

—
ABB M E AS U RE M E N T & A NA LY TI CS | CO N FIG U R AT IO N M AN UA L

SpiritIT eXLerate

Measurement supervisory software

Application basics

Communication

Tag database

HMI displays

Alarm management

Trending

Intervals, periods & events

Reports

Databases

Measurement made easy

SpiritIT eXLerate

Human Machine

Interface

Introduction

Welcome to the exciting world of SpiritIT eXLerate!

Using SpiritIT eXLerate, you can create your

complete real-time HMI applications.

There are two reference manuals:

– The ‘Installation manual’, with the system

installation and setup guide.

– The ‘Configuration manual’ describes how to

create a full-featured, real-time HMI application

using SpiritIT eXLerate.

For more information

All publications of SpiritIT eXLerate are available

for free download from:

 Search for

eXLerate Installation manual IM/eXL-EN

eXLerate Configuration manual CM/eXL-EN

Flow-X function reference manual CM/FlowX/FR-EN

eXLerate release notes RN/eXL-EN

 SPI RI T I T E XLER ATE | CO NFIGU RATIO N M ANUAL | CM /E XL- EN 1

Contents

1. Introduction ... 3
1.1. Features .. 3
1.2. Application examples 3
1.3. Cyber security .. 3
1.4. Manuals ...4
1.5. Target audience...4
1.6. Document conventions................................4
1.7. Abbreviations... 5
1.8. Terms and definitions 6

2. eXLerate applications 8
2.1. Application Shortcuts8
2.2. Open an application8
2.3. Create new application8
2.4. Save an application.......................................8
2.5. Close an application 9
2.6. eXLerate user accounts 9

3. Application basics 11
3.1. Application modes...................................... 11
3.1.1. Design mode .. 11
3.1.2. Preview mode .. 11
3.1.3. Verify mode .. 11
3.1.4. Runtime mode ... 11
3.1.5. Switching modes .. 11

3.2. Excel basics .. 12
3.2.1. Worksheets... 12
3.2.2. Cell data .. 12
3.2.3. Shapes, pictures and charts 12
3.2.4. Naming cells and shapes........................... 12
3.2.5. Formulas ... 13
3.2.6. Visual Basic for Applications 14

3.3. eXLerate worksheets 14
3.3.1. ■ Communication sheets 15
3.3.2. ■ Internal sheets.. 15
3.3.3. ■ Calculation sheet 15
3.3.4. ■ Configuration sheets 15
3.3.5. ■ Displays .. 15
3.3.6. ■ Reports .. 15
3.3.7. ■ Safety precautions 15

3.4. eXLerate wizards ... 16
3.4.1. Tag & Object wizard 16
3.4.2. Calculation wizard 16
3.4.3. Button wizard .. 16
3.4.4. Color wizard ... 17
3.4.5. Language wizard ... 17
3.4.6. eXLerate engineering tools 17

4. Data communication 19
4.1. Communication model 19
4.2. Set-up communications 19

4.2.1. Protocol table... 19
4.2.2. Query Table.. 20
4.2.3. Advanced Read mode22

4.3. Update device values22
4.3.1. Communication settings...........................22
4.3.2. Display editing ...22
4.3.3. Tag Database updates22
4.3.4. Visual Basic updates.................................. 23
4.3.5. Advanced Update mode 23

4.4. xlConnect ... 23
4.4.1. Logging and debugging 24
4.4.2. Flow-X communication 24
4.4.3. Modbus communication 25

4.5. OPC Server ... 26

5. Tag Database ... 27
5.1. Tag naming & reference fields..................27
5.2. Communication fields27
5.3. Values fields .. 28
5.4. Alarm fields.. 28
5.5. Trend fields .. 29
5.6. Periodic fields ... 29
5.7. Tag count ... 29

6. Calculations .. 30
6.1. Calculation sheets...................................... 30
6.2. Store values ... 30

7. Displays ...31
7.1. Configuration tables 31
7.1.1. User table .. 31
7.1.2. Worksheet table ... 32
7.1.3. Style table .. 32
7.1.4. Color table ... 32
7.1.5. Button table .. 33

7.2. Display sheets ... 34
7.2.1. New display sheets 34
7.2.2. Text, live values and units 34
7.2.3. Charts ... 35
7.2.4. Pictures .. 35
7.2.5. Shapes .. 35

7.3. Animations .. 35
7.3.1. Animation object names 36
7.3.2. Configuration .. 36

7.4. Buttons & navigation 36

8. Alarm management 38
8.1. Defining alarms .. 38
8.2. Alarm groups ... 38
8.3. Active alarms ... 39
8.4. Historical events... 39
8.5. Advanced alarm usage 40

2 SPI RI T I T E XLER ATE | CO NFIGU RATIO N M ANUAL | CM /E XL- EN

9. Trending.. 41
9.1. Defining trend tags 41
9.2. Data storage .. 41
9.3. Display trends .. 41
9.3.1. Trend Chart ... 42
9.3.2. Trend Pen Selector 42
9.3.3. Trend Navigator ... 42

9.4. Advanced trend functions........................ 43

10. Editing values ... 44
10.1. Allowing user input 44
10.2. Editing table .. 44
10.2.1. Configuration ... 44
10.2.2. Group-wise editing 45
10.2.3. Edit lists ... 45
10.2.4. Date /time editing 46

10.3. Runtime editing .. 46

11. Interval periods and events 47
11.1. Interval table .. 47
11.2. Periodic data .. 47
11.2.1. Weighted averages 48
11.2.2. Latch values... 48
11.2.3. Latch average values 49

11.3. Calculation triggers 49
11.4. Reset historical values 50
11.5. VBA events ... 50

12. Reports ... 51
12.1. Design vs. runtime 51
12.2. Report table ... 51
12.3. Report design ..52
12.4. Report generation52
12.5. VBA report functions53

13. Redundancy .. 54
13.1. Redundant communication links 54
13.1.1. Full redundant communication 54
13.1.2. Validity check redundancy 54

13.2. Redundant devices 55
13.2.1. Separate device tags 55
13.2.2. Combined device tags 55

13.3. Redundant supervisory 56
13.3.1. Servers .. 56
13.3.2. Clients ... 56
13.3.3. Configuration ... 56
13.3.4. Application development 57

13.4. Communication routing 60

14. Databases ... 62
14.1. The system database 62
14.1.1. The embedded system database 62
14.1.2. The external system database 62
14.1.3. System database tables 63

14.2. Foreign databases 63
14.3. Application databases 64
14.3.1. User definable tables 64

14.3.2. SQL queries on worksheet 64
14.3.3. SQL queries in VBA 65

15. Terminal Services 67
15.1. Requirements and licenses 67
15.2. Configuration .. 67
15.3. Using terminal services 67

16. Multi-lingual systems 69
16.1. Windows language packages 69
16.2. Multi-lingual application 69
16.2.1. Language sheet .. 69
16.2.2. Multi-lingual tag database 70
16.2.3. Language selection 70
16.2.4. Multi-lingual displays and forms 70
16.2.5. Multi-lingual buttons 70

17. Daylight saving time............................... 71

18. Document revisions 73

Appendix A. Troubleshooting............................ 74
A.1. Do’s and don’ts ..74
A.2. Communications ...74
A.3. Reports ..74
A.4. Windows event viewer 75
A.5. Diagnostic information 75
A.6. Performance monitor 75

Appendix B. Constants 76

Appendix C. License model 77

 SPI RI T I T E XLER ATE | CO NFIGU RATIO N M ANUAL | CM /E XL- EN 3

1. Introduction
SpiritIT eXLerate is the supervisory software

package of ABB. With SpiritIT eXLerate, you can

create full-featured, real-time HMI applications,

using a well-known, user-friendly spreadsheet

environment.

A SpiritIT eXLerate application gives the operators

a robust and complete visualization and control of

the process.

1.1. Features

SpiritIT eXLerate has the following functionality:

– Full-featured real-time HMI software;

– Made for oil & gas systems;

– Acquire real-time measurement data from field

devices, such as flow computers, logical

controllers, gas chromatographs, utilizing

different communication protocols like Flow-X

Client, Modbus, OPC;

– Display and monitor measurement values and

equipment status, both textual and graphical;

– Operation control (proving, batch, sampling)

– Certified gas & liquid calculations

– User defined calculations

– Virtual Flow Computing

– Reporting (Custody transfer)

– Alarm management

– Real-time & historical trending

– Security, audit trail and event log

– Database storage and retrieval

– System and communication redundancy

– Multi-lingual

– Virtual printer ‘Flow-Xprint’

1.2. Application examples

eXLerate applications are used in different areas:

– Custody transfer metering

– Allocation metering

– Virtual flow computing

– Terminal automation

– Calibration facilities

– Leak detection

Figure 1 Control systems layers

1.3. Cyber security

This product is designed to be connected to and

to communicate information and data via a

network interface. It is your sole responsibility to

provide and continuously ensure a secure

connection between the product and your

network or any other network (as the case may

be). You shall establish and maintain any

appropriate measures (such as but not limited to

the installation of firewalls, application of

authentication measures, encryption of data,

installation of anti-virus programs, etc.) to protect

the product, the network, its system and the

interface against any kind of security breaches,

unauthorized access, interference, intrusion,

leakage and/or theft of data or information.

ABB B.V. and its affiliates are not liable for

damages and/or losses related to such security

breaches, any unauthorized access, interference,

intrusion, leakage and/or theft of data or

information.

4 SPI RI T I T E XLER ATE | CO NFIGU RATIO N M ANUAL | CM /E XL- EN

<…>

1.4. Manuals

The SpiritIT eXLerate manual set consist out of the

following documents:

Installation manual

This manual describes the installation of eXLerate

software and all required software on a computer

system, as well as how to configure the system

and eXLerate options for running SpiritIT eXLerate

applications.

Configuration manual

This manual introduces the principles and

techniques of real-time application development,

as well acts as a reference manual, in which all

details of application engineering can be found.

This volume describes many topics, such setting

up communication, create HMI displays and

reports, utilize calculation worksheets,

configuring and structuring your application.

SpiritIT function library

This library describes the functions for flow, gas

and liquid calculations used in ABB SpiritIT

products.

1.5. Target audience

This manual is written for a variety of readers:

Application developers

System integrators interested in all details

required to set-up and develop a complete real-

time application with SpiritIT eXLerate.

IT departments

IT experts of companies who are centralized

managing software installations on their company

systems.

Interested persons

People investigating whether the capabilities and

features of SpiritIT eXLerate will satisfy his/her

project requirements.

The reader is expected to be acquainted with the

basics of HMI / SCADA visualization software

packages and to be familiar with Microsoft Excel.

1.6. Document conventions

A book symbol in the text indicates a reference to

another section or manual with more details or

other relevant information.

A display symbol in the text indicates that

the user can find more details on the

subject in one of the example applications.

The exclamation mark symbol indicates an

important remark made in the manual

requiring special attention.

A tool symbol in the text specifies user

instructions: the user is assumed to

perform some specific action.

Keyboard keys like function keys, navigation

keys etc., are presented with the key text

enclosed between ‘<’ and ‘>’ characters.

For example, <F1> refers to function key with the

text ‘F1’ imprinted and <Esc> refers to the key with

the text ‘Esc’ imprinted. When a user is assumed

to press and release multiple keys simultaneously,

those keys are separated by a ‘-’ dash character,

e.g. <Ctrl-F1> or <Ctrl-A>.

 SPI RI T I T E XLER ATE | CO NFIGU RATIO N M ANUAL | CM /E XL- EN 5

1.7. Abbreviations
API Application Programming Interface

An interface that allows an application to interact

with an application or operating system, in our

case, SpiritIT eXLerate. Most of the SpiritIT eXLerate

API is implemented through Excel worksheet

functions.

ASCII American Standard Code for Information

Interchange.

A set of standard numerical values for printable,

control, and special characters used by PCs and

most other computers. Other commonly used

codes for character sets are ANSI, Unicode, and

EBCDIC (Extended Binary-Coded Decimal

Interchange Code, used by IBM for mainframe

computers).

COM Component Object Model

Standard for distributed objects, an object

encapsulation technology that specifies interfaces

between component objects within a single

application or between applications. It separates

the interface from the implementation and

provides APIs for dynamically locating objects and

for loading and invoking them (see ActiveX and

DCOM).

CPU Central Processing Unit

DCE Distributed Computing Environment

Definition from the Open Software Foundation,

DCE provides key distributed technologies such as

RPC, distributed naming service, time

synchronization service, distributed file system and

network security.

DCOM Distributed Component Object Model

Microsoft’s protocol that enables software

components to communicate directly over a

network in a reliable, secure, and efficient manner.

DCOM is based on the DCE-RPC specification and

works with both Java applets and ActiveX

components through its use of the COM. See also

ActiveX.

DCS Distributed Control System

DDE Dynamic Data Exchange

A relatively old mechanism for exchanging simple

data among processes in MS-Windows.

DLL Dynamic Link Library.

A file containing a collection of Windows functions

designed to perform a specific class of operations.

Most DLLs carry the .DLL extension, but some

Windows DLLs, such as Gdi32.exe, use the .EXE

extension. Functions within DLLs are called

(invoked) by applications as necessary to perform

the desired operation.

EIA Electrical Industries Association

GUI Graphical User Interface

HART Highway Addressable Remote Transducer.

A protocol defined by the HART Communication

Foundation to exchange information between

process control devices such as transmitters and

computers using a two-wire 4-20mA signal on

which a digital signal is superimposed using

Frequency Shift Keying at 1200 bps.

HMI Human Machine Interface.

Also referred to as a GUI or MMI. This is a process

that displays graphics and allows people to

interface with the control system in graphic form.

It may contain trends, alarm summaries, pictures,

and animations.

I/O Input / Output

IEEE Institute for Electrical and Electronics Engineers

ISO International Standards Organization

MES Management Execution System.

A level of monitoring of a process control system

that is above the PLC and HMI level, where data

analysis and integration with other aspects of a

company such as accounting and purchasing play a

significant role.

MIC Machine Identification Code. License code of

SpiritIT eXLerate which uniquely identifies your

computer.

ODBC Open Data Base Connectivity.

A standardized application programmer's interface

(API) for databases. It supports Visual Basic, Visual

C++, and SQL for Access, Paradox, Text, Excel and

many more database standards.

OEM Original Equipment Manufacturer

OLE Object Linking and Embedding.

A protocol specification by which an object, such as

a photograph, a spreadsheet, video, sound, etc.,

can be inserted into and used by an application.

Renamed by Microsoft into ‘ActiveX’.

OSI Open System Interconnection.

An ISO standard for worldwide communications

that defines a networking framework for

implementing protocols in seven layers. Control is

passed from one layer to the next, starting at the

application layer in one station, proceeding to the

bottom layer, over the channel to the next station

and back up the hierarchy.

OPC OLE for Process Control.

A COM interface specification. Applications which

implement the OPC interface can inter-operate

without the developer needing to control both the

server and client development. By following the

OPC interface, clients and servers from different

manufacturers can communicate and interact

successfully. The OPC interface is designed to offer

the types of interactions that are typical of process

I/O hardware such as PLC, DCS and direct I/O

boards.

SpiritIT eXLerate 2016 is OPC DA 2.05 compliant,

and ABB is a member of the OPC Foundation.

P&ID Piping and Instrumentation Diagram

PC Personal Computer

PLC Programmable Logic Controller.

6 SPI RI T I T E XLER ATE | CO NFIGU RATIO N M ANUAL | CM /E XL- EN

A specialized device used to provide high-speed,

low-level control of a process. It is programmed

using Ladder Logic, or some form of structured

language, so that engineers can program it. PLC

hardware may have good redundancy and fail-over

capabilities.

RPC Remote Procedure Call

A form of application-to-application

communication that hides the intricacies of the

network by using an ordinary procedure call

mechanism. It is a tightly coupled synchronous

process.

RS232 EIA standard for point to point serial

communications in computer equipment

RS422 EIA standard for two-wire differential

unidirectional multi-drop serial

RS485 EIA standard for two-wire differential bidirectional

multi-drop serial communications in computer

equipment

RTU Remote Terminal Unit

SCADA Supervisory Control and Data Acquisition

SQL Standard Query Language

SVC Supervisory Computer

TCP/IP Transmission Control Protocol/Internet Protocol.

Transmission Control Protocol/Internet Protocol.

The control mechanism used by programs that

want to speak over the Internet. It was established

in 1968 to help remote tasks communicate over the

original ARPANET.

TTL Transistor-Transistor Logic

UART Universal Asynchronous Receiver & Transmitter

URL Uniform Resource Locator.

The global address for documents and resources

on the World Wide Web.

VBA Visual Basic for Applications.

The official name is "Visual Basic, Applications

Edition." VBA is Microsoft's common application

programming (macro) language for Excel,

PowerPoint, Visio, Access, Project, Word, and the

Visual Basic programming environment.

XLL Excel Link Library.

Special formatted DLL, which is recognized by

Excel as extension library. In an XLL, typically

worksheet calculations are defined.

XML Extensible Markup Language. A specification for

Web

documents that allows developers to create

custom tags that enable the definition,

transmission, validation and interpretation of data

contained therein.

1.8. Terms and definitions
ActiveX A family of Microsoft object technologies,

formerly called OLE, based on the Common

Object Model (COM).

Asynchronous A type of message passing where the

sending task does not wait for a reply

before continuing processing. If the

receiving task cannot take the message

immediately, the message often waits on a

queue until it can be received.

Client/server A network architecture in which each

computer or process on the network is

either a client or a server. Clients rely on

servers for resources, such as files, devices,

and even processing power.

Another type of network architecture is

known as a peer-to-peer architecture. Both

client/server and peer-to-peer

architectures are widely used, and each has

unique advantages and disadvantages.

Client/server architectures are sometimes

called two-tier architectures.

Device driver A program that sends data to and receives

data from the outside world. Typically, a

device driver will communicate with a

hardware interface card that receives field

device messages and maps their content

into a region of memory on the card. The

device driver then reads this memory and

delivers the contents to the program.

Engineering

units

Engineering units as used throughout this

manual refers in general to the units of a

tag, for example ‘bar’, or ‘°C’, and not to a

type of unit, as with ‘metric’ units, or

‘imperial’ units.

Ethernet A LAN protocol developed by Xerox in

cooperation with DEC and Intel in 1976.

Standard Ethernet supports data transfer

rates of 10 Mbps. The Ethernet

specification served as the basis for the

IEEE 802.3 standard, which specifies

physical and lower software layers. A newer

version, called 100-Base-T or Fast Ethernet

supports data transfer rates of 100 Mbps,

while the newest version, Gigabit Ethernet

supports rates of 1 gigabit (1000

megabits) per second.

Event Anything that happens that is significant

to a program, such as a mouse click, a

change in a data point value, or a command

from a user.

Exception Any condition, such as a hardware

interrupt or software error-handler, that

changes a program's flow of control.

Peer-to-peer A type of network in which each

workstation has equivalent capabilities

and responsibilities. This differs from

client/server architectures, in which some

computers are dedicated to serving the

others. Peer-to-peer networks are generally

 SPI RI T I T E XLER ATE | CO NFIGU RATIO N M ANUAL | CM /E XL- EN 7

simpler, but they usually do not offer the

same performance under heavy loads.

Peer-to-peer is sometimes shortened to

the term P2P.

Polling A method of updating data in a system,

where one task sends a message to a

second task on a regular basis, to check if a

data point has changed. If so, the change

in data is sent to the first task. This

method is most effective when there are

few data points in the system. Otherwise,

exception handling is generally faster.

Process

visualization

software

A system for monitoring and controlling

production processes and managing

related data. Typically, such a system is

connected to external devices, which are in

turn connected to sensors and production

machinery.

The term ‘process visualization software’ in

this document is generally used for

software with which SCADA software, HMI

software, or supervisory computer

software applications can be built. In this

document, although strictly not correct,

the terms ‘SCADA, ‘HMI, ‘supervisory’, and

‘process visualization’ are alternately used,

and refer to the computer software

applications that can be realized with

eXLerate, ABB’s PC-based supervisory

software.

Protocol An agreed-up format for transmitting data

between two devices. In this context, a

protocol mostly references to the Data

Link Layer in the OSI 7-Layer

Communication Model.

Query In SCADA/HMI terms a message from a

computer to a client; in a master/client

configuration utilizing the message

protocol with the purpose to request for

information. Usually, more than 1 data-

point is transmitted in a single query.

Real-time The characteristic of determinism applied

to computer hardware and/or software. A

real-time process must perform a task in a

determined length of time.

The phrase "real-time" does not directly

relate to how fast the program responds,

even though many people believe that real-

time means real-fast.

Registry The Windows Registry is a hierarchical

database that stores low-level settings for

the Microsoft Windows operating system

and for applications that opt to use the

registry.

Resource Any component of a computing machine

that can be utilized by software. Examples

include: RAM, disk space, CPU time, real-

world time, serial devices, network devices,

and other hardware, as well as O/S objects

such as semaphores, timers, file

descriptors, files, etc.

Synchronous A type of message passing where the

sending task waits for a reply before

continuing processing.

Tag A ‘tag’ as used within this document refers

to a data point existing in the tag

database, with several properties, such as

assigned I/O address, current value,

engineering units, description, alias name,

and many others.

Visual Basic A graphical programming language and

development environment created by

Microsoft in 1990, and currently used for

scripting in applications like Microsoft

Office. All macros in Office are created in

Visual Basic.

Web Server A computer that has server software

installed on it and is used to deliver web

pages to an intranet/Internet.

8 SPI RI T I T E XLER ATE | CO NFIGU RATIO N M ANUAL | CM /E XL- EN

2. eXLerate applications
Each eXLerate application is contained within a

single configuration file. The file extension is

“xlrx”. This application file includes:

– Communication settings

– Tag definitions

– Live values (when communication is active)

– User calculations

– Displays

– Animations

– Reports templates

Additional files are created for storing live data:

– Report files

– Trend data

– Alarms & Events (database)

– Event logs

– Retentive data

2.1. Application Shortcuts

The Control Center contains a list of Shortcuts to

your applications, as well as other programs. The

latter is useful in a production environment where

the user does not have access to the Windows.

See the ‘Installation manual’ for details on setting

up the eXLerate Control Center and configuring

the application shortcuts.

2.2. Open an application

You can open an existing application from the

Control Center, either in runtime mode -

communication active and only display pages are

accessible - or in design mode - for application

engineering. See section ‘Application modes’ for

more details on the different modes.

Select the Application Shortcut and click

either the [Runtime] or the [Design] button.

Note that you must be logged in with a sufficient

access level to be able to click the buttons.

When the shortcut does not exist, you can

add new shortcut by right-clicking in the

shortcuts list and selecting [New Shortcut].

Another way of opening an application is by

double-click the file in Windows Explorer.

If the application shortcut doesn’t exist, it will be

added to the control center and file locations will

be set based on the file location.

As eXLerate is careful with your work, a temporary

working copy is created in the “%TEMP%”

directory. when you open an application. This

working copy is the file that is opened while the

original application file remains untouched to

prevent the application getting corrupted on an

unintended shut-down.

During the application startup, various startup

messages are logged on the Control Center event

log. These messages may be used to closely

monitor the entire application startup process and

are typically used during the application

development process.

Examples of such messages:

dd/mm/yyyy hh:mm:ss [xlCenter] - Starting '…'

in design mode ...

dd/mm/yyyy hh:mm:ss [eXLerate] - Initializing

user application data...

dd/mm/yyyy hh:mm:ss [eXLerate] - Initializing

displays...

When the application is started, the Control

Center itself is minimized, and disappears as an

icon into the system tray.

2.3. Create new application

You can start from scratch to scratch using the

“MyTemplate.xlrx” example application. It allows

you to create a new project in a specific resolution.

Open the template application and follow

the instructions. The new application is now

automatically created.

You may also create your own company specific

template and use that when creating new

applications.

To create a new application, copy an

existing, resembling or template

application, rename the file and open it.

2.4. Save an application

Only when you have opened an application in

design mode, you can make changes to the

application. You can save an application by

pressing the [Save] button in the menu. At that

 SPI RI T I T E XLER ATE | CO NFIGU RATIO N M ANUAL | CM /E XL- EN 9

moment, first a backup of the previous

application file is stored in the “\XLRX\Archive”

directory. Then the working copy is saved on the

original file location. This way, you can always go

back to previous versions. The number of archive

files depend on the settings in the Control Center.

