Continued on next page

...Ordering information

	ProcessMaster Wafer FEM611	7,8	24	25,26	27	28	29,30	31	32,33	34,35,36	37,38,39	40,41	42,43, 44	45,46
Grounding Accessories			-							Add	litional orc	lering o	codes	
Without			А											
Grounding ring (2)			Е											
Protection Class Transmitt	er / Protection Class Sensor			_										
Standard / IP 67				70										
Power Supply					1									
100 240 AC, 2448 V DC,	50 Hz				F									
100 240 AC, 2448 V DC,	60 Hz				G									
Display														
Without						0								
Display with Keypad						2								
Outputs							_							
Current output (active), 2 D	igital outputs (passive)						A6							
Design Level														
Specified by ABB								А						
Documentation Language									-					
English									M5					
Configuration Type														
Parameters set customer sp	pecific									NCC				
Calibration type														
0.5% factory cailbration ¹											RCC			
Device identification plate														
Adhesive label												тс		
Others												ΤZ		
Number of testpoints														
2 points													TV2	
3 points													TV3	
5 points													TV5	
Hardware kits														
ANSI 150 hardware kit ²														AH

Notes for ProcessMaster FEM631

1 2 points calibration will be done. If more than 2 testpoints are required, please specify 3 or 5 points with option "Number of testpoints".

Meters are wafer style and clamp between customer's pipeline flanges. Mounting hardware kits are available and include: studbolts, nuts, KLINGERSIL gaskets and adaptor.

ProcessMaster FEM612

Electromagnetic Flowmeter system, remote mount design

ProcessMaster Wafer FEM	612 7,8	9,10	11	12,13,14,15	16,17	18,19	20	21	22	23	 50,5
Explosion Protection Certification											
Without	YO										
Housing Type / Housing Material / Cable Glands		_									
Remote / Plastic / M20 x 1.5		P1									
Remote / Plastic / NPT 1/2 in.		P2									
Sensor Style											
Standard sensor housing			F								
Meter size											
DN 3 (1/10 in.)				0003							
DN 4 (5/32 in.)				0004							
DN 6 (1/4 in.)				0006							
DN 10 (3/8 in.)				0010							
DN 15 (1/2 in.)				0015							
DN 25 (1 in.)				0025							
DN 40 (1-1/2 in.)				0040							
DN 50 (2 in.)				0050							
DN 80 (3 in.)				0080							
DN 100 (4 in.)				0100							
Process Connection Type											
Wafer Style					W1						
Liner Material											
ETFE						E1					
Process Connection Material											
Without process connection, without gasket and without mountir	ng bracket						Y				
Electrode Design											
Standard								1			
Measuring Electrodes Material											
Hast. C-4 (2.4610)									D		
Tantalum									G		
Platinum-Iridium									J		
Grounding Electrode / Full Pipe Detection											
No grounding electrode / No full pipe detection										0	

Continued on next page

...Ordering information

Proce	ssMaster Wafer FEM612	7,8	 24	25,26	27	28	29,30	31	32,33	34,35	36,37,38	39,40,41		50,51
Grounding Accessories										Ad	ditional or	dering coc	les	
Without			А											
Grounding ring (2)			Е											
Protection Class Transmitte	er / Protection Class Sense	or												
IP 67				70										
IP 67 / IP 68				76										
IP 67 / IP 68, signal cable fitte	ed and potted			77										
Power Supply					_									
Without					Υ									
Display														
Without						0								
Outputs														
Without							Y0							
Design Level														
Specified by ABB								А						
Power Supply Line Frequence	су													
50 Hz (to be specified in cas	se no Tx is ordered) 1								F5					
60 Hz (to be specified in cas	se no Tx is ordered) 1								F6					
Documentation Language														
English										M5				
Configuration type														
Parameters set customer sp	pecific										NCC			
Calibration type														
0.5% factory calibration ²												RCC		

Continued on next page

...Ordering information

	ProcessMaster Wafer FEM612	7,8	42,43,44	45,46	47,48,49	50,5
Signal Cable			Ad	ditional or	dering code	s
Without			SC0			
5 m (approx. 15 ft)			SC1			
10 m (approx. 30 ft)			SC2			
15 m (approx. 49 ft)			SC3			
20 m (approx. 66 ft)			SC4			
25 m (approx. 82 ft)			SC5			
30 m (approx. 98 ft)			SC6			
35 m (approx. 115 ft)			SC7			
40 m (approx. 131 ft)			SC8			
50 m (approx. 164 ft)			SCA			
Device Identification Plate						
Adhesive label				тс		
Others				ΤZ		
Number of Testpoints						
2 Points					TV2	
3 Points					TV3	
5 Points					TV5	
Hardware Kits						
ANSI 150 Hardware Kit ³						AH

Notes for ProcessMaster FEM612

1 60 Hz (to be specified in case no transmitter is ordered).

2 2 points calibration will be done. If more than 2 testpoints are required, please specify 3 or 5 points with option "Number of testpoints".

3 Meters are wafer style and clamp between customer's pipeline flanges. Mounting hardware kits are available and include: studbolts, nuts, KLINGERSIL gaskets and adaptor.

Remote transmitter FET612

FET612 Electromagnetic Flowmeter, remote transmitter for ProcessMaster FEM610

Remote transmitter FET612	7,8	9,10	11,12	13	14	15,16	17,18	19, 20
Explosion Protection Certification								al ordering des
Without	YO							
Housing Type / Housing Material / Cable Glands		1						
Field-mount / Single compartment / Aluminum / 4 x M20 x 1.5		F1						
Field-mount / Single compartment / Aluminum / 4 x NPT 1/2 in.		F2						
Protection Class Transmitter / Protection Class Sensor			-					
IP 67			70					
Power Supply								
100-240 AC, 2448 V DC, 50 Hz				F				
100-240 AC, 2448 V DC, 60 Hz				G				
Display								
Without					0			
Display with Keypad					2			
Outputs								
Current output (active), 2 Digital Outputs (passive)						A6		
Documentation language								
English							M5	
Device identification plate								
Adhesive label								TC
Others								TZ

...Ordering information

Accessories

Description	Order code
nfrared service port adapter FZA100	
	FZA100
nstallation set for NPT 1/2" cable gland. For sealing the cable conduit during outdoor installation.	
	3KXF081300L0001
dapter M20x1.5 to 1/2"NPT	
	D365B269U01
Signal cable	D173D031U01

Service

Trademarks

FOUNDATION Fieldbus is a registered trademark of

FieldComm Group, Austin, Texas, USA

IART is a registered trademark of FieldComm Group, Austin, Texas, USA

PROFIBUS and PROFIBUS PA are registered trademarks of PROFIBUS & PROFINET International (PI)

™ Hastelloy C is a trademark of Haynes International

28

Notes

ABB Inc. Measurement & Analytics 125 E. County Line Road Warminster, PA 18974

USA Tel: +1 215 674 6000 Fax: +1 215 674 7183

abb.com/flow To find your local ABB contact visit: abb.com/contacts

We reserve the right to make technical changes or modify the contents of this document without prior notice. With regard to purchase orders, the agreed particulars shall prevail. ABB does not accept any responsibility whatsoever for potential errors or possible lack of information in this document.

We reserve all rights in this document and in the subject matter and illustrations contained therein. Any reproduction, disclosure to third parties or utilization of its contents – in whole or in parts – is forbidden without prior written consent of ABB. DS/FEM610-EN Rev. B 11.2020