You can ‘Save new version’ of the application. This

option performs the same actions as the [Save]

button, and additionally creates and updates the

‘xVersion’ sheet:

– increments the revision number,

– set name of the application engineer,

– set the description for new version,

– set the status of the application,

– set the eXLerate version used

– set the time of the version update.

Figure 3 Application Shortcut Properties

2.5. Close an application

You can close a running application, either using

the standard menu option from the application

file itself, or via the Control Center application

shortcut:

In the Control Center, right-click the

application shortcut and select Terminate

Application.

When an application is terminated form the

Control Center, eXLerate checks the security level

if the user is allowed to close the application.

When closed from within the application, this

check cannot be performed by the Control Center.

If the application is changed in design mode and

not saved yet, you are asked to save or discard the

changes.

The progress bar of the Control Center indicates

the duration of the shutdown process.

2.6. eXLerate user accounts

Different users will have different access rights.

Not everyone is allowed to start, edit or terminate

applications, or modify settings. Similar in

applications, user levels can be configured to allow

or disallow certain run-time actions like alarm

acknowledgement, modifying values, etc.

In eXLerate each user has a level number which

defines of what the user is allowed to do. The

higher the level number, the more the user is

allowed to do.

The following standard user and passwords are

created when eXLerate Control Center is started

the first time.

Table 1 Pre-configured User Accounts

User Password Level

guest guest 10

operator operator 500

engineer engineer 1000

administrator admin 2000

CHANGE THE DEFAULT USER PASSWORDS

AFTER INSTALLATION!

Log-in with an administrator account, click

on the XL icon (left top corner) and select

Edit Users to manage the user accounts.

Figure 4 Edit Users

The option is disabled when you have insufficient

rights.

10 SPI RI T I T E XLER ATE | CO NFIGU RATIO N M ANUAL | CM /E XL- EN

You get a dialog with the user accounts and you

can add, modify and delete users.

Figure 5 User Account Configuration

For each user set a name, a password, and the low

and high levels.

The two levels are used to extend the flexibility.

Access is granted if the defined level for an action

is between the low and high level of the user.

If this all sounds complex, the “Low Level” setting

is typically set to zero, allowing a user to perform

all the actions lower-level users can do.

The users are applicable on the local computer for

the eXLerate system. Different computers can

have different users. The security in eXLerate

applications is based on the user level (number);

running an application on another computer will

use the users as defined on that computer.

 SPI RI T I T E XLER ATE | CO NFIGU RATIO N M ANUAL | CM /E XL- EN 11

3. Application basics
eXLerate is integrated with Microsoft Excel. It

allows to use all the available Excel functionality

and it adds features to Excel in various ways. The

more generally interested reader is expected to be

commonly acquainted with Excel. An application

developer is assumed to have a thorough

understanding of at least the following aspects of

Excel:

– Worksheet/workbook organization

– Cell references

– Cell formatting

– Cell formulas

– Named ranges, tables

– Array formulas

– Shapes and pictures

– Macro recording and playback

– Visual basic for applications

With eXLerate extra functionality is added to the

standard excel functions:

– Ribbon with Wizards

– Real-time communication

– Buttons for navigation and control

– Animation of shapes & objects

– Trending of data

– Alarm management

– Database

– List views

– Additional worksheet functions

– Additional VBA functions

The most visible part while developing an

application is the eXLerate toolbar (ribbon).

Figure 6 eXLerate toolbar ribbon

3.1. Application modes

Developing an eXLerate application happens in

phases: you configure your application, you test if

it works, and eventually it is put in production. To

facilitate every step, eXLerate can operate in four

different modes.

Table 2 eXLerate modes

Mode Communication Sheets protection

Design Inactive Unprotected

Preview Inactive Protected

Verify Active Unprotected

Runtime Active Protected

3.1.1. Design mode

This mode is to develop the application.

Worksheets are not protected, and you don’t have

real-time updates from your connected devices.

3.1.2. Preview mode

In preview mode, you see the application as your

user would see it, i.e. only the display pages.

Sheets are protected against making changes, but

real-time communications are disabled.

3.1.3. Verify mode

Verify mode is for debugging your application.

Real-time communication with devices is enabled

but sheets are unprotected, so you still see all the

worksheets and can debug the configuration,

communications, and calculations.

Warning: do not edit cells, edit VBA code or

save your application in verify mode.

3.1.4. Runtime mode

This mode is for normal operations. This is what

end-users will use on live systems: real-time

communications are enabled, only the display

screens are visible, and the sheets are protected

against making design changes.

3.1.5. Switching modes

You can start the application directly in Runtime

mode or Design mode from the Control Center.

Switching between modes is done by clicking the

appropriate buttons.

To go from Design mode to Preview mode,

press the [Preview] button in the eXLerate

ribbon or press <Ctrl-N>.

To go from Preview mode back to Design

mode, press <Esc> followed by [Design

Mode] button that appears.

12 SPI RI T I T E XLER ATE | CO NFIGU RATIO N M ANUAL | CM /E XL- EN

To go from Design mode to Verify mode,

press the [Start] button in the eXLerate

ribbon or press <Ctrl-T>

From Verify mode you can go to Runtime

mode. Click the [Runtime] button in the

eXLerate ribbon or press <Ctrl-N>.

Press <Esc> followed by [Verify Mode]

button to go from Runtime mode to Verify

mode.

To exit Verify Mode and go to Design mode,

press the [Stop] button in the eXLerate

ribbon or press <Ctrl-O>.

Figure 7 Switching modes

3.2. Excel basics

While developing an application you make use of

Excel’s features. While this document is not

intended to describe how Excel works, we do

present some of the basic functionality in this.

3.2.1. Worksheets

A worksheet is a collection of cells where you keep

and manipulate the data. Each Excel workbook can

contain multiple worksheets. Within an eXLerate

applications, multiple worksheets are available, all

with their specific functionality like configuration

settings, calculations, displays, reports.

3.2.2. Cell data

In Excel cells can contain (numerical) data. This

data can be presented in different formats

(styles), like numbers with different decimal

places, date, time, text, etc.

3.2.3. Shapes, pictures and charts

With Excel you can put a variety of standard

shapes, pictures, and charts on sheets. With

these, you can create drawings and graphical

presentation on sheets. With eXLerate it is

possible to animate these objects based on live

values, see section ‘Animations’.

Figure 8 Insert Shapes, Pictures and Charts

Shapes can be grouped together to form new

shapes. Limit the grouping of shapes to one (1)

level to allow animations of the sub-shapes of

grouped objects.

Don’t use cell references to dynamically

change the text on shapes as it causes

memory leaks with excel.

Figure 9 Don’t use cell references on shapes

Don’t use 3D effects as it is know that it can

cause memory leaks with excel.

Figure 10 Don’t use cell 3D shapes

3.2.4. Naming cells and shapes

Giving logical names to cells and objects (shapes)

makes it easier in an application to understand

the meaning is of a cell value in your application

and to use eXLerate animations for shapes.

Runtime mode

Verify mode Preview mode

Design mode

 SPI RI T I T E XLER ATE | CO NFIGU RATIO N M ANUAL | CM /E XL- EN 13

To give a name to a cell or a shape, you

enter the name directly the Name input on

the eXLerate ribbon.

Figure 11 Name definition

For cell names, you can also use the Name

Manager, which shows all the defined names,

checks the referred cells, and check for errors.

During application development regularly

check for errors or invalid references:

– Check there are no references to other

workbooks, like

='File Path\[Application.xlrx]Sheet'!A15

– Check there are no “Names with Errors”

– Limit the use of “Names Scoped to Worksheet”

Same names with different worksheets scopes

may result in unexpected values as it is not

clear which scope is being used.

Note that it is used by excel Page Setup for

print setting per sheet.

Figure 12 Name Manager

3.2.5. Formulas

You can use formulas in cells to create your own

calculations. A formula always starts with an equal

sign (‘=’). You can use logical operators, Excel

functions and additional eXLerate functions.

The automatic calculation of formulas is

disabled in eXLerate to prevent a torrent of

calculations. In Runtime mode eXLerate evaluates

formulas once a second. When you want to see the

result of a change you made in Design mode,

press the <F9> key.

Reference to other cells

You can refer to data in other cells and on other

sheets to be used within formulas

– =G10

Relative references to a cell address on the

same sheet. The reference changes when the

cell is copied.

– =G10

Absolute references to a cell address on the

same sheet. The references don’t change when

the cell is copied.

– =xTagDB!G10

Relative references to a cell address on another

sheet. The reference changes when the cell is

copied.

– =xTagDB!G10

Absolute references to a cell address on

another sheet. The references don’t change

when the cell is copied.

– =Calc.Stn_GVR_CUR

References to a named cell. The references

don’t change when the cell is copied.

Formulas can have other cells as input. This can be

any of the references to cells as described above.

For example, a cell contains the formula which

adds the values of cells A1 and A2:

=SUM(A1,A2)

Rather than use cell addresses, you can also use

the cell names, like:

=SUM(xSTR1_GVR.Value, xSTR2_GVR.Value)

Using named cells makes it better to

understand what the formula is calculating.

Array formulas

Most formulas have a single result value. Some

formulas however produce an array of results.

Excel has two different methods of handling

arrays, depending on excel version. When you use

a formula in dynamic array aware Excel, it

determines if the formula has the potential to

return multiple values. Excel formulas that return a

set of values, return these values automatically

into neighboring cells.

14 SPI RI T I T E XLER ATE | CO NFIGU RATIO N M ANUAL | CM /E XL- EN

Figure 13 Excel dynamic array

To enter an array formula in older versions, select

as many cells (rows and columns) as necessary for

the results. Then enter the formula and press

<Ctrl-Shift-Enter>. Excel will automatically enclose

the formula in curly brackets ({}).

Figure 14 Excel Control-Shift-Enter formula

Volatile functions

A volatile function causes a cell is always

recalculated even if the input values have not

changed. This results in a torrent of calculations,

decreasing the performance of the application.

Don’t use volatile functions in your

application, but their alternatives:

– Now() -> exNow()

– Today() -> exNow()

– Offset() -> Index()

– Indirect() -> (No alternative)

– Rand() -> eXLerate simulation

– Cell() -> exCellProperties()

– Info() -> (No alternative)

Circular references

A circular reference occurs when a formula, direct

or indirect, refers to its own cell. It then- uses its

result as input. This causes iterative calculations,

leading to erratic behavior and decrease of the

application performance.

Perform error checking to check and solve

circular references regularly during design.

Figure 15 Check for Circular References

3.2.6. Visual Basic for Applications

Excel has a built-in scripting language called VBA.

You can use this VBA to create your own forms

(pop-ups) and functions. To start the VBA editor,

press <Alt-F11> or menu eXLerate | Visual Basic.

eXLerate adds many functions you can call from

VBA. You can find a help file with all available

functions by clicking Help | Function Reference.

These functions allow you to manipulate eXLerate

specific items such as alarms, trends, etc.

In an eXLerate application, there are some VBA

modules present which are automatically

generated, like the module “modButtons”.

You should not change these modules, for

your changes will get overwritten when

running the eXLerate wizards.

3.3. eXLerate worksheets

An eXLerate application consist of specific

formatted worksheets in a single workbook.

Several sheets are interpreted by eXLerate in a

special way to produce user interface displays,

reports, and perform calculations at runtime.

The data and the calculations on the sheets are

interconnected, which may seem overwhelming

when first opening an eXLerate application.

However, most applications follow the same

pattern and set-up.

 SPI RI T I T E XLER ATE | CO NFIGU RATIO N M ANUAL | CM /E XL- EN 15

Figure 16 eXLerate sheets relations

3.3.1. ■ Communication sheets

The backbone of an application are tag database

and the communication set-up.

The xComms sheet contains the configuration for

communication with external devices, e.g. the

COM/IP ports, baud rates etc., and the definitions

for polling / writing the data blocks. It also

contains debugging facilities for communications.

The sheet xTagDB is the tag database. It lists all

tags that are communicated with external devices

with their properties and the (live) values.

3.3.2. ■ Internal sheets

The Tag & Object Wizard will automatically

generate the internal sheets based on the tags

and defined properties. These internal sheets have

named cells with values that will be updated when

the communication is running.

3.3.3. ■ Calculation sheet

For calculating values, you use a calculation sheet.

You can use all Excel and additional eXLerate

functions. You can have multiple calculation

sheets. Their names must start with ‘xCalc’.

3.3.4. ■ Configuration sheets

An eXLerate application contains additional

configuration sheets that influence the behavior

or the looks of displays and reports.

The xTables sheet contains the configuration

tables, like which sheets are displays (available in

runtime), which sheets are report templates,

interval & periods for event-based calculations like

averaging and automatic report generation,

definitions for buttons, and more. It contains the

following configuration tables:

– Alarm group table

– Interval table

– Report table

– Style table

– Color table

– User table

– Worksheet table

– Button table

The xAnimations sheet contains the definitions to

animate shapes. You can have tag values and

calculated values affecting the colors, position,

size or visibility of a shape on your display sheets.

The xEditing sheet contains the definitions to

allow users to change values (settings) when the

application is in runtime. The values can be used in

internally and be sent to connected devices.

3.3.5. ■ Displays

Display sheets are the runtime user interface

presenting the status and values to the user. It can

contain references to live and calculated values,

shapes and object displaying the field status,

buttons for navigation and control.

3.3.6. ■ Reports

Report sheets serve as a template for generation

of reports. It contains references to live and

calculated values. When a report is generated, a

snapshot of these values is taken and stored in

separate report files ion disk.

3.3.7. ■ Safety precautions

To prevent regular users from debugging and

going into the VBA source code during runtime,

avoid using Excel’s built-in Worksheet.Change

event. Also consider calling exRunCancelKey()

before any other code within a custom subroutine

as that will prevent debugging VBA code executed

below that call for that subroutine for

unauthorized users.

Note that the usage of this command won’t work

on earlier versions of eXLerate and that if you

Reports

Communica

tions

Internal

sheets

Configuration

sheets

Display

pages

Calculation

sheets

16 SPI RI T I T E XLER ATE | CO NFIGU RATIO N M ANUAL | CM /E XL- EN

want backwards compatibility with older versions,

you should look into the implementation of

exRunCancelKey() that is generated within

modButtons.

3.4. eXLerate wizards

The eXLerate menu provides “wizards” for

automation and enhanced configuration of the

application. Wizards perform automatic naming,

generate internal sheets and calculations, add

alarm lists navigation buttons, and more.

This section describes the general functionality of

the wizards. How to set-up your application and

work with these wizards is described in the

following sections in this manual

The wizard reports the progress and found errors

into the output window. These error messages are

clickable. Double-click on the error will select its

location in the application.

Figure 17 Wizards output window

3.4.1. Tag & Object wizard

The ‘Tag & Object wizard’ performs the following

actions:

– Create cell names.

Named cells makes an application easier to

understand - see ‘Naming cells and shapes’.

Names are created for cells with:

• Live values

• Alarm settings

• Alarm statuses

• Average values

• Latched values

– Remove invalid names

– Create the actual alarm list

– Create trend tags

– Update the communication configuration

– Check the entire application for errors

Run the Tag & Object wizard from the

ribbon or by pressing <Ctrl-W> after making

changes to the communication sheets.

After running this wizard, several cell reference

names are available to you. These names are

based on the name you specified and prefixed by a

lowercase ‘x’. If you define a tag with the name

‘MyTag’, the reference names ‘xMyTag.xxx’ will be

created, with ‘xxx’ being the specific

property/field of the tag. See section ‘Tag

Database’ on the field and cell names.

3.4.2. Calculation wizard

The ‘Calculation Wizard’ generates the

names for the cells on calculation sheets.

A worksheet is a calculation sheet when the name

starts with ‘xCalc’, and where on the third row a

header line is defined containing fields: ‘Group’,

‘CalcTag’, ‘Description’ etc.

The created cell names are the concatenation of

the name defined in the ‘CalcTag’ field and the

field header name when the field name starts with

an underscore, except for the _Value field, for

which the name will only be the ‘CalcTag’.

For example:

CalcTag: Calc.Str1_MOV1:

Field name: _Value

Cell name: Calc.Str1_MOV1

CalcTag: Calc.Str1_MOV1

Field name: _Position

Cell name: Calc.Str1_MOV1_Position

CalcTag: Calc.Str1_MOV1

Field name: Text

Cell name: (no name)

Run the Calculation wizard from the ribbon

after making changes to a calculation sheet.

The calculation wizard can only be invoked when

the selected worksheet is a calculation worksheet.

3.4.3. Button wizard

The ‘Button wizard’ creates the buttons

actions and functionality.

The wizard will parse the configuration for the

buttons - see section ‘Button table’. It will:

– Create / update VBA module ‘modButtons’

with the procedures for display navigation

– Apply security checks on these procedures

 SPI RI T I T E XLER ATE | CO NFIGU RATIO N M ANUAL | CM /E XL- EN 17

– Update text on buttons

– Assign procedures to the buttons

– Assign procedures to keyboard keys

Don’t make changes to this VBA module

‘modButtons’ as these changes will be lost

when running the wizard.

Run the Button wizard when you made

changes to the Button table.

Figure 18 Button Wizard

When you start the Button Wizard, it presents you

with the following options:

– Update buttons

Only update the text on the buttons and the

assigned macros.

– Create User Interface components

(Only for backwards compatibility)

Creates the objects ‘button1’- ‘button12’

position/layout on the display sheets

according the ‘Template’ sheet and updates

the text and assigned macros.

– Create All User Interface components

Creates all objects as defined on the ‘Template’

sheet on the display sheets and updates the

text and assigned macros.

You can test the display navigation by switching to

preview mode.

3.4.4. Color wizard

The animation colors are configuration in the

‘Color table’. The ‘Color wizard’ updates these

colors for use in runtime.

Run the Color wizard when you have made

changes to the Color table.

3.4.5. Language wizard

Multi-lingual applications require the

‘xLanguage’ sheet with the translations for

product and application related texts.

The ‘Language wizard’ initially creates the multi-

lingual configuration sheet ‘xLanguage’ with the

product related text strings. A user can add

languages and application related text string that

require translations to this sheet.

Run the Language wizard when you are

implementing multiple languages, after

making changes to the language sheet.

Existing translated texts will always remain

unaffected by the Language wizard.

3.4.6. eXLerate engineering tools

The eXLerate ribbon provides additional utilities

useful during the developing of an application.

The usage of the tools in explained in more details

in the subsequent sections.

– Shape property tool

This tool is deprecated as the Excel’s default

Selection Pane <Alt-F10> and Format shape

<Ctrl-1> tools provide the same functionality.

– Name definition tool

This tool is deprecated as the default Excel’s

Name manager <Ctrl-F3> provides the same

functionality.

– Color palette tool

This tool is deprecated as the information

provided is available in the Color table.

– Alarm tree tool

This tool is deprecated as the information

provided is available in the Alarm groups table.

– Generate Report

This option allows you to quickly generate a

report for engineering purposes.

– Browse OPC Servers

This tool allows you to browse local and remote

OPC servers, search item names and paste

items into the application.

– Communications options

This shows the diagnostic and logging options

for the communication protocols.

– Mark/Unmark unprotected cells

This tool is deprecated as marking/unmarking

protected cells can result in losing cell

formatting.

– Remove external links

Removes all external links in an application

workbook and references are reverted to the

current application.

18 SPI RI T I T E XLER ATE | CO NFIGU RATIO N M ANUAL | CM /E XL- EN

– Reset historical values

This option resets the calculated averages and

latched values of the current application. It can

be useful for example restart calculating

averages and latching after an application test.

– Recalculate application

This option triggers the application

recalculation. The system flag: ‘xAutoRecalc’,

which is used to force recalculate expressions

in Excel on a system restart is updated as well.

and shape animations are updated.

– Import sheets

This option allows you to easily import sheets

into your application. The tool automatically

removes any external links and provides the

ability to replace content while importing.

– Advanced replace

Advanced Replace allows you to find & replace

content not only on the sheet, but also in

names, and objects. Special ‘prefix’ and

‘postfix’ options allow you to replace only the

content that you are interested in.

 SPI RI T I T E XLER ATE | CO NFIGU RATIO N M ANUAL | CM /E XL- EN 19

4. Data communication
Real-time data communications in eXLerate

enables the exchange of information with one or

more external devices, such as flow computers,

and Process Logic Controller

Figure 19 Data communication

4.1. Communication model

To connect devices, specific hardware such as

Ethernet interface cards or serial ports, are used.

Also, the data exchange needs to take place in an

agreed format. A communication protocol in

eXLerate is the combination of the physical

connection and the data message type is

A protocol is usually query based. A query defines

the data items, the direction (from client to server

or vice-versa), and how this transfer takes place:

periodically, event-based, manually, or a

combination of these methods. Queries only ask

for data (a read-only query), only write data (a

write-only query) or have combined read/write

commands. A ‘query’ in this manual is also

referred to as a ‘poll-block’, ‘message’, or ‘frame’.

Usually, more than 1 data point is transmitted in a

single query. In eXLerate, a single tag value

corresponds to a single data point.

Communication protocols in eXLerate have a

multiple query-based structure, i.e. each of the n

protocols in a project has m data queries in which

j data-points (tag values) are enclosed.

Figure 20 Data communication

In eXLerate, the protocols run asynchronously in

independent programs execution threads, and

process their associated queries sequentially.

Many manufacturers have developed many

different protocols and variations, each with

certain advantages and drawbacks.

In eXLerate, the ActiveX control ‘xlConnect’, is

responsible for real-time data communications. It

is the intermediate between the device and the

application.

Figure 21 Data communication flow

The following communication protocols are

available in eXLerate (depending on license):

– Flow-X Client

– Modbus TCP Client / Server

– Modbus Serial Master / Slave

– OPC Client / Server

4.2. Set-up communications

Real-time data communications in an eXLerate

project is configured in two worksheets:

xComms

This worksheet contains the protocol table with

the definitions for the (physical) connections, the

query table with the message queries for each

protocol and the ActiveX control ‘xlConnect’.

xTagDB

The tag database worksheet contains the

definitions for all tags communicated with

external devices, including the properties needed

for data communications, and the live values.

4.2.1. Protocol table

The Protocol Table is list that contains the

definitions of the protocols to communicate with

the devices. Multiple protocols are available, all

running in parallel. For each protocol, a thread is

created in Windows. For redundancy, a device can

have multiple protocols defined.

Figure 22 Protocol table

For each specific protocol in eXLerate, an

example application is available. These

Protocol Table
ID Protocol Type Options MoreOptionsDevice DeviceOptionsDeviceMoreOptions Tag Description Status

1 FlowXClient 192.168.1.100 200,90,90 FXM1 FlowX link 1 0

2 FlowXClient 192.168.2.100 200,90,90 FXM1 FlowX link 2 0

3 ModbusClient RTU 192.168.1.100 502 50,50,100 FXM1 Modbus link 1 0

4 OpcClient OPC 2.0 eXLerate 1 OPC OPC link 0

n protocols m Queries j Tags

xlConnect Application Device

20 SPI RI T I T E XLER ATE | CO NFIGU RATIO N M ANUAL | CM /E XL- EN

applications contain the available options,

settings, and other parameters. Check the

example applications for additional information of

the protocols that you need in your application.

The following Protocol Table columns are relevant:

– ID

Unique, incrementing index number internally

identifying the protocol. This ID will be used in

the Query table.

– Protocol

The key name of the protocol type, for example:

’FlowXClient’, or ‘ModbusMaster’.

– Type

(optional) Message type for the protocol, such

as ‘RTU’, or ‘ASCII’ in case of Modbus, or ‘OPC

1.0’ or ‘OPC 2.0’ in case of OPC Client.

– Options / MoreOptions

At these fields, specific protocol dependent

options may be entered.

– Device

Specifies the device to use, i.e. a serial port

configuration (like “COM56:9600,n,8,1”), or a in

case of an Ethernet device the TCP/IP address

(like “192.168.0.10”). It can be set to ‘Sim’ to

simulate the device so the protocol and

pertaining data is simulated.

– DeviceOptions

Device connection options, like IP port number

or serial RTS signal set-up

– DeviceMoreOptions

Connection fail and reconnect timing settings

– ModemInit

In case a modem is connected, the initialization

string sent to the modem prior to calling.

– DialCommand

Dial command for the modem, such as: “ATDT

+31402961234”.

– MOptions

Modem dialing timers and reconnect counters

– UserName

Username for connecting (Flow-X protocol)

– Password

Password for connecting (Flow-X protocol)

– Tag

(optional) tag name of the device. May be left

empty as it is not internally used.

– Description

(optional) A description of the device. May be

left empty as it is not internally used.

– Status

This value represents the communication

status of the protocol. Value of zero (0) means

no communication, another value status

depends on the protocol type.

4.2.2. Query Table

The Query Table defines poll blocks (message

queries) of the data to read from/write to the

devices. Each row in the Query Table is linked to

one protocol (refers to the ID the Protocol Table),

each protocol can have 1 or more queries. The data

of a query is related to the tags in the xTagDB.

Figure 23 Query table

The important columns in this table are:

– ID

Unique, incrementing number identifying the

query. This ID will be used in the xTagDB.

– Protocol

Link to the Protocol Table ‘ID’. It designates the

query to a specific protocol.

– Device

Device/Slave ID used in each message (for

multi-drop protocols), e.g. Modbus, this is a

number; for OPC, this is a group name

– Interval

The time between two consecutive read- or

write-polls, and is entered in 0.1 sec units, e.g.

30 = 3.0 second intervals. The relative start

time of a query may be also defined, e.g. when

the user specifies: ‘20:15’, there will be a 2.0

second interval update for this query, which

starts after 1.5 seconds elapsed.

– Timeout

The maximum time, in 0.1 sec units, to wait for

a response. When no response is received

within this time, a retry of the query is sent.

– Retries

The number of retries in case of a timeout is

specified with this parameter. When elapsed,

the device is set to sleep.

– SleepTime

This parameter specifies the sleep time, in 0.1

sec units. The associated device is put to sleep

 SPI RI T I T E XLER ATE | CO NFIGU RATIO N M ANUAL | CM /E XL- EN 21

when all retries have been elapsed and still no

response is received at a message query. A

sleep time is used to let other devices, which

share the same protocol hardware, prevail

communications over a failing device. When the

sleep time has elapsed, communications are

resumed.

– Row

The row number of the tag database with the

first item value for this query. Usually, the Excel

MATCH() function is used to automate the

lookup of these values.

– Col

The column number of the tag database that

contains the values for this query. Usually, the

Excel COLUMN() function is used to automate

the lookup of these values.

– Worksheet

Specifies the worksheet name with the tag

database – always set to ‘xTagDB’.

– Options

Advanced read and write options. These

options may be combined, by adding individual

settings.

• xBlockWrites

Write all items in a query at once rather than

individual items when either value

belonging to the query has changed. By

default, items may be individually updated.

• xNewDataOnly

Send only new data to Excel. When received

data is equal to the data already available,

no update takes place. This option prevents

unnecessary calculation updates. By default,

every read query causes an associated

update in Excel.

• xTransparentRead

Allow reading data while write updates are

currently pending. By default, read polls are

postponed during a write update.

• xForcedWrites

Allow pending write commands to be

executed after a device has gone back on-

line. When a device has gone off-line, write

queries cannot be sent to a device. This

option allows for automatic update of the

data once the device in online again. By

default, no automatic writing take place.

• xNoReadOnce

Disable an initial read. By default, write-only

queries are updated initially, there is a read

command defined for the query.

• xItemUpdates

Items in this query are updated in Excel

individually rather than group-wise, a query

at a time. This option is available for the

OPC client protocol.

• xNoSleepAll

Prevents other queries from going to sleep

when one query in the protocol fails. This

option is available for Modbus protocols.

• xWriteOnly

Items only will be written and are never

updated in Excel. This option is available for

the OPC client protocols.

• xWriteAll

Writes the whole query-block, when at least

one item in the query was changed.

– MoreOptions

Enable query logging of all the received data.

– Status

When the query is on-line, eXLerate writes a “0”

(zero) into this cell. If a query goes off-line, a

“1” (one) is stored in this cell.

Additional fields are protocol dependent. Check

the working sample workbooks for an example of

the protocol you require.

For Flow-X protocols, the Query table contains no

protocol specific columns.

For Modbus protocols, the Query table contains

the following columns:

– 14: Type

Poll-block type:

‘1’: coils; ‘2’: registers; ‘5’: OMNI report.

– 15: Address

Start address of the query.

– 16: Length

Number of registers/coils for this query.

– 17: Size

Number of bits in a register (1, 16, 32, 64, 128).

– 19: SW

Supported Modbus single write command:

'5': coils; '6': holding registers.

– 20: MW

Supported Modbus multiple write command:

'15': coils; '16': holding registers.

– 21: MR

Supported Modbus multiple read command:

'1': coils; '2': discretes; '3': holding registers; '4':

input registers; '65': OMNI text buffer.

For OPC client protocols, the Query table contains

the following columns:

22 SPI RI T I T E XLER ATE | CO NFIGU RATIO N M ANUAL | CM /E XL- EN

– 14: Deadband

Reject values that do not change more than a

certain percentage from the previous value

recorded.

4.2.3. Advanced Read mode

Normally, devices are polled periodically for data

according the interval fields defined at the Query

Table. With the VBA function exSetReadMode()

you can alter this default behavior and specify

how to read the values from external devices.

– exCommsReadModeInterval

Update the query at its defined interval. This is

the default mode. Use this to restore the

default original behavior.

– exCommsReadModeDisabled

Suspend reading polls of the specified queries.

– exCommsReadModeTrigger

Read the specified queries, but only if not

scanned periodically.

– exCommsReadModeTriggerAll

Read the specified queries, even if periodically

scanned.

4.3. Update device values

With eXLerate it is possible to write values to a

connected device in three different ways:

– Display Editing functions

Operator entries from displays, e.g. override

values, alarm limits, settings

– Tag Database update functions

Live/calculated data available in application,

e.g. selected gas composition, updates to DCS

– Visual Basic functions

Control signals from VBA procedures, pop-up

forms, e.g. valve commands, proving

commands

4.3.1. Communication settings

To be able to send values to a device, make sure

that eXLerate can update the device value over the

communication link. For Modbus Master/Client

protocols the single write (SW) and/or multiple

write (MW) function codes should be enabled in

the query table (and in the connected device). For

Modbus Slave/Server protocols the multiple read

(MR) function codes should be enabled in the

query table (and in the connected device).

4.3.2. Display editing

When you want a user input from a display to be

written to a device, you can use the editing

functions as defined in section ‘Editing values’

above. Unlock the cell(s) on the display to allow

user input in runtime, and configure the Editing

table for these cell(s) with the target type set to

“xTargetComm” and the Target to the tag value in

the tag database (like “xTagName.Value”).

When the user enters a new value in the cell in

runtime, the value is sent to the device.

4.3.3. Tag Database updates

When you want to send (live or calculated) values

to a connected device, you can use the update

functions in the Tag Database. Define the

reference to the value / calculation in the

WriteValue column and add in the Update column

an eXLerate update function to trigger the data

update to the external device:

– exUpdateEx() for numerical values

– exUpdateStrEx() for string values

– exUpdateVarEx() for variant values

These functions require the following arguments

– Query ID

Query to use for communication.

Refer to the correct Query column.

– Tag ID

Internal ID number of the tag

Refer to the ID column

– Value

Value to write to the device

Refer to the WriteValue column

– Update mode

Mode when the update should take place

• xUpdateNever Don’t update

• xUpdateAlways Always when triggered

• xUpdateConditionally Update as set by

VBA function exSetUpdateMode().

– Trigger

Optional trigger to update.

When omitted, the update is triggered when

the write value changes.

When set, the update is triggered when either

the value or the trigger changes.

Example

To write a new value for the tag with on row 73,

the function looks as follows:

 SPI RI T I T E XLER ATE | CO NFIGU RATIO N M ANUAL | CM /E XL- EN 23

=exUpdateEx(L73,B73,H73,xUpdateAlways)

With L73 Reference to cell with the Query ID

 B73 Reference to cell with the Tag ID

 H73 Reference to cell with the value

 xUpdateAlways Always update

4.3.4. Visual Basic updates

You can create your own user input and procedure

with VBA and user forms. When you want to

update values from your VBA code to a connected

device, you can use the same three functions as

the worksheet update functions:

– exUpdateEx() for numerical values

– exUpdateStrEx() for string values

– exUpdateVarEx() for variant values

You specify the Query ID, Tag ID, the write value,

and the update mode as arguments for these

functions.

In VBA you have an additional function:

– exUpdateForce() for numerical values

This function triggers the value is sent to the

device, even if the value has not changed.

This function requires as arguments the tag name

like xTag.Value rather than the Query ID and Tag

ID, and the value to write. As optional argument

you can specify if the value in the tag database is

to be updated as well, avoiding inconsistencies

with the tag database.

4.3.5. Advanced Update mode

Within VBA you can specify how the values are

updated to external devices with the function

exSetUpdateMode().

The function defines how the ‘exUpdateEx’,

‘exUpdateStrEx’, ‘exUpdateVarEx’ functions

update the values for the corresponding protocols

and queries when their mode parameter is set to

‘exCommsUpdateConditionally’. Other modes are

no effected.

The Mode supports the constants as defined in

the exCommsUpdateSetMode enumeration.

– exCommsSetModeDisableAll (4)

No values are written, although the values are

internally updated.

– exCommsSetModeNewItemsOnly (5)

From this moment on, values are written.

Values that have been updated previously are

discarded, e.g. only newly updated values will

be written to the device.

– exCommsSetModePendingItems (6)

Write all values that were internally updated

while mode was disabled and remain active.

– exCommsSetModeFlushActivate (7)

Write all once initialized values and remain

active.

– exCommsSetModeTriggerOnce (8)

Write all values that were internally updated

while mode was disabled. After the update

remain inactive and wait for another update

trigger.

4.4. xlConnect

In eXLerate, the component xlConnect manages

all data-communications. It is implemented as an

ActiveX control on the ‘xComms’ worksheet. It is

the “intermediate” between external devices and

the application. It uses the configuration as

defined in the application Protocol table and the

Query Table to connect to and communicate with

external devices.

Run the Tag & Object Wizard after making

changes to the Protocol Table or the Query

Table to load these changes into xlConnect.

Communications are controller by the [Start]

and [[x] Stop] buttons on the ribbon. You will see

the icons in the top-right of xlConnect change

depending on the communication status.

The xlConnect component allows you log and

debug the communication with the devices. The

main window contains a couple of buttons, icons

and a message area for logging and debugging.

Figure 24 eXLerate data communication layout

– [About…]

Button to show version and information about

the product.

– [Options…]

Button to set logging and debugging options

24 SPI RI T I T E XLER ATE | CO NFIGU RATIO N M ANUAL | CM /E XL- EN

for the individual protocols and queries and for

cyclic interval events. See details below.

– [Clear]

Button to clear the message area.

– []

Icon showing if cyclic interval events and

period updates are currently active and

triggered in excel.

 light grey and standing still: not active.

 dark grey and in motion: active.

– []

Icon presenting the current status of the

xlConnect ActiveX control to the user.

The communications are correctly

configured. Real-time data update is

active.

 Communications are stopped, because

the user has clicked on this icon, or

stopped from the menu.

 Communications are programmatically

paused.

 The communication configuration

contains warnings.

The configuration correctly set up

programmatically (via VBA).

The configuration is not defined yet for

xlConnect.

The communication configuration

contains errors - details are logged in the

system event logger

Correct the problem prior to starting the

communication.

– Text messages

Local message window, used as a data scope

logger and a fault/warning message window

for data communications. See details below on

how to enable logging of message.

Besides protocol management, it also takes care

of the cyclic interval processing. Cyclic interval

processing is further discussed in section ‘Interval

periods and events’.

4.4.1. Logging and debugging

The xlConnect allows to debug and log events and

communications. Press the [Options…] button to

set it up.

Figure 25 Event and communication logging

The top left section is the set-up for event

logging. There are various message types:

‘Alarms’, ‘Errors’, ‘Info’, and ‘Debug’. You can select

the log devices for the events:

– Local xlConnect local window

– View Control Center message window

– File Log-file on disk

– Print Alarm/event printer.

The communication logging is set-up in the

bottom and top right section. You can select the

protocol(s) and query for which you want to

monitor the communications and the type of data

scope messages to be logged.

Enable communication logging only for

debugging as it impacts the system

performance. Disable it when it isn’t needed.

4.4.2. Flow-X communication

The communication with Flow-X is a web-services

based protocol. On initialization, eXLerate sends a

request to the Flow-X for all live data tags ID

numbers and internal names and the Flow-X

returns the list with all internal tags.

Message:

http://[IPAddress]/tags?fields=35&options=42

 SPI RI T I T E XLER ATE | CO NFIGU RATIO N M ANUAL | CM /E XL- EN 25

Response:

<t id="…" n="…" uid="…" />

<t id="…" n="…" uid="…" />

…

With:

t Flow-X tag

id Flow-X tag internal ID number

n Flow-X tag internal name

uid Flow-X tag engineering unit ID

v Flow-X tag value

The next request is to retrieve all the values for the

tags with the IDs where the names match the

eXLerate application addresses.

Message:

http://[IPAddress]/tags?RawValues=1&Options=43&

Fields=513&IDFilter=…%2C…%2C2…

Response:

<tags cacheid="…" signature="…" starttime="…">

<t id="…" v="…" />

<t id="…" v="…" />

…

The following requests include the last retrieved

‘CachID’ which result that the Flow-X only returns

the tags and values that changed since.

Message:

http://[IPAddress]/tags?CacheId="…"&RawValues=1

&Options=43&Fields=513&IDFilter=…%2C…%2C2…

Response:

<tags cacheid="…" signature="…" starttime="…">

<t id="…" v="…" />

<t id="…" v="…" />

…

When writing settings and parameter values, the

command includes the request for detailed

information on the result of the write action. The

Flow-X will return detailed information when the

write operation fails.

Message:

http://[IPAddress]/writetags?errordetails=1&tag

...=...

Response:

<events />

Figure 26 Flow-X communication logging

4.4.3. Modbus communication

The Modbus protocol is a master–slave

communication protocol. The Modbus Client /

Master device originates the communication, it

sends a message to request for data or to set

data. When a Modbus Server / Slave device

receives a message, it sends back a response.

The tables below list the standard data types and

the related function codes to read or write data.

Table 3 Modbus data types

Object Access Size Address Entity

number

Coil Read +

write

1 bit 0 to

65535

00001 to

065536

Discrete

input

Read only 1 bit 0 to

65535

10001 to

165536

Holding

register

Read +

write

16-32-64-

… bits

0 to

65535

40001 to

465536

Input

register

Read only 16-32-64-

… bits

0 to

65535

30001 to

365536

Table 4 Modbus function codes

Object Read

function

Single write

function

Multiple write

function

Coil 1 5 15

Discrete

input

2 - -

Holding

register

3 6 16

Input

register

4 - -

A Modbus message frame consists of device

address, function code, and data addresses / data

values. It is important to make a distinction

between entity numbers and data addresses.

Entity numbers combine object type and the

location within their corresponding table.

For data communications, the entity numbers are

translated into 0-based addresses between 0 and

65535. For example, the holding register with

address '0' has entity number '40001', entity

number '40100' is holding register with address

'99'.

The message to read one or more data points is:

Message: TI – PI – ML – ID – FC – AD – NO – CRC

Response: TI – PI – ML – ID – FC – BC – DT – CRC

The message to write a single data point is:

Message: TI – PI – ML – ID – FC – AD – DT – CRC

Response: TI – PI – ML – ID – FC – AD – DT – CRC

The message to write multiple data points is:

Message: TI – PI – ML – ID – FC – AD – NO – BC – DT – CRC

Response: TI – PI – ML – ID – FC – AD – NO – CRC

26 SPI RI T I T E XLER ATE | CO NFIGU RATIO N M ANUAL | CM /E XL- EN

With:

TI Transaction ID (Modbus TCP – 2 bytes)

PI Protocol ID (Modbus TCP – 2 bytes)

ML Message Length (Modbus TCP – 2 bytes)

ID Slave device ID

FC Function code

AD Starting address (2 bytes)

NO Number of data points (2 bytes)

BC Byte count of data

DT Data of the corresponding points.

CRC Cyclic Redundancy Check (Modbus Serial)

Should a slave need to report an error, it will reply

with the requested function code plus 80 (Hex)

(03 becomes 83 in hexadecimal), and will only

include one byte of data, known as the exception

code:

01 Illegal Function code

02 Illegal Address Data address

03 Illegal Value - not accepted by slave

04 Device Failure

05 Request is accepted but long duration

06 Device Busy. Retry later.

07 Negative - cannot perform the functions.

08 Parity Error in memory.

Examples:

01 03 00 64 00 14

From device #1, read 16-bits holding registers

#100 - 119 (entity numbers 40101 - 40120)

01 03 28 …

Response with 20x2 data bytes

02 03 00 64 00 14

From device #1, read 32-bits holding registers

#100 - 119 (entity numbers 40101 - 40120)

02 03 50 …

Response with 20x4 data bytes

03 10 00 64 00 02 08 …

To device # 3, write 32-bits holding registers #100

– 119 (entity numbers 40101 - 40120)

03 10 00 64 00 02

Response data received

Figure 27 Modbus communication logging

4.5. OPC Server

The OPC Server (Data Access 1.0/2.0) is an

integrated part of eXLerate, making tag data as

found on the xTagDB sheet available to external

programs on the computer and/or over a network

connection. This communication protocol does

not need to be specified explicitly.

The default configuration for eXLerate will not

start the OPC Server. If external access to the tag

values is desired, an ‘OPCMode’ column needs to

be added to the xTagDB sheet, see section

‘Communication fields’ for more details.

When eXLerate OPC Server is running, an extra

icon will be shown in the windows notification

area. A user with sufficient privileges (>=2000),

can click this icon to open the eXLerate OPC

Server monitor window. to view which tag values

are currently available in the OPC Server.

Figure 28 eXLerate OPC Server monitor

 SPI RI T I T E XLER ATE | CO NFIGU RATIO N M ANUAL | CM /E XL- EN 27

5. Tag Database

Figure 29 eXLerate tag database ‘xTagDB’

The tag database sheet xTagDB is the beating

heart of an eXLerate application. It contains the

configuration for ‘tags’ and the live values from

the communication with external devices. The

word ‘database’ is used as a general classification,

i.e. the tag database is arranged as a table, with

records (rows) and fields (columns), it is not a

relational database.

Each row in the tag database corresponds to one

tag. Each column represents a field / property for

the tag:

– Naming & reference

– Communication settings

– Live values & units

– Alarm settings

– Trending

– Periodic Averaging & Latching

You may add your own columns / fields, if needed.

Run the Tag & Object wizard after making

changes to the tag database.

5.1. Tag naming & reference

fields

The following fields (columns) define the naming

and descriptions of a tag:

– Group

(optional) To group tags per query or device.

– ID

Unique reference number, used internally.

These numbers are automatically generated

when running the Tag & Object Wizard.

– TagName

Unique name for the tag. It defines the

internally used cell and object names. The tag

name may be looked at as a ‘key’-field in a

relational database.

– Alias

(optional) Alternative name to display in alarms

& trends. Usually, alias names are longer than

the tag name, and it may contain characters

that are not allowed for tag names. When an

alias name is not defined, the tag name is

automatically used.

– Location

(optional) Name for the (physical / device)

location of the tag.

– Description

Full description of the tag. It is used in

alarming, and for trend pen selection.

5.2. Communication fields

The following fields (columns) are used to setup

the communication and are used in conjunction

with the Protocol Table and the Query Table.

– Query

ID of the related query/queries used for

reading / writing values. It supports

redundancy – you can enter multiple queries for

a single item separated by commas.

– Address

Specific address (Flow-X name, Modbus

register, OPC name, HART address) in the query

that corresponds with the value for this tag.

– DataType

The data is transmitted in bits. The data type

determines how to interpret these bits: as

whole numbers, decimal numbers, date and

time or text. The data types are predefined

constants in eXLerate. The list below contains

the most used data types.

Data type # Bits Description

xBit 1 1 Boolean

xByte 2 8 Unsigned integer

xShort 3 16 Signed integer

xWord 4 16 Unsigned integer

xUInt24 5 24 Signed integer

xLong 6 32 Signed integer

xDWord 7 32 Unsigned integer

28 SPI RI T I T E XLER ATE | CO NFIGU RATIO N M ANUAL | CM /E XL- EN

Data type # Bits Description

xFloat 16 32 Single precision IEEE

floating point,

standard byte order 43 21

xRevFloat 17 32 Single precision IEEE

floating point,

reversed byte order 21 43

xDouble 18 64 Double precision IEEE

floating point

xShortFloat 19 16 Integer scaled float

xIntelFloat 20 32 Single precision IEEE

floating point,

byte order 12 34

xRevDouble 22 64 Double precision IEEE

floating point

byte order 21 43 65 87

xBCD 32 32 BCD value, with 8 times 4-

bit, each coded 0..9

xTimeDate 33 64 8-byte date time, format:

<YY><MM><DD><hh><m

m><ss><uint>

YY: Year (0-99)

MM: Month (1-12)

DD: Day(1-31)

hh: Hour (0-23)

mm: Minute (0-59)

ss: Seconds (0-59)

uint: Added value 0-65535

xTimeStamp 34 64 8-byte date time, format:

<1><YY><MM><DD><1><h

h><mm><ss>

YY: Year (0-99)

MM: Month (1-12)

DD: Day(1-31)

hh: Hour (0-23)

mm: Minute (0-59)

ss: Seconds (0-59)

xAdcFloat 37 12 Value 0-4095 scaled float

x10kFloat 38 16 Value 0-10000 scaled float

xString6 64 48 8-character packed ASCII

string (HART)

xString12 65 96 16-character packed ASCII

string (HART)

xString24 66 144 32-character packed ASCII

string (HART)

xString10 67 80 10 characters string

xString80 68 640 80 characters string

xString 69 A null-terminated string

xString8 70 64 8-byte character string

xString16 71 128 16-byte character string

– Initial

(optional) Value of the tag at system startup,

until communications are started.

– Min / Max

(optional) For scaling data types xShortFloat,

xAdcFloat, x10KFloat, or xWordFloat and limits

used for simulation.

– ScaleMin/ScaleMax

(optional) Scale device values to internal values

TagValue = ScaleMin+DriverValue*(ScaleMax-ScaleMin)

DriverValue = (TagValue-ScaleMin)/(ScaleMax-ScaleMin)

– Update

(optional) Function to write values to the

device. The eXLerate functions exUpdateEx(..),

exUpdateVarEx(..), exUpdateStrEx(..) update

the xlConnect component, that will write the

new value to the device.

– OPCmode

(optional) Given you have an OPC server

license, you can specify tags to be available in

the eXLerate OPC Server and accessible by

other OPC Clients. To enable tags in the OPC

Server, simply add an “R” (read only), “W” (write

and read) or “H” (hidden) in the OPCMode

column for the specific tag.

Note that accessibility may depend on DCOM

security settings on both computers.

– OPCGroup

(optional) This column will supply an OPC

group name for the tag. If it is empty, the

‘Location’ is used as OPC group name.

5.3. Values fields

The value fields contain the live values when

communications are running. Normally, the ‘Value’

cells are unprotected, unless a formula is entered

in a cell rather than a straight value.

The tag database contains following value fields:

– Value

Cells for the(live) value from the devices.

Running the Tag & Object Wizard creates the

cell names like: ‘xMyTag.Value’.

– Value2, …, Value5

(optional) For redundancy, the Value2…Value5

may be used: a single eXLerate tag uses data

from various parallel running devices. The

“Value” is used for alarming, trending, etc.; The

others are used for selection and comparison.

Running the Tag & Object Wizard creates the

cell names like: ‘xMyTag.Value2’.

– WriteValue

(optional) Value to write to the device, used in

combination with the Update column.

– Units

The engineering units as used in the

application for this tag.

Running the Tag & Object Wizard creates the

cell names like: “xMyTag.Units”.

5.4. Alarm fields

Alarms inform users about problematic conditions

such as faulty equipment or out-of-range values.

 SPI RI T I T E XLER ATE | CO NFIGU RATIO N M ANUAL | CM /E XL- EN 29

The tag database contains the following columns

for the alarm manager:

– AlarmDesc

Text to show for the alarm. When omitted, the

tag “Description” field is used.

– AlarmGroup

Group to which the alarm belongs to.

Alarms may be grouped (hierarchical), like a

directory tree structure. The “Location” field is

used when omitted.

– Priority

Alarm priority used for filtering and sorting

alarms in the user interface.

– SAlarm

Defines a status alarm associated to the tag.

Usually associated with digital signals – enter

“0” or “1” to indicate the alarm status.

Running the Tag & Object Wizard creates the

cell names like: ‘xMyTag.SAlarm’.

– LLAlarm

Defines the 2nd low level for the tag. The alarm

is active when the value is below this limit.

Running the Tag & Object Wizard creates the

cell names like: ‘xMyTag.LLAlarm’.

– LAlarm

Defines the 1st low level for the tag. The alarm is

active when the value is below this limit.

Running the Tag & Object Wizard creates the

cell names like: ‘xMyTag.LAlarm’.

– HAlarm

Defines the 1st high level for the tag. The alarm

is active when the value is above this limit.

Running the Tag & Object Wizard creates the

cell names like: ‘xMyTag.HAlarm’.

– HHAlarm

Defines the 2nd high level for the tag. The alarm

is active when the value is above this limit.

Running the Tag & Object Wizard creates the

cell names like: ‘xMyTag.HHAlarm’.

– Deadband

The minimal change before a limit alarm

returns to “normal”. This is to prevent jittering

alarms when the value is close to the limit.

Running the Tag & Object Wizard creates the

cell names like: ‘xMyTag.Deadband’.

– Delay

Delays activation/de-activation of the alarms:

the new condition should exist for this period

(seconds), before the alarm manager generates

an event.

Running the Tag & Object Wizard creates the

cell names like: ‘xMyTag.Delay’.

5.5. Trend fields

With eXLerate comes the ability to trend live

values over time. You configure the following

fields for tags that you want to be trended:

– TrendNorm

Trend data is stored on value changes. This

field defines the (minimum) change for the

value required, before it is stored.

– Format

The format to show the data on the trend

labels (like “0.00”).

5.6. Periodic fields

An eXLerate application can perform periodic

average calculations and periodical latch live

values. These calculations are created automatic

from the tag database, using the following fields:

– WeighFactor

Tag to use as weight factor for averaging. The

field should contain a reference name

(‘xMyTag.Value’), not a reference itself

(‘=xMyTag.Value’). The reference should be an

incrementing value, like a flow total. Use

‘xNow.Time’ for time-weighted averaging.

– P_[name]

Period related fields to define if values should

be averaged/latched for this period. To create

average values for a named period, enter a “W”

in this field. To periodically latched values,

enter “L”.

The configuration and calculations are described

in more details in section ‘Interval periods and

events’.

5.7. Tag count

Each row in the tag database corresponds to one

tag. The number of tags that you may have in your

application depends on your license. If you have

more tags (rows) in the xTagDB than your license,

only the tags corresponding to the license will be

updated.

30 SPI RI T I T E XLER ATE | CO NFIGU RATIO N M ANUAL | CM /E XL- EN

6. Calculations
Most probably you want to create your own

calculations, based on a combination of (live)

values, and use these on displays and reports in

your application. As example, you want to

calculate the total station flow rate based on the

flow rates of the individual streams or you want to

determine a valve position out of two digital

(open/closed) tag values.

The calculation sheets provide the location to put

these custom calculations and additional

(modifiable) parameter values. An application can

have multiple calculation sheets, each sheet

containing multiple calculations.

6.1. Calculation sheets

All calculation sheet names start with “xCalc” and

have a “header” row on row #3 defining the fields

(columns) for the calculations on that sheet.

Figure 30 Calculation sheet

– Group

(optional) name for grouping calculations to

structure your application.

– CalcTag

Unique name for the calculation tag. By

convention, all calculation names start with

“Calc.”. The Calculation wizard uses this name

for generating cell names.

– Description

Descriptive text explaining the calculation.

– _Value

The ‘_Value’ fields, starting with an underscore,

contain the formulas for the calculated value,

or custom parameter values.

Running the Calculation Wizard creates the cell

names like: ‘Calc.MyTag’.

– _[Text]

Other fields starting with an underscore, can

contain additional calculations / parameters

Running the Calculation Wizard creates the cell

names like: ‘Calc.MyTag’_[Text].

– Store

When using parameters on calculation sheets.

See section ‘Store values’.

– …

Other fields (columns), not starting with an

underscore, can contain additional

descriptions, references to other input values,

or other functions or intermediate calculations.

In the calculation you can use

– references (named) cells, like

=D5+D6+D7

=xSTR1_GVR_CUR.Value+xSTR2_GVR_CUR.Value

– excel functions, like

=AVERAGE(D5:D7)

=VLOOKUP(D6,E5:F8,2)

– eXLerate functions, like:

=exInterpolate(E5:E8,F5:F8,D8)

=fxAGA8_M(,xPT.Value,xTT.Value,xGAS_COMP)

– Your own User Defined Function from VBA, like

=MyVbaFunction(…)

Don’t use volatile functions in your

application, but their alternatives – see

section ‘Formulas’.

6.2. Store values

The eXLerate function ‘exStoreValue()’ saves a

value when it changes. The value will be retentive

and loaded back into the application start. The

value is synchronized on redundant systems.

When using exStoreValue()’ the value is considered

a parameter. Any change is stored into the event

logger.

These functions are normally put in the ‘Store’

column on calculation sheets.

Calculations

Group CalcTag Description _Value Store

Station Station

Calc.Stn_GVR_CUR Gross volume flow rate 108.008116

Calc.Stn_BVR_CUR Base volume flow rate 4253.79331

Calc.Stn_MASSR_CUR Mass flow rate 2891.892618

Calc.Stn_ENGYR_CUR Energy flow rate 160.7151828

Calc.Stn_TT_CUR Temperature 40.0022536

Calc.Stn_PT_CUR Pressure 4000.22536

 SPI RI T I T E XLER ATE | CO NFIGU RATIO N M ANUAL | CM /E XL- EN 31

7. Displays

Figure 31 Application display example

The User Interface, or Human Machine Interface

(HMI), of your application consists of several

displays. Each display is configured as a separate

Excel sheet in an application.

Display sheets can contain:

– Cells with (fixed) text

– Cells referring to live/calculated values

– Numerical formatting for values

– Pictures

– Animations based on live values

– Charts

– Alarm controls

– Trend controls

7.1. Configuration tables

The worksheet xTables contains the configuration

tables. The following tables are used for

configuring displays:

– User table

– Worksheet table

– Style table

– Color table

– Button table

Animations of shapes and ranges are defined in

the xAnimations sheet.

7.1.1. User table

The security levels in your application is based on

numerical values, linked to the user levels as in the

eXLerate Control Center (see section ‘eXLerate

user accounts’). When a user logs in, the Control

Center checks the username and password and

assigns the numerical security level.

The user table defines the numerical levels as

named user groups so you can refer to these

group names instead of numerical values when

defining security levels in your application. This

table contains three columns:

– Level

Numerical value for the user group

– GroupName

Internal name of user group level

– Comments

Description of the user group

Figure 32 User table

Run the ‘Tag & Object Wizard’’ after making

configuration changes.

 User: Spirit IT This PC: NL-L-7002463 1/Feb/2018

 Level: Administrator Duty PC: None 13:28:06

Metering Overview

FT-101 PT-101 TT-101
54.0 4000.2 40.00
m³/h kPa °C

MOV-101 MOV-102
Unknown Unknown

FT-201 PT-201 TT-201
54.0 4000.3 40.00
m³/h kPa °C

MOV-201 MOV-202
Unknown Unknown

Stream 1 Stream 2 Station

Gross volume 54.0 54.0 108.0 m³/h
Standard volume 2126.8 2127.0 4253.8 Sm³/h
Mass 1445.9 1446.0 2891.9 t/h

Pressure 4000.2 4000.3 4000.3 kPa
Temperature 40.00 40.00 40.00 °C

PT TT

PT TT

FT

FT

System

Overview

Stream Details Maintenance Trending Historical

Events

TotalsMetering

Overview
Reports

Alarms New Display

UserTable
Level GroupName Comments

0 Accesslevel.Guest Guest

500 Accesslevel.Operator Operator

750 Accesslevel.TechnicianTechnician

1000 Accesslevel.Engineer Engineer

1500 Accesslevel.SupervisorSupervisor

2000 Accesslevel.AdministratorAdministrator

32 SPI RI T I T E XLER ATE | CO NFIGU RATIO N M ANUAL | CM /E XL- EN

7.1.2. Worksheet table

As seen in section ‘eXLerate worksheets’, the

worksheets in an eXLerate application have

different functionality. You define which sheets

are display sheets and are available and visible in

Runtime mode in the ‘Worksheet table’. Only

sheets defined in this table are visible in Runtime

mode.

Figure 33 Worksheet table

The ‘Worksheet table’ defines the following

properties for the display sheets:

– Worksheet

Name of the sheet that is a display.

– Visible level

Minimum user level required to show the

display.

– Edit level

Minimum user level required to edit values on

the display in runtime. Available for backward

compatibility – always set to “0” (zero).

– UI range

User interface range that is visible/editable.

– Run the ‘Tag & Object Wizard’’ after

making the configuration changes.

7.1.3. Style table

The ‘Style table’ is used to define the format/style

of displaying (live) values and units on displays

and reports, and scaling for communications.

Figure 34 Style table

The ‘Style table’ contains the follow fields for each

entry:

– Name

Unique name for the format style.

– Format

Formatting for values – reference: “xf_[Name]”

– Units

Engineering units – reference: “xu_[Name]”

– Scale

Scaling for values (for use in xTagDB) –

reference: “xs_[Name]”

– Offset

Offset for values (for use in xTagDB) –

reference: “xo_[Name]”

After modifications, the cell styles are updated as

defined in this table. Styles that are not listed in

this table are removed from the list.

Figure 35 Excel style selection list

7.1.4. Color table

In eXLerate, 64 colors are available to use for

animating shapes in runtime based on (live)

values. The ‘Color table’ defines the colors in Red,

Green, Blue values. You can use these colors for

animations by using the color ID (number 0 – 63).

Figure 36 Color table

WorksheetTable Display size 1920 x 1080
Worksheet Visible level Edit level UIRange

sStnOvw 0 0 A1:Q59

sSysOvw 0 0 A1:Q59

sTotals 0 0 A1:Q79

sMaint 0 0 A1:R59

sLegend 0 0 A1:Q59

sTrends 0 0 A1:Q59

sAlarms 0 0 A1:Q59

sEvents 0 0 A1:R59

 SPI RI T I T E XLER ATE | CO NFIGU RATIO N M ANUAL | CM /E XL- EN 33

The first 8 colors are fixed. You can refer to these

colors by using the color ID (number 0 – 7) or the

color names:

0. xBlack

1. xWhite

2. xRed

3. xGreen

4. xBlue

5. xYellow

6. xMagenta

7. xCyan

The other 56 colors are user definable. You can

change these colors by setting the Red, Green,

Blue values between 0 (absent) and 255 (fully

present).

Run the ‘Color wizard’ when you have made

changes to the Color table.

7.1.5. Button table

You can add buttons on your displays to perform

actions in runtime, like navigate through the

displays, send commands to devices (open valve,

start new batch). The ‘Button table’ contains the

configurations of the button objects.

Figure 37 Button table

The ‘Button table’ contains a row (entry) for each

button in your application. For each entry, you can

set-up the following configuration fields:

– Worksheet

Name of the sheet where the button is located.

Button definitions of the same worksheet are

grouped together.

Leave empty if it is applicable for all displays.

– Button

Name of the shape that acts as a button.

– Text

Text to be placed on the button.

Use a tilde (‘~’) character in the text for a new

line. The first line of the text will be placed

bold, the rest of the text in plain font.

– Key

Key stroke (combination) associated with the

button. Special keys are defined between curly

brackets ‘{’ and ‘}’. The following special keys

are available:

{F1} … {F15}

{LEFT}

{RIGHT}

{UP}

{DOWN}

{PGUP}

{PGDN}

{HOME}

{END}

{INSERT}

{BACKSPACE} or {BS}

{DELETE} or {DEL}

{CLEAR}

{CAPSLOCK}

{NUMLOCK}

{BREAK}

Key codes may be also used in combination

with the <Alt>, <Shift> and/or <Ctrl> keys. In

that case, the character key is preceded with

the following key state character codes:

<Shift>: ‘+’ (plus sign)

<Ctrl>: ‘^’ (caret sign)

<Alt>: ‘%’ (percent sign)

For example: ‘+{PgUp}’

– Procedure

VBA procedure to execute when the button or

key combination is pressed. You need to enter

either a predefined eXLerate procedure or your

own defined VBA procedure or user form that

is available in your application.

The following procedures are predefined:

• Load_{SheetName}

Show the specified display (sheet).

• exLoadPrevPage

Show the previous loaded display (sheet).

• exPrintCurrent

Print the current display (sheet).

• exShowLoginDialog

Show the Login/Logout dialog.

• exAboutBox

Show the ‘About’ box of eXLerate

• AcceptEditGroup_{ }

Accepts the new values for a group of

editable cells (see section ‘Editing values’).

34 SPI RI T I T E XLER ATE | CO NFIGU RATIO N M ANUAL | CM /E XL- EN

– Macro/Command

Automatically generated by the Button Wizard:

Actual macro being executed including the

security check for the procedure to execute.

– Access Level

user access level required to perform the action

assigned (press the button).

– Enabled

Always set the value ‘TRUE’ to enable the

button.

Run the ‘Button wizard’ when you have

made changes to the Button table.

7.2. Display sheets

Each runtime display is a separate sheet in the

application. You must define which sheets are

display sheets in the ‘Worksheet table’.

When you start with an application, first

determine the display resolution of the runtime

computer system and set this resolution for the

application. It is time-consuming to convert your

displays to a different resolution at a later stage.

To avoid repetitive work, it is recommended you

define a ‘Template’ sheet, that contains the

default look of all your displays, including default

navigation buttons, logo’s and other objects. The

objects on this ‘Template’ sheet only need to be

defined once and can be updated automatically on

all your displays, see section ‘Button wizard’.

7.2.1. New display sheets

To create a display sheet, just make a copy of the

‘Template’ sheet. Right click the worksheet tab,

enable “Create a copy” checkbox, select “Move or

Copy…” and rename the copied sheet (preferable

starting with a lowercase “s”).

Figure 38 Copying the Template Sheet

The final thing to do is to register the new display

in the ‘Worksheet table’.

7.2.2. Text, live values and units

To show (fixed) text on a display, just type the text

into a cell. For values available on (other) sheets in

the application, e.g. live / calculated values in the

tag database / calculation sheets, type the

reference to the cell name, like

“=xMyTag.Value”.

To set the numerical format, select the cell and

select the style format from the ribbon Style box.

Alternatively, you can use the excel cell format

window (press <Ctrl-1>).

Figure 39 Set cell numerical style format

For engineering units, it is recommended that you

refer to the ‘Style table’ units (“=xu_MyUnits”) or

the units in the tag database (“=xMyTag.Units”).

This enables to have one location to change the

units, so you don’t need to check all displays when

you need to change the units. Alternatively, you

still can type in fixed text.

The background fill and the text color for cells can

be changed based on live values and calculations.

If you want ranges to be animated, give the range

a name, using the Name input.

 SPI RI T I T E XLER ATE | CO NFIGU RATIO N M ANUAL | CM /E XL- EN 35

7.2.3. Charts

Standard excel charts are available to put on your

display sheets. These charts will change when the

source data changes. When you refer to live /

calculated values, the chart will be dynamic in

runtime mode. It is recommended for charts that

you refer to data ranges on the same sheet as the

chart is placed.

Figure 40 Standard chart for displays

7.2.4. Pictures

You can put pictures, like a company logo, on

displays. Simply select the Insert - Picture from

the ribbon and browse for the file.

7.2.5. Shapes

To visualize the field layout and status, you can

use (basic) shapes, like lines, rectangles, ovals,

arrows, cylinders, and much more. With shape

objects you can draw almost anything, piping,

transmitters, valves, tanks – your system P&ID.

You can add shapes to your display by selecting

them from the ribbon Insert - Shapes or copy and

paste existing ones.

Figure 41 Using the Shapes Button

Shapes can be grouped together to form new

shapes using the Format menu.

You can modify the look & feel of a shape using

the Format Picture window (<Ctrl-F1>) and the

Shape selection window (<Ctrl-F10>).

Figure 42 Select and format shapes

When you have added a shape, you should give the

shape a name using the Name input on the

eXLerate ribbon. Note that the Name Definition

Tool is not available for shapes.

Figure 43 Set shape object name

Once a shape has a name, you can use it in

animations - see below. If shapes are grouped

together, the sub-shapes can be accessed using a

‘.’-character as separator: two (child) shapes

named ‘Shape1’ and ‘Shape2’ grouped together

into a (parent) shape named ‘MyGroup’ can be

accessed by names ‘MyGroup.Shape1’ and

‘MyGroup.Shape2’.

Limit the grouping of shapes to one (1) level

to allow animations for the sub-shapes.

7.3. Animations

In eXLerate, you can animate shapes and cells

(ranges), e.g. the properties of a shape / cell are

automatically changed based on live values and

calculations.

For shapes, the following properties can be

animated:

– Fill color

– Line color

– Blink between two colors

– Show or hide the object

– Position on sheet (in points from left-top)

36 SPI RI T I T E XLER ATE | CO NFIGU RATIO N M ANUAL | CM /E XL- EN

– Width (in points)

– Height (in points)

– Rotation angle

For ranges (cells)shapes, the following properties

can be animated:

– Fill color

– Text color

– Blink between two colors

7.3.1. Animation object names

Names used in an application have a global scope.

A global scope means that all occurrences of all

shapes in all display pages with this global name

are animated identically: if you have two shapes

with the same name on different sheets, you only

define one entry in the animation table. These

shapes will be animated identically using the same

configuration in the animation table.

7.3.2. Configuration

The animations are defined on the xAnimations

worksheet. Each row contains the configuration

for one entry (shape object or cell range). When

you are using a recent template application,

shapes and named ranges on display sheets may

be automatically added when activating the sheet.

You always can add entries manually to the sheet.

Figure 44 Animations Table

The columns of a row are the configuration fields

and are divided in 4 sections. You need to set-up

the animations for each entry using the following

fields:

Identification of animation object

– Class

Use for group sections of objects for

application maintainability purposes.

– Shape/Range

Name of the shape or range to animate.

– Description

Text describing the object / animation

User calculations

– Value…

Your own references and (pre-) calculations of

values to use for live animation.

Animation values

Actual (calculated) values to use for animations,

based on live / (pre-)calculated values.

– Fill color

The shape / range fill color -

a number referring to the Color table ID.

– Line/Text color

The shape line color / range text color -

a number referring to the Color table ID.

– Blink color

The color to use as blink color

a number referring to the Color table ID.

– Blink

Enable (TRUE) or disable (FALSE) blinking.

– Visible

Show (TRUE) or hide (FALSE) the object.

– Left / Top.

Object position (in points) form top-left corner.

– Width / Height

Object size (in points).

– Rotate

Rotation (in degrees) of the object.

The colors used for animations are the 64 colors

of the eXLerate Color table.

eXLerate animation functions

The last section contains the eXLerate functions

that trigger the animations in runtime according

the animation values above. These functions are

described in more detail in the ‘Function

Reference’ help file. For shapes, the functions start

with ‘exShape…’. For ranges, the functions start

with ‘exRange…’.

When adding entries manually, copy the eXLerate

animation functions (in the grey columns) from

existing rows as these functions should exist for

each object.

7.4. Buttons & navigation

You can add buttons to your application displays

to navigate through the different displays and to

perform your own control actions, like starting a

proving sequence.

To add a button to a display, simply add a shape to

the display and give it a (logical). Then create an

entry in the Button table, configure the fields for

the buttons and run the ‘Button wizard’.

 SPI RI T I T E XLER ATE | CO NFIGU RATIO N M ANUAL | CM /E XL- EN 37

When you have created a template sheet, you can

add the buttons that are the same for all displays

(e.g. display navigation buttons) to this Template

sheet. You then only need to define these buttons

once.

38 SPI RI T I T E XLER ATE | CO NFIGU RATIO N M ANUAL | CM /E XL- EN

8. Alarm management
Alarms inform users about problematic conditions

such as faulty equipment or out-of-range

measurements. Alarms need to be acknowledged

– even when a problematic condition disappears.

Alarms are shown prominently in the user

interface. An alarm remains visible until the user

has indicated that he is aware that it has

happened.

In eXLerate you configure alarms in design, and

you define the user interface(s) to monitor alarms

and control alarms in runtime. For the latter one, a

simple to configure control is available.

8.1. Defining alarms

Alarms are defined in the tag database. See

section ‘Alarm fields’ for the columns defining the

alarms.

Run the Tag& Object wizard after changes to the

tag database. It automatically generates the

names for tags with alarm properties defined:

– x{TagName}.SAlarm

Status alarm limit

– x{TagName}.LLAlarm

Low-Low alarm limit

– x{TagName}.LAlarm

Low alarm limit

– x{TagName}.HAlarm

High alarm limit

– x{TagName}.HHAlarm

High-High alarm limit

– x{TagName}.Deadband

Deadband value for limit alarms

– x{TagName}.Delay

Delay for alarms

– x{TagName}.AlmCount

Number of active alarms

– x{TagName}.AlmUnack

Number of unacknowledged alarms

For each status / limit alarm above, the wizard

generates two additional names:

– x{TagName}.[S/LL/L/H/HH]Alarm.Raised

A boolean that indicates if an alarm is active

– x{TagName}.[S/LL/L/H/HH]Alarm.Status

Alarm state value as listed in the table below.

Table 5 Alarm state values

Value Status description

-6 Alarm status undefined

-5 Alarm is active and unacknowledged

-4 Alarm is active and unacknowledged

-3 Alarm is active and blocked

(too many alarm changes without

acknowledgement)

-2 Alarm is inactive and blocked

(too many alarm changes without

acknowledgement)

-1 Alarm is inactive and unacknowledged

0 Alarm is inactive and acknowledged

1 Alarm is active and suppressed

(by operator)

2 Alarm is inactive and suppressed

(by operator)

3 Alarm is disabled

(by the system)

8.2. Alarm groups

Alarms can be grouped hierarchically way with

‘parent’ and ‘child’ groups. This will show these

alarms in a tree structure in the user interface.

Users can view and acknowledge alarms in a

group at once. You define the alarm groups in the

‘Alarm Groups Table’ on the ‘xTables’ sheet.

Figure 45 Alarm groups table

AlarmgroupsTable
Parent Child

System Supervisory

System Stream 1

Stream 1 Flow stream 1

Stream 1 Temperature stream 1

Stream 1 Pressure stream 1

System Stream 2

Stream 2 Flow stream 2

Stream 2 Temperature stream 2

Stream 2 Pressure stream 2

 SPI RI T I T E XLER ATE | CO NFIGU RATIO N M ANUAL | CM /E XL- EN 39

This table consists of two columns: ‘parent’ and

‘child’. The root node of the alarm group tree is the

“System” group. The first level groups are a ‘child’

of this “System” group: add these to the ‘Alarm

Group table’ with “System” in the ‘Parent’ column

and the group name in the ’child’ column. You can

add subgroups by adding the name of the main

group in the ‘Parent’ column and the subgroup in

the ‘child’ column. Note that each group name can

only have one ‘parent’.

To add an alarm to an alarm group, take the group

name that you defined in the ‘Child’ column of the

‘Alarm Group Table’, and insert it into the

‘AlarmGroup’ column in the ‘xTagDB’ sheet.

After running the Tag & Object wizard alarms are

sorted on a hierarchically way with parent and

child groups.

Run the Tag & Object Wizard after making

changes to the alarm groups.

8.3. Active alarms

The intend of alarming is to inform users in

runtime about problematic conditions. The ‘Alarm

summary control’ is the eXLerate control that you

can use to make the current alarm statuses visible

and allow user interaction in runtime. This control

is easy to implement. You can add an alarm

summery to a display sheet, just select it from the

Controls menu.

Figure 46 Insert Alarm Summary Control

When you inserted a new control, you can position

and resize it on the sheet. Make sure the option

from the eXLerate menu “Insert” section is

enabled (default after inserting a control).

Figure 47 The Alarm Summary Control

The Alarm Summary Control is easy customizable.

In Design mode, you can change look and feel for

runtime systems, like setting:

– Toolbar buttons availability

– Alarm columns visibility, position and size:

ID Internal alarm ID

State Icon indicating the alarm status:

 Alarm is active

 Alarm is acknowledged

 Alarm is blocked

 Alarm is suppressed.

 Alarm is disabled.

Timestamp Time of last state change.

Name Name/alias of the tag.

Location Alarm group name

Priority Alarm priority.

Type Alarm type:

 Status Alarm

 Low Alarm

 LoLo Alarm

 High Alarm

 HiHi Alarm

Description Alarm / tag description.

Limit Current limit value.

Deadband Deadband value if configured.

LastValue Last value of tag.

Units Engineering units.

Delay Alarm delay if configured.

BlockCount Active, unacknowledged counter.

See ‘Advanced alarm ’.

Format Numerical format of the tag

– Security to acknowledge, edit or suppress

alarms

– Colors of the alarm states,

– Add filters for showing alarms

To change these properties, disable the option

from the eXLerate menu “Insert” section and click

the option in the right-top corner of the

control.

8.4. Historical events

Alarms & Events are stored in internal database

when the application (communication) is running.

Many applications feature an alarm history. The

‘MyTemplate’ application contains a pre-defined

historical alarms & events display with a ‘ListView’

control. Programmatically (VBA) the historical

alarms & events data retrieved from the database

table and put into this control in runtime. A user

40 SPI RI T I T E XLER ATE | CO NFIGU RATIO N M ANUAL | CM /E XL- EN

can select date/time, scroll, sort data with the

pre-configured buttons on this sheet.

Figure 48 Historical alarms & events

Setting-up such a display requires programming

and database skills and is not covered within this

document.

8.5. Advanced alarm usage

There are several additional worksheet and VBA

functions that can be used for advanced

configurations in your application. These

functions are described in more detail in the

‘Function Reference’ help file.

– exAlarmCount

Count the number of alarms within a specific

group that have a specific state.

– exAlarmAckGroup

Acknowledge all alarms in an alarm group.

– exAlarmDisable

Suppress/unsuppress or disable/enable a

single alarm or alarm group

– exAlarmSetOptions.

• Automatic acknowledgement

When you enable automatic acknowledge

alarms, the user does not need to

acknowledge alarms.

• Alarm blocking

Enabling alarm blocking will disable new

alarm messages when too many alarm

transitions without acknowledgements

have taken place, e.g. the user ignores alarm

messages.

You can define the amount of times that an

alarm changes state before it obtains a

‘blocked’ status.

Note that blocking has no effect when

Automatic acknowledge is enabled.

• Only show active alarms

• Only show active or unacknowledged alarms

– exSetAlarmDeadband

Programmatically (from VBA) change the

deadband value.

– exSetAlarmLimit / exSetAlarmLimit2

Programmatically (from VBA) change an alarm

limit without the standard alarm editor.

– exSetAlarmDelay

Programmatically (from VBA) change the alarm

delay without the standard alarm editor.

– exAlarmSetModeByID /

exAlarmSetModeByGroup

Programmatically (from VBA) disable or

suppress an alarm (group)

– exAlarmShowStatus

Send the all alarms with a certain state (active,

disabled, or suppressed) to the system event

logger.

 SPI RI T I T E XLER ATE | CO NFIGU RATIO N M ANUAL | CM /E XL- EN 41

9. Trending
eXLerate comes with the ability to trend and show

values over time in charts. You define the tags that

need to be trended in design and create the user

interface that allows to select and view these

trended values in runtime. eXLerate has Trend

Controls that are simple to configure and used for

runtime operations to shows trend charts.

9.1. Defining trend tags

You have the tags that need to be trended in Tag

Database, using the following two columns:

– TrendNorm

The minimum change to store values in the

historical trend database. E.g. 0.1 means if the

difference between the current- and previous

value is higher than 0.1, the value is stored into

the database. When a value of 0 is used, every

change is stored into the database.

– Format

The format to show the numerical data into the

labels. E.g. “0.0” or “0.000”.

Run the Tag& Object wizard after changes to the

tag database to update the tags to be trended

and the trend norm to use.

9.2. Data storage

Trend data is stored in binary files on disk. The

data storage is defined by the tag fields set-up in

the tag database and is independent of the trend

charts pen selections in the application. So even

when no pen is selected, the data is stored

according to the trend norm (see above).

For each tag that is to be trended, a separate

folder is created in the “TrendData” folder, each

containing 3 or more sub-folders. The sub-folders

“Raw”, “10Days” and “100Days” are used for

storing the actual trend-values, while other sub-

folders are used for storing additional data such

as limits. These folders are automatically created

when necessary. The files with trend data have the

extension “xtd” (eXLerate Trend Data File) and the

name of a file identifies the start-date of the file

based on UTC (=GMT 0):

9.3. Display trends

The user interface for trending in eXLerate is easy

to build using three controls:

– Trend Chart

Visualizes the trend-data in a chart, including

controls for zooming of the trend-data and

moving forward and backward in time.

– Trend Pen Selector

Selection of trend tags for trend chart.

This control is linked to a Trend Chart control.

– Trend Navigator

Visualizes a larger portion of the trend-data to

quickly see anomalies in the data.

This control is linked to a Trend Chart control.

You can add these Trend Controls to your

application from the eXLerate “Controls” menu.

Figure 49 Insert Trend Controls

When you inserted a new control, you can position

and resize it on the sheet. Make sure the option

from the eXLerate menu “Insert” section is

enabled (default after inserting a control).

Figure 50 Trend display

You can change look and feel of the controls for

runtime systems. To change the properties of a

control, disable the option from the eXLerate

menu “Insert” section and click the option in

the right-top corner of the control.

42 SPI RI T I T E XLER ATE | CO NFIGU RATIO N M ANUAL | CM /E XL- EN

9.3.1. Trend Chart

The main trend chart is the graphical visualization

of the (selected) tag values over the selected

period. In design mode, you can set properties for

the main trend chart:

– Toolbar buttons available in runtime

Date/time Start/end date and time to show

for the chart. When clicked, a popup is shown

for selecting the date/time.

… hour Period of the trend chart.

 Move to the start – first time a value was

stored for any of the pens.

 Move fast backward – default step-size is

100%, causing to move back a whole period.

 Move backward – default step-size is 25%,

causing to move back a quarter period.

 Move forward – default step-size is 25%,

causing to move forward a quarter period.

 Move fast forward – default step-size is

100%, causing to move forward a whole period.

 Move to the end – the current date/time.

 Realtime-mode - end-date remains on the

current date/time.

 Zoom in

 Zoom out – zoom to 0-100%

 Moving mode –click and drag to move the

plot area.

 Zooming mode – click and drag to zoom.

– Chart area / plot area background and margins

– Navigation scrolling and zooming options

– Pen labels and layout

– Time / value axis and grid lines layouts

– Scaling

• Auto based on the visible trend-values

• Fixed fixed value entered

• Dynamic based on xTagDB properties

– Show / hide trend on alarm limits

9.3.2. Trend Pen Selector

The ‘Pen Selector’ control combines the trend pen

selecting mechanism, grouping trend pens into

sets, and the chart legend in a single control. With

the ‘Pen Selector’ control, a user can perform in

runtime:

– select / deselect tags to shown in on a trend

chart from a (filtered) list of tags configured

for trending. The tag alias is shown if available,

otherwise the tag name is displayed.

– combine selected trend pens into pen sets to

easily show a collection of pens. These sets can

be saved and quickly retrieved. Pen sets can be

pre-configured and then transferred as a file to

the target system (‘XLRX\TrendData\PenSets’).

– modify the pen properties.

In design mode, you can set properties for the

control and the three panes:

– Related Trend chart

As an application can have multiple trend

charts showing different trends, you need to

link the pen selector to a specific trend chart.

– Show / hide ‘Tag selection’ pane

– Set filter for tags available

– Show / hide ‘Pen set’ pane

– Security level for modifying pen sets

– Allow resize during runtime

– Show / hide ‘Pens properties’ pane

– Toolbar buttons

 Remove the selected pens from the chart.

 Color for the selected pens

 Line style for the selected pens.

 Marker for the selected pens.

 Style for the selected pens.

Chart Style for grouping pens.

 Group pens – plot pens in single plot area.

 Ungroup pens - separate plot area per pen

 Move selected pens up in the list.

 Move the selected pens down in the list.

• Columns to show

– Trend pen columns visibility, position and size.

9.3.3. Trend Navigator

The Trend Navigator is an optional control for data

inspection and navigation. It shows the same pens

as the Trend Chart but for a longer period. The

position of the Chart is displayed in the Navigator

and can be moved and resized. The Navigator

makes it possible to select a part of the data to

view in the Trend Chart.

The Trend Navigator graphical properties are to a

large extend like the Trend Chart control. See the

section above for those descriptions, this section

lists the specific features of the Navigator only

You need to link the trend navigator to a specific

trend chart as an application can have multiple

trend charts showing different trends. This

relation and other properties of the pen selector

can be modified by clicking the button of the

control. The main properties are:

 SPI RI T I T E XLER ATE | CO NFIGU RATIO N M ANUAL | CM /E XL- EN 43

– Related Trend chart

As an application can have multiple trend

charts, you need to link the trend navigator to a

specific trend chart.

– Auto zoom factor

When enabled, the period of the trend

navigator and trend chart are linked: when the

period of either control changes, the other

control period automatically changes

according the factor. I.e. a factor of ‘10’ causes

the navigator period to be always 10 times the

chart period.

When disabled, the period of the trend

navigator and trend chart can be changed

without affecting each other.

9.4. Advanced trend

functions

There are several additional worksheet and VBA

functions that can be used for advanced

configurations in your application. These

functions are described in more detail in the

‘Function Reference’ help file.

– exTrendReadTag

Reads the raw trend-data for a specific tag

over a defined period.

– exTrendReadFile

Reads the trend-data from the specified trend

data-file (“xtd”).

– exTrendWriteTagToCSV

Writes the trend-data from a specific tag and

defined period to a comma separated file.

4 4 SPI RI T I T E XLER ATE | CO NFIGU RATIO N M ANUAL | CM /E XL- EN

10. Editing values
This chapter describes how to allow users to enter

or modify values (user input) in runtime mode,

providing mechanism for checking whether the

user is allowed to enter a new value, he has

entered a correct value, in the proper format, and

within the proper limits.

10.1. Allowing user input

Default all cells on the display sheets are locked so

a user cannot enter and type in values during

runtime. This is what you want for most cells as

otherwise users could start writing all over your

display screens. However, for certain values (cells)

you want the user to be able to input new values in

runtime (user input).

To allow the user to enter values into a cell in

runtime, you need to make sure that the input cells

are in the UI Range of the ‘Worksheet table’ and

that these are unlocked.

Figure 51 Worksheet table UI range

In design mode you can unlock or lock cells from

the eXLerate ribbon. When the lock indicator is

highlighted , the cell is locked and not

modifiable in run-time. When the lock indicator is

not highlighted , the cell is unlocked and

modifiable in run-time.

Figure 52 Lock Button on eXLerate Ribbon

The last step is to include the editable cells in the

‘xEditing’ configuration sheet.

10.2. Editing table

The xEditing worksheet contains the Editing Table

with the configuration of handling the user input

of unlocked cells. It contains the checks for

security level, the data type, input limits. When the

newly entered value of the editable cell on the

display matches all criteria, the new value is

written to the target, which can be an internal

parameter (calculation tag), alarm limit, or a tag of

a connected device.

Figure 53 Editing Table

10.2.1. Configuration

If you are using a recent template application,

editing entries for unlocked cells on display sheets

may be automatically added when activating the

xEditing sheet. You always can add entries

manually to the sheet.

Each editable cell on a display corresponds to one

row on the sheet. You have set-up the entries

configuration using the following fields:

– Class

Name to group similar editing cells – optional

field for structuring your application.

– Cell

The address of the editable cell on the display.

This can be either a fixed text with a worksheet

cell address or an ‘exCellProperties’ worksheet

function to get a property of a cell, in this case

the address. The advantage of using the

function is that when copying, the reference

will automatically be updated.

– Target

Reference location where the entered value

should be written to upon accepting the value.

Multiple targets can be configured by

separating them by the ‘,’ (comma) character.

WorksheetTable Display size 1920 x 1080
Worksheet Visible level Edit level UIRange

sStnOvw 0 0 A1:Q59

sSysOvw 0 0 A1:Q59

sTotals 0 0 A1:Q79

sMaint 0 0 A1:R59

sLegend 0 0 A1:Q59

sTrends 0 0 A1:Q59

sAlarms 0 0 A1:Q59

sEvents 0 0 A1:R59

 SPI RI T I T E XLER ATE | CO NFIGU RATIO N M ANUAL | CM /E XL- EN 45

– Target Type

The target location type for the new value:

(1) xTargetNone No target

(2) xTargetCell Target is a cell address

(3) xTargetName Target is a named cell

(4) xTargetComm Target is a comm. tag

(5) xTargetAlarmLimit Target is an alarm limit

(6) xTargetAlarmDeadband Target is a deadband

(7) xTargetAlarmDelay Target is an alarm delay

– Group

Name for group-wise acceptance of values

See ‘Group-wise editing’ below.

– Edit Type

Data type allowed to enter:

(1) xWholeNumber Integers

(2) xDecimal Floating points

(3) xText Strings

(4) xList Select from list

(5) xDate Date values **

(6) xTime Time values **

– Edit list

Drop-down list to use – see ‘Edit lists’ below.

– Edit Type Alert

Message to show when entered value does not

match the required data type. *

Default message is like “Value does not match

the specified datatype”.

– Min

Minimum value allowed for the new value.

– Max

Maximum value allowed for the new value.

– Min/Max Alert

Message to show when entered value is

outside min/max limits. *

Default message is like “Value should be

less/greater or equal to …”.

– Enabled

Enables or disables cell editing based.

Enter a Boolean formula.

– Access Level

Minimal security level required to enter a value.

– Confirm msg

(optional) Confirmation text to show when

user enters a new value. When entered, the user

must confirm before a new value is accepted.

* The following special keywords can be used for

alert messages:

• %INPUT% shows the entered value.

• %VALIDATION% shows the exceeded limit

• %FORMAT% date / time format to use

eXLerate Edit functions

On the right side of the configuration section you

can find the eXLerate functions that handle the

editing in runtime. These functions start with

‘exEdit…’. and are described in more detail in the

‘Function Reference’ help file.

When adding entries to the sheet, copy the

eXLerate functions (in the grey columns) from

existing rows as these functions should exist for

each editing object.

10.2.2. Group-wise editing

When no group is specified, edited values are

accepted, and the target is updated immediately

when the user enters a new value in a cell.

When a group is specified, the values are not

individually accepted, but only accepted as a

group: all targets of the same group are updated

simultaneously with the entered values when the

user accepts the group.

This mechanism can be used to accept one or

more values by clicking on a button. For example,

when editing a gas composition, the components

should be accepted simultaneously.

When you have entered a group name, you need to

create a button for accepting all group values. Add

an entry to the button table with an explicit call to

the VBA procedure ‘AcceptEditGroup_{Group}’,

which will be automatically created when running

the Button wizard.

In some cases, it is preferable to perform a check

on all the values before accepting them. For

instance, verify that the individual components

add up to 100% for a gas composition. In this case

you need to create your own VBA procedure

(macro) to perform this check and accept the

values using the ‘exAcceptEditGroup(“{Group}”)’

function. See the ‘Function reference’ for details

on this function.

10.2.3. Edit lists

With edit lists you can present the user with a

drop-down list of values to choose from instead of

letting him enter a value.

To create an ‘Edit list’, first define a two-column

table. The 1st column contains the value for the

target location and the 2nd column contains the

corresponding text to display in the drop-down

list. Preferably give this table a name.

46 SPI RI T I T E XLER ATE | CO NFIGU RATIO N M ANUAL | CM /E XL- EN

In the Editing table set the Edit Type to “lest” and

in Edit list refer to the table with the list values.

Enter the list as:

– named range “rMyList”;

– unnamed range “xLists!G5:H7”

– list-formatted text “1:GC-A|2:GC-B|3Keypad”

with “:” columns separator

 “|” rows separator

The user can select one of the strings of the 2nd

column and the corresponding value of the 1st

column will be written to the target.

10.2.4. Date /time editing

By default, a user should enter date/time values in

the Windows regional settings format. It is also

possible to specify a custom date or time format

by setting the 4th argument of the eXLerate

exEditType(…) function:

If this argument is omitted, the Windows Regional

Settings format is used.

You can either use a reference to the format as

defined in the Style table, e.g. “xf_Date”, use the

format of the cell itself using the function

exCellProperties({Cell}, xFormat, xAutoRecalc) or

set the format explicitly using the following

specifiers:

– yy Year without century (00-99)

– yyyy Year with century (1901 – 2199)

– m, mm Month (1-12 / 01-12)

– d, dd Day of the month, (1-31 / 1-31)

– h, hh Hour in 24-hour format (0-23)

– mm Minute (00-59)

– ss Second as decimal number (00-59)

The user should enter the values in the same

format. For instance, when the format for dates is

“yyyy/mm/dd”, the following mask is displayed:

10.3. Runtime editing

When a cell is correctly configured for editing, an

input box is shown in runtime when a user selects

the cell.

Figure 54 Runtime editing input

When the user enters a new value, it will be

checked and if it is a correct value according the

editing table. When the input is valid, the new

value is accepted. In case the input does not

match these settings, a message is shown to alert

the user and the value is not accepted.

Figure 55 Runtime editing warning

____/__/__

 SPI RI T I T E XLER ATE | CO NFIGU RATIO N M ANUAL | CM /E XL- EN 47

11. Interval periods and events
You can define recurring intervals in your eXLerate

applications to perform periodical calculations

and to trigger events, like periodic averages,

latching totals on certain times, generating

periodic reports.

The recurring interval in which certain events take

place is called an interval or event. The recurring

periods over which the associated calculations

take place is called a period.

The two entities highly interact. You need an

interval with a defined period to calculate a daily

average, and an associated event to print the daily

report.

11.1. Interval table

The Interval Table called ‘rIntervalTable’ is located

on the xTables sheet. It contains the definitions

for interval periods and events. Existing intervals

can be changed, and new intervals can be added

to this table. You need to run the Tag & Object

Wizard after making changes to this table.

Figure 56 Interval Table

As with most configuration tables in eXLerate, the

table has a header row with field headers, and the

data in the table itself. The following fields are

available:

– ID

Unique index number starting from 1 for the

interval.

– Name

(optional) unique name for the interval.

When a name is entered, it can be used in the

application for periodic data and report

generation. The tag database will get an

associated column with this name prefixed by

‘P_’ for defining periodical calculations for

tags. For example, the ‘Hour’ interval has an

associated xTagDB column ‘P_Hour’.

– Type

Interval type, being one of the following:

xSec seconds based

xMin minutes based

xHour hourly based

xDay daily based

xWeek weekly based

xMonth monthly based

xQuarter 3-monthly based

xYear yearly based

– Count

Determines the count of the specified interval

types to pass for triggering the event.

E.g. a count of 5 with type xMin defines an

interval of 5 minutes.

– MM / DD / hh / mm / ss

(optional) These define the start (month / day

/ hour / minute / second) of the interval.

i.e. ‘hh’=‘06’ ‘mm’=‘00’ ‘ss’=‘30’, defines

interval start at ‘06:00:30’

– Periods

(optional) Number intervals in a range.

i.e. ‘24’ periods with type ‘xHour’ and count ‘1’

creates a ‘day’ range with 24 hourly intervals.

– StartOn

(optional) Starting period for interval range

i.e. in the example above, you can define

‘StartOn’ as ‘6’ for a ‘day’ range with 24 hourly

intervals from 6 am till 6 a.m. (next day).

– ResetBy

(optional) Name of another interval that

resets the periodical data range.

By default, the data range of an interval will be

automatically reset when the first event for a

new range occurs.

i.e. in the example above, all (previous) data is

reset at 7 a.m.

– Previous

The previous interval number related to the

type –set by eXLerate when application runs.

– Current

The running interval number related to the

type – set by eXLerate when application runs.

11.2. Periodic data

When a name is entered for an interval, it can be

used in the application for automatically calculate

periodical data. Periodic data is live data gathered

and processed during an interval. It can be used to

calculate an average process value during a period

48 SPI RI T I T E XLER ATE | CO NFIGU RATIO N M ANUAL | CM /E XL- EN

or to store totals on the event so these values can

be shown on displays and put on reports.

Named intervals create related columns in the Tag

Database to enable these automatic calculations

and storage. The column names will be the interval

name prefixed with “P_”, e.g. an interval named

“Hourly” will have a related column named

“P_Hourly” in the xTagDB.

Figure 57 Period columns in xTagDB

In these period columns, you can enter a “W”, “L”

or both for any tag to indicate that the live data

should be averaged during the period (W) and/or

be latched at every period change (L). These

results are stored and available in the application

and can be used to show on displays and reports.

11.2.1. Weighted averages

The average in eXLerate is calculated as a

weighted average of a real-time value. The

weighted average is like an ordinary average,

except that instead of each of the data points

contributing equally to the final average, some

data points contribute more than others. The

contribution of the process parameter to the

resulting average depends on the weight factor.

This weight factor needs to be specified in the

WeighFactor column of the xTagDB, (without an

equal sign). A weight factor needs to be based on

an accumulative value, like a totalizer, with which

the difference between the previous and the

current value is calculated. For a time-weighted

average, enter “xNow.Time” into the WeighFactor

column.

The equation for a flow-weighted average value is

()

()

=

tn

t

i

tn

t

ii

avg

Q

QP

P

0

0

*

Pavg Weighted average of value P in period t0..tn

Pi Current value of P during interval time

Qi Weight factor for two consecutive intervals

t0 Period start time for calculating the average

tn Period end time for calculating the average

Table 6 Weighted Average

Time Value

(P)

WeighFactor Increment

(Q)

P*Q

7:00 15 200 200 3000

8:00 30 210 10 300

9:00 20 0 0 0

10:00 20 220 10 200

11:00 15 320 100 1500

Sum 320 5000

An example of a weighted average is shown in

Table 6. The value 20 reported during 9:00 is not

used for the averaging process, because the

weight factor increment was zero during that

hour. The value 15 during 7:00 contributes 20

times as much to the weighted average as the

value 10 during 8:00 because the increment is 20

times more. The weighted average is calculated by

dividing the sum of the values multiplied by the

increments (5000) by the sum of the increments

(320). This yields to a weighted average of 15.625

while the arithmetic average is 20.

When you enter for a tag an “W” in a period

column, enter a WeighFactor and you run the Tag

& Object wizard, it automatically creates internal

names that will hold the average data so you can

use it in your application. The names will be based

on the tag name and the interval name.

The following name will be created:

– x{Tag}.{Interval}.WAvg

Weighted average value of the running interval.

11.2.2. Latch values

A latched value acts as a sample and hold register.

It takes the current value of a tag at a period

change and stores that value in memory for the

duration of the associated period. When the

period elapses, a new value is sampled for the

duration of this period.

Latches are especially useful to keep values for a

certain period, such as ‘previous day’ or ‘previous

 SPI RI T I T E XLER ATE | CO NFIGU RATIO N M ANUAL | CM /E XL- EN 49

hour’ data. Latches are retentive: at system

startup, the last stored values are retrieved.

In the figure below, the red line gives the tag live

value and the blue line the latched value.

Figure 58 Latched Values

When you enter for a tag an “L” in a period column

and you run the Tag &Object wizard, it

automatically creates internal names that will hold

the latched data so you can use it in your

application. The names will be based on the tag

name and the interval name.

– x{Tag}.{Interval}.Current

Current latched value (i.e. NOT the current

actual value of the input);

– x{Tag}.{Interval}.Previous

Previous latched value;

– x{Tag}.{Interval}.rPeriods

Range with all latched values for the number of

periods as defined in the interval table. The

whole range will be reset when the first interval

elapses. I.e. when the interval is defined as

hourly interval with 24 periods starting on 6

a.m., the range is reset just before 7 a.m.

The last value, rPeriods, is an array with the

number of rows as defined in the interval table

periods field. To use this value, enter an Array

formula (see section ‘Excel ’).

11.2.3. Latch average values

When you specify both “W” and “L” in the Period

column, latches and weighted averages will be

automatically combined allowing you to latch the

period average on an interval change. It allows you

to have a range of period averages, e.g. 24 hourly

averages stored at hour changes during a day.

When you run the Tag & Object Wizard, extra tag

names become available that contain the

combined results:

– x{Tag}.{Interval}.Current

Current latched value (i.e. NOT the current

actual value of the input);

– x{Tag}.{Interval}.Previous

Previous latched value;

– x{Tag}.{Interval}.rPeriods

Range with all latched values for the number of

periods as defined in the interval table.

– x{Tag}.{Interval}.WAvg

Weighted average value of the running interval.

– x{Tag}.{Interval}.WAvg.{Interval}.Current

Current latched average value (i.e. NOT the

running interval average);

– x{Tag}.{Interval}.WAvg.{Interval}.Previous

Previous latched average value.

– x{Tag}.{Interval}.WAvg.{Interval}.rPeriods

Range with all latched average values for the

number of periods as defined in the interval

table.

11.3. Calculation triggers

eXLerate generates so-called calculation triggers

for the intervals. These calculation triggers are

used by internal functions and may be used for

your own application development.

The sequence in which the periodical events as

defined in the Interval Table take place is quite

important; when a report is to be printed, it is

important first to calculate a new result for that

interval, then to store the result, after which the

report is generated.

Various calculation triggers are defined for each

period in the interval table. When an interval event

takes place in eXLerate, the following updates

take place:

Figure 59 Period triggers

– xPeriod.[…].PreTrigger

The ‘pre-trigger’ update (eXLerate changes its

value) causes the “current” latched value being

copied to the “previous” latched value.

50 SPI RI T I T E XLER ATE | CO NFIGU RATIO N M ANUAL | CM /E XL- EN

– xPeriod.[…].Previous

When the previous period field in the Interval

Table is updated, it triggers the last

calculations for averages of the running

interval.

– xPeriod.[…].Current

The new value of the current period field in the

Interval Table triggers the update “current”

latched value with the live / average value.

– xPeriod.[…].PostTrigger

The “post-trigger” change will trigger the

generation of the reports defined for that

period, using the correct values results

updated by the previous triggers.

11.4. Reset historical values

The running historical values in an application may

be reset using the ‘Reset Historical Values’ option

from the Tools option in eXLerate. This will reset

all data for latches and averages ‘0’ (zero). Trend

and log files, or report output files are not

touched by this reset.

11.5. VBA events

The application VBA contains several procedures

that are triggered by the eXLerate program when

certain events occur. These procedures are in the

module modEvents and may be used to execute

other functions and procedures on when these

events occur.

You can add your procedures and functions

that need be called and executed when

certain events, intervals or periods occur.

The VBA events procedures as listed below.

– OnProjectOpen()

Actions to perform when the application is

opened, either in runtime or design mode.

It should at least call ‘exProjectInit()’ to

initialize the xlConnect control.

– OnEvent()

Actions to perform each time a certain interval

as defined in the Interval Table changes. The

ID, Name and Current period corresponding to

the interval that changing are passed to this

OnEvent()as the iEventID, strPeriodName and

iPeriod arguments.

Note that you need to update these sections in

VBA when making changes to the interval table.

– OnWatchdog()

Periodically called by the eXLerate to check the

VBA dataspace. Unhandled or fatal errors in

VBA subroutines may cause a reset. If this is

detected, eXLerate calls ‘OnUserInit()’ to

recover from the reset condition.

– OnUserInit()

Actions to perform when a reset of your

instance’s VBA global data is detected. It may

be used to initialize global constants and

settings.

– OnUserCalculate()

Actions to perform every calculation cycle.

– OnBeforeApplyChanges()

Actions to perform just before applying

configuration changes. It may be used to

define some settings for communications.

– OnBeforeActiveMode()

Actions to perform before communication is

started, after the configuration is loaded.

– OnBeforePassiveMode()

Actions to perform when the communication is

suspended.

– OnBeforeReport()

Actions to perform just before a report is

generated.

– OnDaylightSavingChange()

Called when the daylight-saving time changes.

– OnBeforeProjectClose()

Last actions to perform just before the

application is closed.

The VBA code that you insert must be fall-

though: avoid blocking code like (infinitive)

loops, modal forms or message boxes etc.

Don’t activate message boxes or ‘modal’

user forms from VBA events procedures as

this VBA will halt while the dialog is active.

Also prevent time-consuming code as that

decreases the performance and

responsiveness of your application.

 SPI RI T I T E XLER ATE | CO NFIGU RATIO N M ANUAL | CM /E XL- EN 51

12. Reports
You can generate and print reports from your

eXLerate applications. The reports can be

generated automatically on an event like a period

change (e.g. every hour or day) or another event,

like proving completion or batch end, and on user

request.

Figure 60 Example Report

12.1. Design vs. runtime

A report in an eXLerate application is a worksheet

containing the layout and the references to data

(inside the application) to use when the report is

generated. The data can be live data, periodical

data and calculated values.

The worksheet acts as a template for the actual

reports generated in runtime. When opening an

application, or when pressing “Apply changes”

from the ribbon, eXLerate creates the report

template. It will copy the report sheets from the

application and save these in a separate template

file with all formatting, but without the data on

the sheets. The report template files are stored in

the “Xlrx\Cache” folder.

The actual reports are stored as separate Excel

files on disk in the report path, see ‘Application

Shortcuts’. Upon generation of the actual report, a

snapshot of the actual values is stored. The

references and calculated data of the template are

replaced by the actual values.

12.2. Report table

All reports must be registered in the Report Table

on the xTables sheet. It contains the definitions

for the reports, like the report name, worksheet

used as template, the file and sheet name of the

report being generated, and the number of initial

copies to be printed.

Figure 61 Report table

– Report

Internal name for the report

– Period

Name of the interval on which the report is

automatic generated.

When left empty, reports still can be generated

manually or by VBA events.

– Workbook

Obsolete – leave empty

– Trigger

The period number of the corresponding

interval event, at which the report is generated.

When Trigger is left empty, or contains an

expression yielding to a value < 0, it is

generated at every interval event. When the

expression at this field yields to a number >=0,

it is assumed to be the corresponding period

at which the report is to be generated.

– Worksheet

Name of the worksheet inside this application

to use as template sheet for the report.

– FileName

Name of the file to use to save the report when

it is generated.

You can use Excel functions to include the date

and/or time in the file names so separate files

are created for reports generated at different

times.

– SheetName

Name of the sheet inside the workbook to

store the report upon generation.

If a report with the file name already exists,

new sheets are added;

Again, you can use excel functions to generate

different worksheets.

Company

Location

Daily Report

20/Nov/2018

Stream 1

Pressure Temperature Gross volume Std. volume Mass Energy

kPa °C m³ Sm³ t GJ

7:00 0. 0.00 0.00 0.00 0.00 0.00

8:00 0. 0.00 0.00 0.00 0.00 0.00

9:00 0. 0.00 0.00 0.00 0.00 0.00

10:00 4000. 40.00 7.20 338.40 230.00 12.80

11:00 4000. 40.00 7.20 338.40 230.00 12.80

12:00 4000. 40.00 7.20 338.40 230.00 12.80

13:00 4000. 40.00 7.20 338.40 230.00 12.80

14:00 4000. 40.00 7.20 338.40 230.00 12.80

15:00 4000. 40.00 7.20 338.40 230.00 12.80

16:00 4000. 40.00 7.20 338.40 230.00 12.80

17:00 0. 0.00 0.00 0.00 0.00 0.00

18:00 0. 0.00 0.00 0.00 0.00 0.00

19:00 0. 0.00 0.00 0.00 0.00 0.00

20:00 0. 0.00 0.00 0.00 0.00 0.00

21:00 0. 0.00 0.00 0.00 0.00 0.00

22:00 0. 0.00 0.00 0.00 0.00 0.00

23:00 0. 0.00 0.00 0.00 0.00 0.00

24:00 0. 0.00 0.00 0.00 0.00 0.00

1:00 0. 0.00 0.00 0.00 0.00 0.00

2:00 0. 0.00 0.00 0.00 0.00 0.00

3:00 0. 0.00 0.00 0.00 0.00 0.00

4:00 0. 0.00 0.00 0.00 0.00 0.00

5:00 0. 0.00 0.00 0.00 0.00 0.00

6:00 0. 0.00 0.00 0.00 0.00 0.00

ReportTable
Report Period Workbook Worksheet Trigger StartDate FileName SheetNameCopies Options Password Printer Status
Alarms rAlarms 11/05/2016 10:03 Alarms\Alarms20190111 09.36.00 0 0

Daily Hour rDaily 10/12/2018 13:00 Daily\20190111 09.36 0 0

Monthly Day rMonthly 10/12/2018 13:00 Monthly\20190111 Jan 11 0 0

52 SPI RI T I T E XLER ATE | CO NFIGU RATIO N M ANUAL | CM /E XL- EN

– Copies

Number of copies to send to the printer when

report is generated.

When number of copies is set to 0, the report

file is still generated and stored on disk.

– Options

Additional options (bitwise):

bit 1 (“2”): create both XLSX and PDF reports.

– Password

Password for the XLSX report. A user can view

the report, but he cannot (accidentally) make

modifications without entering the password.

– Printer

Printer to use for printing the reports.

When left empty, the printer as specified in the

Control Center will be used.

– StartDate

Date/time when reports were last generated -

automatically update by eXLerate.

– Status

Indication if last report generation was

successful (=0) or failed (=1).

12.3. Report design

When you design a report worksheet, you may use

standard spreadsheet functionality to create the

layout and content. This

– Fixed text / values

Type in the values in the cell(s)

– References to application values

Start with an ‘=’ sign and point to the value in

your application.

To enter a reference to a range with multiple

values (see ‘Latch values’) select all the cells

and enter the reference to the range as an

array: press <Ctrl-Shift-Enter> (see ‘Excel ’)

– Formulas

Enter formulas just like regular excel formulas.

When a report is generated, all formulas are

replaced by values. When you want to have

formulas on the generated reports, you need to

define the formula in between quotes so it is

considered as text.

For example, to display the current date/time,

use the syntax “="=NOW()"” as this formula is

converted into “=NOW()” when the report is

generated. As a result, it will display the date /

time of the re-print or preview.

– Set cell formatting:

• Style (numerical format)

• Alignment

• Font – (only a single font and text color)

• Borders

• Background

– Charts

You can use standard excel charts on reports.

Charts refer to values, and as report values are

frozen on generation, the charts should refer to

values on the report sheet itself and not to

data on other sheets in the application.

– Shape / picture objects

For shapes, pictures or any other object you

put in the report sheet, set the “Object

positioning” property ‘Move and size with cells’

and enable the ‘Print object’ option.

Prevent using hidden rows or columns on report

sheets. Although having hidden rows & columns is

fully supported, it can have a negative effect on

report file-size and performance.

Save your application and “Apply changes”

when you have made changes to report

sheets, so report template file is updated.

12.4. Report generation

In design mode, the reports can be manually

generated from the eXLerate ribbon to test the

layout and functionality.

Figure 62 eXLerate - Generate report tool

In runtime, the reports are created on events as

defined in the Report Table, VBA code or by a user

action like pressing a button that you have defined

in your application.

Report generation consists out of the following

steps:

– Create a new file / sheet based on the report

template and the file / sheet name of the

Report table.

– Create snapshot of the data on the report

sheet from the application.

– Put the snapshot data in the report file / sheet

 SPI RI T I T E XLER ATE | CO NFIGU RATIO N M ANUAL | CM /E XL- EN 53

– When report preview is set: Open a temporary

working copy for preview in excel

– When report number of print copies is set:

Open a temporary working copy in excel and let

excel print the sheet.

– When PDF report option is set: Open a

temporary working copy for creating a PDF

from the excel file.

12.5. VBA report functions

In VBA functions are available with which you can

programmatically generate or reprint reports.

These functions are described in more detail in the

‘Function Reference’ help file.

– exGenerateReport()

Generate a report from the Report table

– exReprintReport()

Reprint an existing report file / sheet.

– exPrintCurrent(…)

Prints the current worksheet on the report

printer.

54 SPI RI T I T E XLER ATE | CO NFIGU RATIO N M ANUAL | CM /E XL- EN

13. Redundancy
SpiritIT eXLerate support different types of

redundancy to allow a system to continue

functionally running when a single point of failure

occurs. This chapter describes the different

redundancy configuration types and how to

configure these within an eXLerate application.

Within eXLerate the different redundancy types

can be combined to achieve a higher level of

availability.

13.1. Redundant

communication links

Redundant communications consist of having two

(network/serial) communication links to a single

device. The data originates from a single source

(device) and is transferred over two different

physical links. If one link fails, the data is still

available using the second link.

Redundant communication in an eXLerate

application requires 2 communication links

(protocols). You have two different methods,

described below.

Figure 63 Redundant communication link

13.1.1. Full redundant communication

All data will be transferred using both links. Both

links will have the same set of queries and data

points. The data set to use can be selected from

one of these sets.

The advantage of this method is that the setup is

straightforward – communication links are

configured as separate devices and the related

queries – and the switch-over is bumpless,

without re-establishing the communication links.

The disadvantage is that it puts more strain on

the server and the device because it effectively

doubles the number of communication points.

For full redundant communication,

configure your application as follows:

– Two protocols - one for each link

(e.g. “192.168.1.100” and “192.168.2.100”)

– Two sets of queries - one set for each protocol.

These sets will be identical for both protocols

with either in the same xTagDB column or two

different xTagDB columns assigned.

– Tag database with one set of tags, set-up with

the following columns:

• Value the value used in the application;

the values are set by both query sets, or a

calculation selects the value from the

(optional) link value columns as defined

below, based on protocol status.

• Link1 (optional) values from link 1

• Link2 (optional) values from link 2

• Query query IDs of both devices,

separated by comma, e.g. “5, 13”

• Query1 (optional) query ID for link 1

• Query2 (optional) query ID for link 2

• Update1 write function for 1st link (Query1)

• Update2 write function for 2nd link (Query2)

– Calculate the link to use (optional), like

=IF(NOT(xFX1_LAN1.SAlarm.Raised),1,2)

13.1.2. Validity check redundancy

The data will be transferred using one link. The

redundant link is only used for checking the

availability of the line. When the primary link fails,

the communication is swapped:

the 1st protocol for the data communication

switches to the link of the 2nd protocol;

the 2nd protocol to monitor the status of the link

switches to the link of the 1st protocol.

The advantage is that this setup puts much less

strain on the system and device while providing

the same level of redundancy. The disadvantage is

that it the switch-over is not bumpless as it

requires re-establishing the communication when

swapping the links and the set-up is more

complex.

For redundancy with validity check,

configure your application as follows:

 SPI RI T I T E XLER ATE | CO NFIGU RATIO N M ANUAL | CM /E XL- EN 55

– Two protocols - one for each link

(e.g. “192.168.1.100” and “192.168.2.100”)

– Enable that the protocols can swapped, using

eXLerate “exSetAlternateDevice()” function:

exSetAlternateDevice(ID1,2,Dev2,xAutoRecalc)

exSetAlternateDevice(ID2,2,Dev1,xAutoRecalc)

– Two different sets of queries:

• 1st set contains full data set

• 2nd set contains only one query for checking

the availability of the line

– Tag database with one set of device tags, set-

up with the following columns:

• Value the value used in the application,

related to the 1st set of queries

• Query ID numbers of the 1st set

• Update write function for 1st set

– Tag database with one additional tag for the

validity check of the redundant link:

• Value validity check value related to the

query of the 2nd link

• Query ID number of the 2nd link query

– Calculate the link to use, with a time-out when

switching links on a communication link failure.

It requires 3 calculations:

• Calc.Link Link to use - set by 2nd calc.

• Calc.SetLink Update link to use based

on protocol status, with timeout of 15 sec:

exCopy(IF(STS1<>1,1,2),Calc.Link,AND(STS1

<>4,xNow.Time>(Calc.SwitchDT+15/86400)))

• Calc.SwitchDT Time of last link change:

=exNow(Calc.Link)

– Switch the links for the protocol using eXLerate

“exSelectDevice()” function for both protocols,

based on the calculated value:

exSelectDevice(ID1,Calc.Link,xAutoRecalc)

exSelectDevice(ID2,Calc.Link,xAutoRecalc)

13.2. Redundant devices

Redundant devices consist of having two devices

performing the same task (measurement). These

devices might or might not be synchronized by the

devices their selves. Both devices communicate

with the eXLerate application.

Redundant devices in an eXLerate application

requires 2 communication links (protocols). You

need to two different methods, described below.

Figure 64 Redundant device

The data originates from a two sources (devices).

13.2.1. Separate device tags

With separate tags per device, the data of both

devices is handled independently: the data of each

device will be available for alarming, trending,

averaging, latching, etc.

This is the simplest configuration as each device is

handled separately. The disadvantage is that it

requires the double amount of tags.

For separate device tags, configure your

application as follows:

– Two protocols - one for each device

– Two sets of queries - one set for each protocol.

These sets will be identical for both protocols

with a different tag set (row numbers) in the

xTagDB assigned.

– Tag database with two sets of tags – one for

each device - with the following columns:

• Value the value used in the application,

for the related device (protocol / queries)

• Query ID numbers of the related query

• Update write function for the query

13.2.2. Combined device tags

You can combine the data from the redundant

devices into a single set of tags. Each tag will

contain the values of both devices and based on a

status calculation, one of the sets of values will be

used for alarming, trending, averaging, latching,

etc. The device of which the data is being used, is

normally called the “Duty” or “Main”, and the other

device is called “Backup” or “Standby”. The device

that will be the “Duty” can be determined by the

devices itself or you can use eXLerate to

determine the “Duty” based on (communication)

status.

56 SPI RI T I T E XLER ATE | CO NFIGU RATIO N M ANUAL | CM /E XL- EN

For combined device tags, configure your

application as follows:

– Two protocols - one for each device

– Two sets of queries - one set for each protocol.

These sets will be identical for both protocols,

with different columns in the xTagDB assigned.

– Tag database with one set of tags for the

combined devices, with the following columns:

• Value in-use value (Duty device)

• Value2 values from device 1

• Value3 values from device 2

• Query query IDs of both devices,

separated by comma, e.g. “5, 13”

• Query1 (optional) query ID for device 1

• Query2 (optional) query ID for device 2

• Update1 write function for 1st device

• Update2 write function for 2nd device

– Calculate the “Duty” device, like

=IF(AND(NOT(xFX1_LAN1_STS.SAlarm.Raised),

 xFX2_LAN1_STS.SAlarm.Raised),1,

 IF(AND(xFX1_LAN1_STS.SAlarm.Raised,

 NOT(xFX2_LAN1_STS.SAlarm.Raised)),2,

 xFX1_Duty_Sts.Value2))

13.3. Redundant supervisory

A supervisory system of multiple computers with

the same functionality protects against a single

failure and allows operation control on different

locations. An eXLerate project configuration

allows this functionality by the Server & Client

network configuration.

Figure 65 Redundant servers

With eXLerate, one application serves both server

and client roles. It is not necessary to create

separate applications; the same application can

be used on all computers in the supervisory

system.

13.3.1. Servers

For the servers, a “Duty” / “Standby” concept is

used. The set-up has only one “duty” server, which

performs the actual communication, maintain the

database and generates reports and alarms. The

“Standby” server(s) continuously synchronize all

the data, such as reports, averages, and database,

from the duty server.

When the “Duty” server fails, a “Standby” server

will automatically take over and will be promoted

to “Duty” server. Data consistency is ensured as it

was continuously synchronized with the previous

“Duty server. When the failed server comes back

online, it will synchronize itself with the duty

server and take its role as a standby server.

13.3.2. Clients

A client visualizes the data and allows user

interactions, but it doesn’t communicate directly

with devices, nor generates alarms nor reports. A

client it reads the data from the Duty server.

Client computers can be either dedicated client or

non-dedicated client. A dedicated client is

explicitly configured in the application and can be

monitored by others. A non-dedicated client is not

configured in the application and cannot be

monitored. It still can connect to the servers and

participate. A non-dedicated client can for

instance, be a service- or engineering laptop which

is only used during maintenance.

13.3.3. Configuration

An eXLerate application for a Client / server

system requires the ‘xNet’ sheet. It is a ready-to-

use configuration sheet and it can be found in the

‘MyNet’ sample application.

To implement client / server functionality,

open the ‘MyNet.xlrx’ as a second workbook

in your eXLerate application.

The ‘xNet’ sheet and related functionality will be

automatically inserted into your application.

Figure 66 xNet Client / server configuration sheet

 SPI RI T I T E XLER ATE | CO NFIGU RATIO N M ANUAL | CM /E XL- EN 57

The standard ‘xNet’ sheet allows you to configure

up to 4 Servers, 8 Clients - up to 4 network

addresses each – and 4 printers.

Set up the computer names and IP

addresses once you have the ‘xNet’ sheet

added in your application.

– Name Computer name as configured in

Windows.

– IP# (optional) IP addresses by which

the computer can be accessed.

It is highly recommended to explicitly specify IP

addresses. Accessing computers on a network

merely by using their computer-name is not

guaranteed to work for systems that don’t use

name-servers such as WINS or DNS.

– Allow Duty Specifies if a server can become

the Duty Server.

Only Duty Servers communicate with devices. If

this is set to FALSE, the Server cannot become

duty, but it will have the synchronized

databases and reports locally, in contrast with

clients that retrieve the data from the Duty

server and not retain it locally.

– Type

Specifies the printer as a Report printer or as

an Events printer.

For clients, set-up drive sharing and

mapping as the client computers don’t have

the reports files locally:

– On the servers, create a file-share for the

eXLerate report folders;

– On the clients, create a network drive-mapping

for each server to these shared folders;

– On the clients, set the report folder to these

mapped drives in the Control Center shortcut:

If multiple servers are used, each server should

drive-mapping should be separated using a ‘|’

character as shown below. The order is as

“Server1\Reports | Server2\Reports”.

The ‘xNet’ worksheet contains a separate section

for advanced settings. These settings allow you to

tweak the communication between servers and

clients. The default values should be used in most

normal situations.

Setting Default Description

Port 9666 TCP/IP port used for

communicating with other

Setting Default Description

clients and servers.

Update Interval 3 Cycle time in seconds for

Network calculations.

Switchover

period

10 Time-out when switching over

(min. 3 times update interval).

Local Override 0 When a value is set, the

computer is forced in a fixed

duty selection, e.g. when set to

‘2’ the 2nd server will be forced

to be the duty server.

Time

synchronization

Hour

3 Hour for periodic time

synchronization between

servers and clients.

If empty, time synchronization

is performed every hour or not

at all, depending on the ‘Minute’

setting.

Time

synchronization

Minute

30 Minute of the hour for periodic

time synchronization between

servers and clients.

If left empty, no time

synchronization will be

performed.

Max. Print Jobs 5 Maximum number of print jobs

allowed for the printers.

13.3.4. Application development

The ‘xNet’ sheet provides an elaborate set of

names which can be used in your application to

show the status on displays, animations, generate

alarms, etc.

Names

The following global names are available:

Table 7 Network status names

Name Description

Net.Configured Indication that the license is

an eXLerate Client / server

edition

Net.Started Indication the network is

configured, and

communication is started

Net.StartTime Time when the

communications were started

Net.UpdateTime Time of last calculation cycle

58 SPI RI T I T E XLER ATE | CO NFIGU RATIO N M ANUAL | CM /E XL- EN

Name Description

for network functions

Net.WaitTimeExpired Checks if the system is still

waiting for Duty Server

determination after

communication has started.

The wait time is different for

each server and is based on

the Switchover time and the

Server ID

Net.Local.ServerID ID of the local server.

‘0’ if it is not a server.

Net.Local.ClientID ID of the local client.

‘0’ if itis not a client.

Net.Local.IsClient TRUE when the local computer

is a client.

Net.Local.IsDutyServer TRUE when the local computer

is the duty server.

Net.Duty.ID ID of the duty server.

‘0’ if no duty is selected.

Net.Duty.Name Computer name of the duty

server.

‘None’ if no duty is selected.

Net.Duty.SwitchOver.Timer Timer counting when Duty

switch-over occurs to prevent

2nd switch-over occurring

within the Switchover period

When set to ‘Single cells names’, the following

names are available:

Table 8 Network cell naming

Name Description

Net.Server{x}.Name Computer name of the Server {x},

with {x} being the server number.

Net.Server{x}.IP1

Net.Server{x}.IP2

Net.Server{x}.IP3

Net.Server{x}.IP4

IP addresses for Server {x} .

Net.Server{x}.Status Overall connection status for server

{x}, as a number between 0 and 4

Net.Server{x}.Status1

Net.Server{x}.Status2

Net.Server{x}.Status3

Net.Server{x}.Status4

Connection status for a specific IP

address (network adapter).

Name Description

Net.Server{x}.Duty Duty server ID selected by that

particular Server;

‘0’ if no duty is selected.

Net.Client{x}.Name Computer name of the Client {x},

with {x} being the Client number.

Net.Client{x}.IP1

Net.Client{x}.IP2

Net.Client{x}.IP3

Net.Client{x}.IP4

IP addresses for Client {x} .

Net.Client{x}.Status Overall connection status for Client

{x}, as a number between 0 and 4

Net.Client{x}.Status1

Net.Client{x}.Status2

Net.Client{x}.Status3

Net.Client{x}.Status4

Connection status for a specific IP

address (network adapter).

Net.Client{x}.Duty Duty server ID selected by that

Client;

‘0’ if no duty is selected.

Net.Printer{x}.Name Windows name of the Printer {x},

with {x} being the printer number

Net.Printer{x}.IP1

Net.Printer{x}.IP2

Net.Printer{x}.IP3

Net.Printer{x}.IP4

IP addresses for Printer {x} .

Net.Printer{x}.Status Overall communication status of the

Printer {x}, as a number between 0

and 4

Net.Printer{x}.Status1

Net.Printer{x}.Status2

Net.Printer{x}.Status3

Net.Printer{x}.Status4

Communication status of a specific

IP address (network adapter).

When using the single cell names, you can directly

refer to the individual cell values. For example, if

you want to refer to the overall status of server 2,

use a formula like:

=Net.Server2.Status

When set to ‘Range names’, the following names

are available:

Table 9 Network named ranges

Name Description

Net.Servers Range with the Computer names

and IP address of the Servers

Net.Servers.Status Range with the communication

 SPI RI T I T E XLER ATE | CO NFIGU RATIO N M ANUAL | CM /E XL- EN 59

Name Description

status of the Servers, as a number

Net.Servers.StatusTxt Range with the communication

status of the Servers, as text

Net.Servers.Duty Range with the IDs of the duty

server as selected by the individual

servers;

Net.Servers.DutyName Range with the names of the duty

server as selected by the individual

server;

Net.Clients Range with the Computer names

and IP address of the Clients

Net.Clients.Status Range with the communication

status of the Clients, as a number

Net.Clients.StatusTxt Range with the communication

status of the Clients, as text

Net.Clients.Duty Range with the IDs of the duty

server as selected by the individual

clients;

Net.Clients.DutyName Range with the names of the duty

server as selected by the individual

clients

Net.Printers Range with the Computer names

and IP address of the Printers

Net.Printers.Status Range with the status of the

Printers, as a number.

Net.Printers.StatusTxt Range with the status of the

Printers, as text.

When using the range names, you can refer to the

individual cell values using the INDEX function. For

example, if you want to refer to the overall status

of server 2, use a formula like:

=INDEX(Net.Servers.Status,2,1)

Servers / clients connections can have the

following status:

0. Running

The application can connect and communicate

with eXLerate application on the specified

name / IP address.

1. No heartbeat

The name / IP address is valid, but it can’t

connect.

2. Not connected

The name / IP address is not available on the

network.

3. Not started

eXLerate communication has not been started

4. -

No computer name / IP address configured

Printer connections can have the following status:

0. Ready

Printer is available and ready for printing

1. Busy

Printer is printing

2. Warning

Printer is available, but returns an error code

3. Not available

The computer cannot connect to the printer

4. -

No printer / IP address configured

Pre-defined animations

The ‘xNet’ sheet contains pre-defined animation

objects for the status of the servers, clients and

printers. When you use shapes with these names

on your displays, these will be automatically

animated based on these statuses.

Table 10 Network animations

Name Description

Server{x} Main name of the (grouped) object for

server {x}, with {x} being the server ID.

Set visible when the server name is set.

Server{x}.Link1

Server{x}.Link2

Server{x}.Link3

Server{x}.Link4

Sub-shape to show a specific link.

Set visible when an IP address is set.

Server{x}.Flt1

Server{x}.Flt2

Server{x}.Flt3

Server{x}.Flt4

Status indication of a specific link.

Set visible when communication fails.

Client{x} Main name of the (grouped) object for

client {x}, with {x} being the client ID.

Set visible when the client name is set.

Client{x}.Link1

Client{x}.Link2

Client{x}.Link3

Client{x}.Link4

Sub-shape to show a specific link.

Set visible when an IP address is set.

Client{x}.Flt1

Client{x}.Flt2

Client{x}.Flt3

Status indication of a specific link.

Set visible when communication fails.

60 SPI RI T I T E XLER ATE | CO NFIGU RATIO N M ANUAL | CM /E XL- EN

Name Description

Client{x}.Flt4

Printer{x} Main name of the (grouped) object for

printer {x}, with {x} being the printer ID

Set visible when printer name is set.

Printer{x}.Flt Status indication of a specific link.

Set visible when communication fails.

Printer{x}.Status Status indication of a printer.

RED printer reports an error

YELLOW printer reports a warning

invisible printer status normal

Printer{x}.Busy Printer is busy indication.

Visible when printer reports it is busy.

Parameter synchronization

The ‘exStoreValue()’ function serves a dual role in

client / server systems. It responsible for retentive

storage of parameters and synchronizes

parameters between clients and servers.

Parameters are initialized on startup with the last

stored value on the Duty server. When a parameter

value is changed on any server or client, the

parameter value on all other servers / clients is

automatically updated and stored.

It is essential that the ‘Trigger’ argument of the

exStoreValue() function contains the value

‘xAutoRecalc’. for correct initialization.

Shared values

Shared values are synchronized on all servers and

clients in a system. You need to specify the

condition when the value should be written and

when it should be read. When compared to

synchronized parameters, they have the following

different characteristics:

– Synchronized parameters are always written;

– Shared values are only written when the write-

condition is ‘True’, else they are read.

– Synchronized parameters are retentive

– Shared values are not retentive.

Conditional functionality

As all VBA code is executed on all servers and

clients, you need to keep in mind that only the

duty server should perform specific tasks, such as

generating automatic reports, controlling valves,

etc. During development you should prevent

certain functionality from running on any other

computer but the duty server.

Use the following functions to implement

conditional functionality:

– exIsClient()

Checks if the computer is a client.

– exIsDutyServer()

Checks if the computer is the duty server.

Writing to devices is also possible from all servers

and clients, using the functions as described in

‘Update device values’. When a value is changed on

either computer using these functions, it causes

to write the data. To restrict the writing, see the

functionality described in section ‘Advanced

Update mode’.

13.4. Communication routing

By default, the Duty server performs the

communication with connected devices. All other

servers and clients read and write data through

the Duty server. When the Duty server loses the

communication with a device, a switch-over would

be required to restore communication, but only if

the other server has no communication problem. If

both servers have a communication problem, the

system would be crippled. If both servers have the

same problem, there is no way to work

around this problem. When the servers have

different problems - Server 1 can’t communicate

with device 1; Server 2 can’t communicate with

device 2 - the system availability is not necessarily

in danger: eXLerate can re-route communication

from the Duty server to another server.

It is possible to re-route communication on query

level, as multiple devices can be attached to a

single protocol (multi-drop systems).

To setup communication re-routing,

configure the following functions:

– Enable the communication protocols on the

required servers with the “exSelectDevice()”

function.

– Monitor the status of the queries on the

servers using the “exQueryStatus()” function.

– Create a calculation for implementing the

routing behavior.

For example, use the duty server when the

query status on that server is okay, else the

standby server:

 SPI RI T I T E XLER ATE | CO NFIGU RATIO N M ANUAL | CM /E XL- EN 61

IF(CHOOSE(Net.Duty.ID,0,QuerySts1,QuerySts2)

=0,Net.Duty.ID,IF(Net.Duty.ID=1,2,1))

– Re-route the query to a specific server with the

“exQueryServer()” function.

When the “exQueryServer()” function is

omitted, eXLerate uses the Duty server for the

communications. This is the default behavior.

62 SPI RI T I T E XLER ATE | CO NFIGU RATIO N M ANUAL | CM /E XL- EN

14. Databases
A database is a structured collection of data. It

may be anything from a simple shopping list to a

picture gallery or the vast amounts of information

in a corporate network. A relational database

stores data in separate tables. This fits nicely in

the spreadsheet concept of rows (records) and

columns (fields).

In typical eXLerate applications, databases are

used for storing events and historical data of the

connected measurement and control devices.

A great feature of eXLerate is redundancy support

for its system database. The system database

tables are automatically synchronized between

multiple servers without any programming effort.

14.1. The system database

eXLerate has a system database (previously

known as the embedded database) for event

logging and to synchronize data between

redundant servers.

Since version 4.2, eXLerate supports two options

for the system database:

– the embedded system database

– the external system database.

The system database is identified with ID ‘0’.

To achieve a solid redundancy implementation, the

system database is automatically synchronized on

redundant systems. Two types of synchronization

can be distinguished:

– Initial synchronization

Upon startup, a server determines whether it is

the duty server or not. If not, it will copy the

complete database from the duty server over

its own database and show the

‘Synchronization’ window. When completed,

both systems databases will be identical.

– Run-time synchronization.

Once the databases are completely

synchronized, they are constantly kept up to

date.

This mechanism ensures all servers always have an

up-to-date database. Failure of a single server will

not cause any data-loss.

14.1.1. The embedded system database

The embedded system database does not require

any additional database server. It will use the

embedded MySQL database engine.

The embedded system database is not accessible

externally.

Configuration is easy.

Specify the database path in the application

shortcut of the Control Center.

Figure 67 Embedded database path

When you have a system with more than one

eXLerate application, the database path for each

application can be configured to be the same path

or a different path.

At startup, eXLerate will check the database. It will

create the database and the required tables

automatically when it doesn’t exist. If the

database is corrupt, it will try to repair the it.

The embedded system database can be fine-

tuned by changing the default settings in the

application, using the ‘exSetDatabaseProperty()’

function. This allows you to set the number of

concurrent connections allowed. Default value is 5

concurrent connections.

14.1.2. The external system database

Since version 4.2, eXLerate supports the use of a

local database server instead of the embedded

database for the system events database. The

benefit of a local database server is that it can be

accessed by any SQL Client e.g. for

troubleshooting.

The external database server used for the system

database must be MySQL compatible and must

run on the same computer where eXLerate runs.

Furthermore, the storage engine must be

‘MyISAM’ for all tables.

At ABB SpiritIT we have used and tested this

functionality on the MariaDB database server.

Other MySQL compatible database servers may

work as well but are not tested.

 SPI RI T I T E XLER ATE | CO NFIGU RATIO N M ANUAL | CM /E XL- EN 63

Configured the external system database in

the application shortcut of the Control

Center.

Figure 68 External database path

– Server address

This must be the local PC: ‘localhost’.

– Server port

Database server port to use to communicate -

Typically port 3306.

– Username

User to connect to the database server.

– User password

Password of the user to connect to the

database server.

– Database

Name of the database to access.

14.1.3. System database tables

When started, the system database contains the

following tables. These tables are required for

eXLerate to function:

– COMMAND_LOG

Table used for data synchronization between

redundant servers.

– EVENTS

Table used for storing alarm transitions,

system events and application specific events.

It contains the following fields:

Table 11 Event table fields

Column Data Type Description

ID BIGINT Unique ID of the event

DATETIME DATETIME Date and time the event

was stored

CLASS VARCHAR Event class (e.g. ‘Alarms’,

‘Security’, ‘Parameter’)

TYPE VARCHAR Event type (e.g. ‘Ack’,

‘Logoff’, ‘Change’)

LOCATION VARCHAR Location (e.g. ‘FX01’,

Column Data Type Description

‘SVC1’)

USER VARCHAR Username or ‘System’

MESSAGE VARCHAR Event message

EXTRA1 VARCHAR Additional event field 1

EXTRA2 VARCHAR Additional event field 2

The primary-key is defined for column ‘ID’, so the

table will never have multiple records with the

same ‘ID’. Furthermore, an index is defined on

column ‘DATETIME’. This index ensures the fast

operation of queries when sorting records by

date-time.

14.2. Foreign databases

eXLerate applications may connect to one or more

additional databases, referred to as foreign

databases. Foreign databases are not

synchronized.

To configure foreign databases, use the

functions:

– exConfigureDatabase()

Creates a connection to the foreign database

and assigns a unique database ID for internal

reference. The following database drivers are

supported:

• MySQL MySQL database

• SqlServer Microsoft SQL Server

• OleDB Generic OLEDB driver

– exSetDatabaseProperty()

Sets a property of a database driver to a new

value. The supported properties are driver

specific.

• Host

Address of the computer where the

database is located. This can be either the

computer name or an IP-address.

• Port

Port that is used to communicate with the

database.

• Database

Name of the database to access.

• User

Username to use to login to the database

• Password

Password to use to login to the database.

64 SPI RI T I T E XLER ATE | CO NFIGU RATIO N M ANUAL | CM /E XL- EN

• Concurrent_connections

Maximum number of simultaneous

connections to access the database.

Increasing this value may improve the ability

to process more SQL statements in parallel.

– exSQLLastDriverSpecificInfo()

Obtains driver specific information returned by

the last executed SQL statement.

• MySql_error MySQL error code.

• MySql_time Time in seconds it took to

execute the SQL statement.

• OleDB_error SQL/OLEDB error code.

• OleDB_time Time in seconds it took to

execute the SQL statement.

• Thread Thread ID of the SQL

statement.

• Affected_rows Number of rows that have

been affected.

– GetDriverSpecificInfo

VBA equivalent of exSQLLastDriverSpecificInfo

The setup and configuration of 3rd party database

platforms is not covered by this document.

14.3. Application databases

In eXLerate application the databases are

identified by unique database IDs. The ID ‘0’

always refers to the system database. Values ‘1’ or

higher refer to foreign databases configured with

‘exConfigureDatabase()’ function.

If an application needs to access the local

database regardless if it is the duty or standby

server, then you can use the database identifier

“local_embedded”. It is not recommended to

access the “local_embedded” database as

changes to the local database are not

automatically synchronized.

14.3.1. User definable tables

The eXLerate databases can be extended with

user definable tables. For the system database

tables, the ‘MyISAM’ storage engine must be used.

‘MyISAM tables consist of these three files:

– <Table>.FRM MyISAM Definition File

– <Table>.MYD MyISAM Data File

– <Table>.MYI MyISAM Index File

During startup of eXLerate, the Event Logger will

show an event for every user defined table found

in the system database.

User definable tables in the system database are

automatically synchronized. Upon startup each

server should contain the user defined tables with

the same layout. After synchronization, the data in

the tables on all servers will be identical.

When manually copying table files from one

database server to another, make sure that both

database servers are stopped. In case of the

eXLerate system database, make sure the

application is completely shut down.

14.3.2. SQL queries on worksheet

A worksheet is highly suitable for representation

of a relational database, where data is organized

in records and fields. The SQL interface in

eXLerate can be fully configured from worksheets.

Using the worksheet functions, these records and

fields directly translate into rows and columns,

respectively.

Once a database is configured – eXLerate system

database on starting the application or foreign

databases with ‘exConfigureDatabase()’ function -

it can be accessed using so-called ‘SQL queries’:

an SQL statement executed on a database.

To implement SQL queries from the

Use the following worksheet functions to

implement SQL queries on worksheets

within an application:

– exSQLCreateQuery()

Create a query for the specified database. A

unique query ID must be provided which need

to be used in subsequent database calls.

– exSQLExecQuery()

Execute the query with the ID provided by

exSQLCreateQuery() and return any result set

of the query to the worksheet in rows and

columns. This is the ‘workhorse’ function

executing SQL statements.

Minimize the number of times SQL queries

are executed as these can take a lot of time

and produce large result sets.

The functions below allow you to analyze the

results of an SQL query that is executed and

process the result in your application.

– exSQLRowCount()

The number of rows of the data returned for

the SQL query.

 SPI RI T I T E XLER ATE | CO NFIGU RATIO N M ANUAL | CM /E XL- EN 65

– exSQLColumnCount()

The number of columns of the data returned

for the SQL query.

– exSQLLastDurationTime()

The time it took to execute the SQL query.

– exSQLLastError()

The error number returned when the SQL query

was executed.

– exSQLDiagnosticalValue()

A diagnostical value for the SQL query, e.g. how

many times a query (with a specific command)

has been executed.

To view the data retrieved from a database

table (with an SQL ‘Select’ query), use:

– exSQLField()

A single field of the resulting data set for an

SQL query.

– exSQLViewQuery()

The resulting data set for an SQL query in a 2-

dimensional array, or a partial selection of the

data set.

Use scrollbars to display large data sets. By

using scrollbars, you can dynamically

change the start row and/or columns:

– Select the range where the data should appear

– Enter the exSQLViewQuery() formula

(enter with <Ctrl-Shift-Enter> as it is an array

function)

– Create a scrollbar next to the data with a

logical name.

– Link the scrollbar current position to the cell

referred in the exSQLViewQuery() formula as

start row / column.

(Right-click and select ‘Format Control…’)

– Update the scrollbar boundaries as queries can

return result sets with changing row counts:

• Create animation object:

=exShapeID(<Scrollbar name>,xAutoRecalc)

• Update boundaries with function:

=exShapeMinMax(<ShapeID>,<Min>,<Max>)

The minimum value should remain ‘0’.

The maximum value is calculated as follows:

<max> = <row count> - <scroll window size>

14.3.3. SQL queries in VBA

The main interface in VBA to access the database

is the ‘SQLCmd’ object. It must be created

explicitly in your VBA code before it can be used.

Dim oSQL As New SQLCmd

Use the following VBA functions to execute

SQL queries within VBA:

– Execute()

Executes a SQL statement on a database and

waits for it to complete or time-out.

Statements are executed in series and will

block the application while waiting to finish.

– ExecuteAsync()

Executes a SQL statement on a database and

returns immediately.

Statements defined in a batch are executed in

parallel and don’t block the application.

When an SQL statement is executed, the results

are stored inside the ‘SQLCmd’ object. These

results can be accessed using the other properties

and functions of the object.

– RowCount

The number of rows of the data returned for

the SQL statement.

– ColumnCount

The number of columns of the data returned

for the SQL statement.

– Time

The time it took to execute the SQL query.

– ErrorCode

The error number returned when the SQL query

was executed

– ErrorDescription

The error description returned when the SQL

query was executed

SQL 1

SQL 2

SQL 3

SQL 5

SQL 4

Total

SQL 1

SQL 2

SQL 3

SQL 5

SQL 4

Total

66 SPI RI T I T E XLER ATE | CO NFIGU RATIO N M ANUAL | CM /E XL- EN

– GetDriverSpecificInfo()

Driver specific information field that was

returned by the last executed SQL statement.

– Field()

A single field of the resulting data set for an

SQL statement.

– GetArray()

The resulting data set for an SQL statement in

a 2-dimensional array.

– IsAsyncInProgress()

Checks whether an asynchronous SQL

statement is still in progress.

– WaitForAsyncAsync()

Waits for an asynchronous statement to

complete or time-out.

– CancelAsync()

Cancels an in progress asynchronous

statement.

To make it easier for to execute and check the

progress of SQL statements in parallel, the

‘SQLCmdBatch’ object is available. ‘SQLCmd’

objects can be added to a batch after which the

progress of the whole batch can be checked.

The following functions are available for the

‘SQLCmdBatch’ object:

– Add()

Adds an ‘SQLCmd’ object to a batch.

– IsAsyncInProgress()

Checks whether any of the asynchronous

statements is still in progress.

– WaitForAsync()

Waits for all asynchronous execute statement

to complete or time-out.

– CancelAsync()

Cancels all in progress asynchronous

statements.

 SPI RI T I T E XLER ATE | CO NFIGU RATIO N M ANUAL | CM /E XL- EN 67

15. Terminal Services
Terminal Services offers the ability to view and

manage an eXLerate system remotely using one or

more remote desktop sessions (RDP). With

Remote Desktop, the eXLerate program runs on

one system, while being displayed on a separate

computer. This gives the benefit that you do not

need to install any software on your computer in

order to view or manage the eXLerate system.

Figure 69 Terminal services

15.1. Requirements and

licenses

In order to use the eXLerate Terminal Services, the

following software and licenses are required.

– Windows 10 supports 1 simultaneous remote

desktop connection.

– Windows Server with the Terminal Services

Role enabled and the appropriate licenses (TS

CAL’s) allows running multiple remote desktop

instances simultaneously.

– Microsoft Office with Volume License.

– eXLerate Terminal Services license

15.2. Configuration

Using eXLerate in combination with Terminal

Services requires configuration at both the

Operating System level and the eXLerate level.

Setup Microsoft Windows to allow remote

desktop sessions:

– Install ‘Remote Desktop Services’ role on

Windows Server.

– Purchase and install ‘RDS CALs’ for the users or

computers which are to connect to the server.

– Set the remote desktop services setting

‘Restrict each user to a single session’ to ‘’.

It is outside the scope of this document to

describe these steps in detail. Consult the Internet

if you need information on a topic.

In eXLerate the Terminal services need to be set-

up to allow running multiple user sessions

simultaneously.

Select the ‘Enable Terminal Services Mode’

in the Control Center.

Figure 70 eXLerate Terminal services

With this option enabled, eXLerate applications

started on the system run in ‘Terminal Services

Client Mode’. It allows a single application to be

started multiple times on the same computer,

once in each terminal services session.

You may run a separate computer for Terminal

Services Clients, but you may also combine am

eXLerate server, or a standalone system with

Terminal Services support. This requires that your

first launched session runs as a regular eXLerate

session (i.e. eXLerate Server Mode or eXLerate

Standalone Mode).

Enable ‘Run first login of the current user as

a regular eXLerate session’ to start the 1st

session as eXLerate Server or Standalone.

To use Terminal Services, your application needs

to contain client / server support: it requires a

‘xNet’ sheet and the server table should contain

the names and IP-addresses of the server(s). See

section ‘Redundant supervisory’ for more

information on configuring servers / clients.

15.3. Using terminal services

Once Terminal Services is correctly configured,

you can start using it. To remotely access the

68 SPI RI T I T E XLER ATE | CO NFIGU RATIO N M ANUAL | CM /E XL- EN

eXLerate Terminal Services system, start the

‘Remote Desktop Client’.

Figure 71 Remote Desktop Connection

Enter the remote computer name or IP address

and click ‘Connect’ to establish the connection

with the eXLerate Terminal Services system.

By default, the size of the desktop will be adjusted

to the screen resolution of the client computer.

The eXLerate application may however have been

developed for a specific resolution. To open a

remote desktop connection with a specific screen

resolution you can use the following command-

line:

mstsc /v:<host> /w:<width> /h:<height>

Example:

mstsc /v:10.0.0.105 /w:1920 /h:1080

 SPI RI T I T E XLER ATE | CO NFIGU RATIO N M ANUAL | CM /E XL- EN 69

16. Multi-lingual systems
Multi-lingual systems can change the display

language during runtime. In this chapter you will

learn how to configure multi-lingual systems.

16.1. Windows language

packages

Dependent on the installed version of Windows,

additional languages need to be installed. It is not

necessary to have a localized version of Windows

installed; any version of Windows will do. The

localized versions of Windows translate OS texts

such as: Start Menu, Control Panel, Print dialogs,

etc. into a specific language.

Install the Windows language packages to

have the required code-page containing the

characters for all the languages.

The installation depends on the used Windows

version and build. For Windows 10, perform the

following steps:

– Go to ‘Settings - Time & Language - Region &

language’;

– Select a region, then click ‘Add a language’;

– Choose the language you need.

– Click the language pack you just added, then

click ‘Options - Download language pack’;

– Restart the computer when a new language is

installed.

16.2. Multi-lingual application

eXLerate supports multiple languages in an

application. It requires the worksheet called

‘xLanguage’. The layout of this worksheet is also

fixed and can be extended with additional

languages and custom texts.

Figure 72 Languages sheet

There are two methods to add multi-lingual

support to an application.

Copy an ‘xLanguage’ worksheet from an

existing application containing the

translations if available.

If not available, run the Language wizard to

generate a new ‘xLanguage’ worksheet.

The newly created worksheet will have no default

formatting, so you need to apply it manually.

16.2.1. Language sheet

The ‘xLanguage’ sheet contains the text to display

for the different languages. A language with its

text is grouped into columns: each language

consists of its own column. The first three

columns of the ‘xLanguage’ sheet are fixed.

1. Class used for grouping sections

2. Key Internal key used for configuring

multi-lingual text. More details below.

3. Default Default text (English)

Additional columns that have a non-empty value in

the 1st row, are considered additional languages.

Additional rows contain the internal used

‘language keys’ with the corresponding text to

display for each language. When text is not filled

in, the text of the “Default” column will be used.

Language keys usually consist of several words

separated by the backslash characters ‘\’, like

“General\Dialogs\SaveButton”. This syntax is not

Key English Nederlands Deutsch 中文

Flag image name: uk.gif Netherlands.gif Germany.gif China.gif

System

Alarms\Column\BlockCount BlockCount BlockCount BlockCount 总分块数

Alarms\Column\Deadband Deadband Dodeband Deadband 死区

Alarms\Column\Delay Delay Vertraging Verzögern 延时

Alarms\Column\Description Description Omschrijving Beschreibung 说明

Alarms\Column\Format Format Formaat Format 格式

Alarms\Column\ID ID ID ID 识别号

Alarms\Column\LastValue Last Value Laatste waarde Letzter Wert 终值

Alarms\Column\Limit Limit Begrenzing Grenze 范围

Alarms\Column\Location Location Plaats Ort 地点

Alarms\Column\Name Name Naam Name 名称

Alarms\Column\Priority Priority Prioriteit Priorität 优先

Alarms\Column\State State Staat Zustand 状态

Alarms\Column\Timestamp Timestamp Tijdstip Zeitstempel 时间标记

70 SPI RI T I T E XLER ATE | CO NFIGU RATIO N M ANUAL | CM /E XL- EN

obligatory, but it is recommended as it improves

readability and extensibility.

Some language texts support dynamic keywords

which are replaced by specific values when the

text is displayed. For instance, the language key

“Alarms\Messages\AckGroup” supports the

keyword ‘%USER%’, which when displayed is

replaced by the actual name of the logged in user.

To add languages, create a column in the

language sheet and set the language name.

Then add the translations into the rows.

The language worksheet contains the ‘System’

class. These texts are used for dialogs, log texts,

notifications, etc. which are generated by

eXLerate rather than the application. All the keys

in the ‘System’ class are fixed and cannot be

changed.

You can extend the language sheet with

user defined texts, to be used on display

sheets and VBA user forms.

Start with a new class for your text keys to

prevent these are deleted as the ‘system’

class is updated by the ‘Language wizard’.

16.2.2. Multi-lingual tag database

The Tag database supports multi-lingual tag and

alarm descriptions. Additional language texts can

be added to the Tag Database directly and don’t

need to be configured through the ‘xLanguage’

sheet.

To add multi-lingual tag descriptions, insert

a column into the Tag database and give it

the header “Description_<Language>”.

The “<Language>” section should be replaced by

the name of the language (e.g. “Dutch”, “Russian”,

“Chinese”). If the currently selected language is

“Dutch”, the tag descriptions from the column

“Description_Dutch” will be used for event logging

and displaying. The column “Description” is used if

the selected language is not explicitly configured

or “Default” is selected.

The same mechanism applies to alarm

descriptions. If alarm descriptions are explicitly

configured using the “AlarmDesc” column, the

additional languages can be added by adding new

columns and appending the “_<Language>” (e.g.

“AlarmDesc_Dutch”).

16.2.3. Language selection

The named cells xLangIndex’ and ‘xLangSelection’,

located on the internal ‘xWizard’ sheet, contain the

currently selected language. The first is the index

number, the 2nd is the language name in text, e.g.

“English”. You can use this name to read the

current language and to set the language.

To select a language, write the language

name ‘xLangSelection’

Within VBA:

exRange("xLangSelection").Value = "Dutch"

From a worksheet:

=exCopy("Dutch",xLangSelection)

16.2.4. Multi-lingual displays and forms

The function ‘exLanguageText()’ returns the text

associated with a Language Key for the currently

selected language. If the text is not available for

the selected language, the default text is used.

On worksheets, the function uses the trigger

‘xLangRecalc’ which triggers a recalculation every

time a different language is selected. This trigger

is not required when using the function in VBA.

To extend display sheets and VBA user

forms with multi-lingual support, use the

‘exLanguageText()’ function.

=exLanguageText(“MyText”,xLangRecalc)

16.2.5. Multi-lingual buttons

For multi-lingual text on display buttons, the

alternative mechanism can be used. Instead of

using the ‘exLanguageText()’ function, the Button

table uses the CHOOSE(…) function with

‘xLangIndex’ to select the button text from

multiple columns containing language texts.

Add the button table language columns in

the same order as the language columns in

the ‘xLanguage’ worksheet.

If this is not the case, the indexes will be different,

and the wrong language text will be selected.

When a new language is selected, call VBA

function ‘exSetButtonText()’ to update the

texts on all the buttons in the Button Table.

Sub SelectLanguage ()

 exRange("xLangSelection").Value = "Dutch"

 exSetButtonText

End Sub

 SPI RI T I T E XLER ATE | CO NFIGU RATIO N M ANUAL | CM /E XL- EN 71

17. Daylight saving time
Systems that require to support Daylight Saving

Time (DST), require special attention to avoid

fiscal integrity problems with respect to these

changeovers.

Instead of using the Windows clock adjustment,

let the eXLerate application adjust the

computer(s) system time during DTS change-over.

eXLerate adjusts the time in two half hour steps,

avoiding full hour changes that may invalidate

hourly based counters and averages.

DST change-over in eXLerate

When the DST officially starts, the clock is set

forward for one hour, e.g. at 02:00 at night the

time is adjusted to 03:00.

In eXLerate, this changeover takes place in two

half our steps:

– At 02:15, the clock is adjusted to 02:45

– At 03:00, an hourly transition takes place.

The data at 03:00 contain data for 30 minutes:

02:00-02:15 + 02:45-03:00

– At 03:15, the clock is adjusted to 03:45

– At 04:00, an hourly transition takes place.

The data at 04:00 contains data of the 2nd half

hour: 03:00-03:15 + 03:45-04:00

The net result is that the clock is adjusted a full

hour and that the fiscal reports contain two hours

each with data of a half hour.

When the DST officially ends the clock is set

backward for one hour, e.g. at 03:00 at night the

time is adjusted to 02:00.

In eXLerate, this changeover takes place in two

half our steps:

– At 02:45, the clock is adjusted to 02:15

– The 2nd time the clock is 02:45, the clock is

adjusted to 02:15 again.

– At 03:00, a normal hourly transition takes

place.

The data at 03:00 contains the data for 2 hours

(02:00-02:45 + 02:15-02:45 + 02:15-03:00)

The net result is that the clock is adjusted a full

hour and that the fiscal reports contain one-hour

record with 2 hours of data.

This behavior is generally accepted by the

industry.

Configuration

Turn off the Windows ‘adjust for daylight

saving time automatically’ when DST

changeovers are configured in eXLerate.

Figure 73 Windows DST setting

In your application, the settings for DST

changeovers are defined in the ‘rTimeTable’ on the

sheet ‘xTables’.

Figure 74 Time table

This table contains 2 sections:

– DST settings

The first part contains the date (month, week

and day of the week) and hour when DST starts

and DST ends. These are used to calculate the

actual date and time of DST changeovers.

– Named range 'rTimeTable'

This range contains the values that are

internally used by eXLerate and are derived

from the DST settings.

The application ‘DaylightSaving.xlrx’

contains an example on the daylight-saving

time configuration for in eXLerate.

In the example application, the DST settings are

named cells.

Use the named cells in your application to

allow a user to change DST settings in run-

time.

– xDST.Start.Month

– xDST.Start.Week

– xDST.Start.Weekday

TimeTable
DST Settings Month Week (5=last)Day (1:Sun-7:Sat)Hour Intermediate Change DST

xDST.Start 3 5 1 2 31/Mar/2020 29 Mar '20 02:00

xDST.End 11 5 1 3 30/Nov/2020 29 Nov '20 03:00

rTimeTable

Smon Sday Shr WmonWdayWhr Reconfigure

3 29 2 11 29 3 4

72 SPI RI T I T E XLER ATE | CO NFIGU RATIO N M ANUAL | CM /E XL- EN

– xDST.Start.Hour

– xDST.End.Month

– xDST.End.Week

– xDST.End.Weekday

– xDST.End.Hour

When any of these values changes, either the year

changes or due a user entered new values, the DST

change-over is reconfigured by the function

‘exReconfigureSummerWinter()’ on the left side of

the ‘rTimeTable’ range.

Set in VBA function ‘OnBeforeActiveMode()’

to call ‘exEnableSummerWinter()’ to

initialize the settings for DST changeovers.

 SPI RI T I T E XLER ATE | CO NFIGU RATIO N M ANUAL | CM /E XL- EN 73

18. Document revisions
Revision A February 2012

– Initial release for eXLerate 2010

– Added ‘Import Sheets’ and ‘Advanced Replace’

tools.

Revision B December 2016

– Update to eXLerate 2016.

– Update to ABB lay-out.

– New document code: COI/eXL2016-EN.

Revision C September 2018

– New document code: CM/eXL-EN.

– Reintroduce revisions chapter.

– Provisional support for MS Excel 2019 added.

– Windows 8 removed from software

requirements.

– Clarified behavior of limit alarms at set points.

Revision D April 2019

– Support for MS Excel 2019 added.

– Updated chapter Relational Databases.

Revision E April 2020

– List of used network ports added.

– Updated contact address and added reference

to installation manual.

Revision F January 2021

– Combining and rewriting the two reference

manuals into a single configuration manual.

– Split installation and configuration sections in

separate documents.

Revision G August 2022

– Added additional safety precautions for VBA

code.

74 SPI RI T I T E XLER ATE | CO NFIGU RATIO N M ANUAL | CM /E XL- EN

Appendix A. Troubleshooting
There are circumstances in which you need to

troubleshoot an application. This could, for

example, be due to issues with communication or

issues with the computer hardware. There are

several things you could do in these cases.

A.1. Do’s and don’ts

Following this summary of the best engineering

practices will, in many cases, improve stability and

performance of your eXLerate application. More

detailed explanations are shown in the previous

chapters of this manual.

– Start with latest template application;

– Limit the amount of named references;

– Check in Name Manager the scopes and errors;

– Check for circular references and errors;

– Don’t use volatile functions;

– Don’t use 3D effects on shapes;

– Don’t use references on shapes;

– Limit merging cells as much as possible;

– Don’t use ActiveX combo boxes;

– Analyze your database queries;

– Clean up objects in VBA;

– Use eXLerate functions, like exMsgBox and

exRange, replacing excel VBA functions;

– Use modeless user forms, especially when

called from the event loop;

– Check that UDF’s are not continuously called

from worksheets;

– Limit the calling functions from event loop,

especially for second-based events;

– Check performances of VBA functions;

– Use asynchronous database queries when

possible;

A.2. Communications

See section ‘xlConnect’ for details on debugging

and logging communications and the explanation

of the communication messages of the different

protocols.

A.3. Reports

One of the most important tasks of the system is

to generate the fiscal reports. When the system is

down or eXLerate/your application has issues, you

can still access the stored reports when you have

sufficient privileges. All reports are stored in the

folder as specified in the application’s shortcut

properties in the control center.

When reports are not generated as expected,

perform the following checks:

– Check the log file messages

– The report template file is available in

Xlrx\Cache folder

– If the report template file is missing, check the

log file for messages when the application is

started.

– Check the application ‘rReportTable’ that all

entries are valid:

• Report names are defined

• Worksheet names are defined

• Worksheets are available in the application

• Period to generate the report exists

• File name doesn’t contain invalid characters:

– < (less than)

– > (greater than)

– : (colon)

– " (double quote)

– / (forward slash)

– | (vertical bar or pipe)

– ? (question mark)

– * (asterisk)

• For subdirectories use “\” (backslash)

• Sheet name is limited to 31 characters

• Sheet name doesn’t contain invalid

characters

– [(square bracket)

–] (square bracket)

– < (less than)

– > (greater than)

– : (colon)

– " (double quote)

– / (forward slash)

– \ (backslash)

– | (vertical bar or pipe)

– ? (question mark)

– * (asterisk)

 SPI RI T I T E XLER ATE | CO NFIGU RATIO N M ANUAL | CM /E XL- EN 75

A.4. Windows event viewer

The Windows event viewer logs may indicate

issues with Windows, applications, and hardware

(drivers).

To check the Windows event viewer, use the

following steps:

– Press <-R> to start the “Run” prompt

– Type ‘eventvwr’ (without the quotes) and press

<Enter>

A.5. Diagnostic information

Diagnostic tools are available when you have

installed eXLerate. You will find these in the

Windows start menu – All Programs – eXLerate –

Tools. When you run the diagnostic tools, it will

assemble diagnostic data from the computer:

– A snapshot of the environment variables

– A copy of Microsoft System Information

(if the program can be found on the system)

including hardware information, driver

software information, Office versions etc.

– A registry extract from the eXLerate sections

– A full directory listing of drives C - F.

– Event files from the event viewer.

These files sometimes show network

problems, and security message that may have

an impact on our software.

– Log files from the last 30 days

– Crash dump files, should they exist

Once completed, the user is invited to copy any

additional files to the c:\tmp\exlerate directory,

using Windows explorer. These files will be

included in the CAB files. These files can be mailed

to our tech support for further analysis.

A.6. Performance monitor

You can use Windows Performance Monitor to

analyze data, such as processor, hard drive,

memory, and network usage. To open

Performance Monitor:

– Press <-R> to start the “Run” prompt

– Type ‘perfmon’ (without the quotes) and press

<Enter>

You can add counters to monitor virtually anything

on your computer. Once you have configured all

the counters you want to monitor, you can also

customize various aspects of the data shown in

the graph

Since eXLerate version 4.2.5, the eXLerate

performance is periodically logged (once per

hour).

You can also add performance indicators into your

application, using the worksheet function

‘exGetPerformanceInfo()’. The function returns

– Average CPU usage since previous call

– Memory usage

– Handle count

You can set trending and alarming on these values

by using this function in the ‘xTagDB’.

76 SPI RI T I T E XLER ATE | CO NFIGU RATIO N M ANUAL | CM /E XL- EN

Appendix B. Constants
Data types

xBit 1

xByte 2

xShort 3

xWord 4

xUInt24 5

xLong 6

xDWord 7

xChar 8

xRevDWord 9

xFloat 16

xRevFloat 17

xDouble 18

xShortFloat 19

xIntelFloat 20

xWordFloat 21

xRevDouble 22

xBCD 32

xTimeDate 33

xTimeStamp 34

xAdcFloat 37

x10kFloat 38

xBitInQWord 39

xLowQWord 40

xString6 64

xString12 65

xString24 66

xString10 67

xString80 68

xString 69

xString8 70

xString16 71

xVariant 80

xVarArray 81

Query table options

xBlockWrites 1

xNewDataOnly 2

xTransparentRead 4

xForcedWrites 8

xNoReadOnce 16

xItemUpdates 32

xNoSleepAll 64

xWriteOnly 128

xWriteAll 512

Update constants

xUpdateNever 1

xUpdateAlways 2

xUpdateConditionally 3

Periods

xSec 1

xMin 2

xHour 3

xDay 4

xWeek 5

xMonth 6

xQuarter 7

xYear 8

Pre-defined colors

xBlack 0

xWhite 1

xRed 2

xGreen 3

xBlue 4

xYellow 5

xMagenta 6

xViolet 7

Editing types

xWholeNumber 1

xDecimal 2

xText 3

xList 4

xDate 5

xTime 6

Editing limits

xMinimum 1

xMaximum 2

Editing targets

xTargetNone 1

xTargetCell 2

xTargetName 3

xTargetComm 4

xTargetAlarmLimit 5

xTargetAlarmDeadband 6

xTargetAlarmDelay 7

General

xAddress 1

xFormat 2

xRawFormat 3

xFormula 4

xValue 5

 SPI RI T I T E XLER ATE | CO NFIGU RATIO N M ANUAL | CM /E XL- EN 77

Appendix C. License model
Licenses for eXLerate are available depending on

the following factors. Please contact ABB BV for

details.

– eXLerate operating mode:

• Development

To develop applications and test and run

communications for up to one hour.

• Runtime

For runtime use of applications, with

communication, live data, visualization, etc.

• Development + Runtime

To run and maintain applications.

– Communication Protocols:

• Flow-X Client

• Modbus Client (TCP)

• Modbus Server (TCP)

• Modbus Master (serial)

• Modbus Slave (serial)

• OPC Client

• OPC Server

• HART Master

• HART Slave

• SLIP+

• Uniform

– Number of I/O tags in your application:

Each value communicated with an external

device is a tag, see section ‘Tag Database’.

• 75 tags

• 150 tags

• 300 tags

• 750 tags

• 1500 tags

• 3000 tags

• 6000 tags

• 32765 tags

• 1000000 tags

– Network arrangement:

• Stand-alone

• Server

• Client

• Terminal services

– Additional functions:

• Foreign Database

• Flow-Xpert Libraries

• Virtual Flow Computer

• Flow-Xprint Virtual printer

—
We reserve the right to make technical changes or modify the contents of this document

without prior notice. With regard to purchase orders, the agreed particulars shall prevail.

ABB AG does not accept any responsibility whatsoever for potential errors or possible lack
of information in this document.

We reserve all rights in this document and in the subject matter and illustrations contained

therein. Any reproduction, disclosure to third parties or utilization of its contents – in

whole or in parts – is forbidden without prior written consent of ABB.
© ABB 2020

—

ABB B.V.

Measurement & Analytics

Achtseweg Zuid 151A =

5651 GW Eindhoven

The Netherlands

Phone: +31 40 236 9445

Mail: nl-spiritit-sales@abb.com

ABB Malaysia Sdn Bhd.

Measurement & Analytics

Lot 608, Jalan SS 13/1K

47500 Subang Jaya

Selangor Darul Ehsan, Malaysia

Phone: +60 3 5628 4888

abb.com/midstream

ABB Inc.

Measurement & Analytics

7051 Industrial Boulevard

Bartlesville OK 74006

United States of America

Phone: +1 800 442 3097

ABB Limited

Measurement & Analytics

Oldends Lane, Stonehouse

Gloucestershire, GL10 3TA

United Kingdom

Phone: +44 7730 019 180

mailto:nl-spiritit-sales@abb.com

	1. Introduction
	1.1. Features
	1.2. Application examples
	1.3. Cyber security
	1.4. Manuals
	1.5. Target audience
	1.6. Document conventions
	1.7. Abbreviations
	1.8. Terms and definitions

	2. eXLerate applications
	2.1. Application Shortcuts
	2.2. Open an application
	2.3. Create new application
	2.4. Save an application
	2.5. Close an application
	2.6. eXLerate user accounts

	3. Application basics
	3.1. Application modes
	3.1.1. Design mode
	3.1.2. Preview mode
	3.1.3. Verify mode
	3.1.4. Runtime mode
	3.1.5. Switching modes

	3.2. Excel basics
	3.2.1. Worksheets
	3.2.2. Cell data
	3.2.3. Shapes, pictures and charts
	3.2.4. Naming cells and shapes
	3.2.5. Formulas
	3.2.6. Visual Basic for Applications

	3.3. eXLerate worksheets
	3.3.1. ■ Communication sheets
	3.3.2. ■ Internal sheets
	3.3.3. ■ Calculation sheet
	3.3.4. ■ Configuration sheets
	3.3.5. ■ Displays
	3.3.6. ■ Reports
	3.3.7. ■ Safety precautions

	3.4. eXLerate wizards
	3.4.1. Tag & Object wizard
	3.4.2. Calculation wizard
	3.4.3. Button wizard
	3.4.4. Color wizard
	3.4.5. Language wizard
	3.4.6. eXLerate engineering tools

	4. Data communication
	4.1. Communication model
	4.2. Set-up communications
	4.2.1. Protocol table
	4.2.2. Query Table
	4.2.3. Advanced Read mode

	4.3. Update device values
	4.3.1. Communication settings
	4.3.2. Display editing
	4.3.3. Tag Database updates
	4.3.4. Visual Basic updates
	4.3.5. Advanced Update mode

	4.4. xlConnect
	4.4.1. Logging and debugging
	4.4.2. Flow-X communication
	4.4.3. Modbus communication

	4.5. OPC Server

	5. Tag Database
	5.1. Tag naming & reference fields
	5.2. Communication fields
	5.3. Values fields
	5.4. Alarm fields
	5.5. Trend fields
	5.6. Periodic fields
	5.7. Tag count

	6. Calculations
	6.1. Calculation sheets
	6.2. Store values

	7. Displays
	7.1. Configuration tables
	7.1.1. User table
	7.1.2. Worksheet table
	7.1.3. Style table
	7.1.4. Color table
	7.1.5. Button table

	7.2. Display sheets
	7.2.1. New display sheets
	7.2.2. Text, live values and units
	7.2.3. Charts
	7.2.4. Pictures
	7.2.5. Shapes

	7.3. Animations
	7.3.1. Animation object names
	7.3.2. Configuration

	7.4. Buttons & navigation

	8. Alarm management
	8.1. Defining alarms
	8.2. Alarm groups
	8.3. Active alarms
	8.4. Historical events
	8.5. Advanced alarm usage

	9. Trending
	9.1. Defining trend tags
	9.2. Data storage
	9.3. Display trends
	9.3.1. Trend Chart
	9.3.2. Trend Pen Selector
	9.3.3. Trend Navigator

	9.4. Advanced trend functions

	10. Editing values
	10.1. Allowing user input
	10.2. Editing table
	10.2.1. Configuration
	10.2.2. Group-wise editing
	10.2.3. Edit lists
	10.2.4. Date /time editing

	10.3. Runtime editing

	11. Interval periods and events
	11.1. Interval table
	11.2. Periodic data
	11.2.1. Weighted averages
	11.2.2. Latch values
	11.2.3. Latch average values

	11.3. Calculation triggers
	11.4. Reset historical values
	11.5. VBA events

	12. Reports
	12.1. Design vs. runtime
	12.2. Report table
	12.3. Report design
	12.4. Report generation
	12.5. VBA report functions

	13. Redundancy
	13.1. Redundant communication links
	13.1.1. Full redundant communication
	13.1.2. Validity check redundancy

	13.2. Redundant devices
	13.2.1. Separate device tags
	13.2.2. Combined device tags

	13.3. Redundant supervisory
	13.3.1. Servers
	13.3.2. Clients
	13.3.3. Configuration
	13.3.4. Application development

	13.4. Communication routing

	14. Databases
	14.1. The system database
	14.1.1. The embedded system database
	14.1.2. The external system database
	14.1.3. System database tables

	14.2. Foreign databases
	14.3. Application databases
	14.3.1. User definable tables
	14.3.2. SQL queries on worksheet
	14.3.3. SQL queries in VBA

	15. Terminal Services
	15.1. Requirements and licenses
	15.2. Configuration
	15.3. Using terminal services

	16. Multi-lingual systems
	16.1. Windows language packages
	16.2. Multi-lingual application
	16.2.1. Language sheet
	16.2.2. Multi-lingual tag database
	16.2.3. Language selection
	16.2.4. Multi-lingual displays and forms
	16.2.5. Multi-lingual buttons

	17. Daylight saving time
	18. Document revisions

