

ABB MEASUREMENT & ANALYTICS | INBETRIEBNAHMEANLEITUNG | CI/AWT210-DE REV. I

AWT210

2-Leiter Leitfähigkeit, pH/ORP pION-Messumformer

Measurement made easy

AWT210 2-Leiter-Messumformer

Einleitung

Diese Inbetriebnahmeanleitung liefert wesentliche Informationen für die Installation, den Betrieb und über die Software für den AWT210 2-Leiter-Messumformer.

Der Messumformer ist vollständig kompatibel mit den analogen pH- und Redox-Elektroden (ORP) von ABB und den ABB-Sensoren mit 2 Elektroden und 4 Elektroden sowie Ringsensoren und digitalen und Redox- (ORP)-Sensoren.

Der Messumformer verfügt über eine automatische Temperatursensorerkennung für Pt100-, Pt1000und 3k-Balco-RTDs in 2-Leiter- oder 3-Leiter-Konfigurationen.

Der Messumformer AWT210 ist mit einem herkömmlichen Ausgang von 4 bis 20 mA oder mit fortschrittlicher digitaler Kommunikation unter Verwendung von FOUNDATION Fieldbus (FF), PROFIBUS PA (PA) oder HART erhältlich.

Der Messumformer ist mit einem LCD-Display ausgestattet, auf dem die aktuellen Prozessdaten angezeigt werden. Die vier Tasten unterhalb des Displays ermöglichen die lokale Konfiguration des Messumformers.

Weitere Informationen

Weitere Veröffentlichungen zum AWT210 Messumformer stehen zum kostenlosen Download bereit unter:

www.abb.com/measurement

Oder Sie erhalten Sie durch Scannen dieses Codes:

Links und Referenznummern für den Messumformer sind ebenfalls unten aufgeführt:

Suchen Sie nach den folgenden Begriffen, oder klicken Sie darauf:

Messumformer AWT210 – Datenblatt	DS/AWT210
Messumformer AWT210 – Bedienungsanleitung	OI/AWT210
Messumformer AWT210 –	COM/AWT210/
Zusatzhandbuch zu HART-Kommunikation	HART
AWT210-Messumformer –	COM/AWT210/
HART FDS Zusatzhandbuch Kommunikation	HART/FDS
AWT210-Messumformer –	COM/AWT210/
PROFIBUS Zusatzhandbuch Kommunikation	PROFIBUS
AWT210-Messumformer –	COM/AWT210/
FELDBUS Zusatzhandbuch Kommunikation	FIELDBUS
Messumformer AWT210 – Sicherheitsanweisung	SI/AWT210

Inhalt

1	Gesundheit und Sicherheit 4	6	Elektrische Installation	
	Dokumentsymbole 4		Klemmenanschlüsse	
	Sicherheitsvorkehrungen 4		Erdverbindung	
	Potenzielle Gefahrenquellen 4		Verschraubungseingänge	
	AWT210 Messumformer – elektrisch4		Kommunikationsmodulverbindungen	
	Sicherheitsbestimmungen4		HART-Modul1	
	Am Produkt verwendete Symbole 4		FOUNDATION Fieldbusmodul1	18
	Entsorgung der Batterie5		PROFIBUS PA-Modul	18
	Informationen zur RoHS-Richtlinie 2011/65/EU		pH-/ORP-/pION-Sensormodulanschlüsse	19
	(RoHS II)		Standardsensoren ohne Diagnosefunktionen 1	19
			Standardsensoren mit Diagnosefunktionen 1	
2	Cybersicherheit5		Leitfähigkeitssensor-Modulverbindungen 2	
	•		Sensoren mit 2 Elektroden2	
3	Übersicht6		Sensoren mit 4 Elektroden	
_	Typenschild/Zertifizierungsetikett6		Ringsensoren2	
	Messumformer ohne Zulassung für		Verschraubungseingänge	
	Gefahrenbereiche6		Einbauen der EZLink-Module	
	Messumformer mit cFMus-Zulassung		Anschließen der EZLink-Sensoren	
	und ATEX, IECEx & UKEX6		Lange Kabel	
	and ATEX, TECEX & ONEX		Anschließen und Trennen unter Spannung	
4	Aspekte für Gefahrenbereiche		(nur EZLink-Sensoren)	22
•	Zulassung7		Sensor hinzufügen	
	CE- und UKCA-Zeichen		Sensor ersetzen	
	Zündschutz		Einen Sensor mit einem Sensor desselben	
	Masse		Typs ersetzen	22
	Zusammenschaltung		Um die Einrichtungsparameter des neuen	
	Stromversorgung für eigensichere		Sensors zu nutzen	22
	Anwendungen7		Sel15013 20 Hutzell	
	Konfiguration	7	Betrieb2) 2
		•	Bedienerseite – normale Bedingungen	
	Kundendienst und Reparatur		Bedienerseite – Alarmbedingungen	
	Für den Gefahrenbereich relevante Informationen 8		Bedienermenü	
	cFMus8		Signalansicht	
	ATEX, IECEX & UKEX		Standardsensoren	
	Spezifische Nutzungsbedingungen12		EZLink-Sensoren2	10
5	Mechanische Installation	8	Diagnose-Alarme	96
,	Installation des Sensors	J	Diagnose-Alarme	.0
	Installation des Messumformers	9	Passwortsicherheit und Zugriffsebene 2	2
	Abmessungen Messumformer	3	Zugriffsebene	
	Anbringen von Kommunikationsmodulen 13		Schreibschutz-Schalter	
	Standort13		Einstellen von Passwörtern	
	Wandmontage14		Passwortwiederherstellung	
	Schalttafelmontage (optional)15		Passwortwiederherstellung auf	-0
	Rohrmontage (optional)		fortgeschrittenem Niveau2	20
	Rolliniontage (optional)16		_	-0
			Passwortwiederherstellung auf	20
			Serviceniveau2	ĹΟ
		10	Menüübersicht 2	29
		_•	pH-Menüs	
			Leitfähigkeitsmenüs mit 2 Elektroden	
				24

11	Kalibrierung	33
	Kalibrierung des pH-Sensors	. 33
	Autom. Puffer-Kal	
	Manuelle Einpunkt-Kalibrierung	34
	Manuelle Zweipunkt-Kalibrierung	34
	Leitfähigkeitssensorkalibrierung mit 2 Elektroden .	. 35
	Leitfähigkeitssensorkalibrierung mit 4 Elektroden .	
	Toroidale Leitfähigkeitssensorkalibrierung	. 36
	PV-Nullpunktkalibrierung	36
	PV-Bereichskalibrierung	37
12	Tachnicche Daten	20
12	Technische Daten	. 30
13	Ersatzteile	. 41
	Kommunikationsmodulbaugruppen	41
	Sensormodulbaugruppen	41
	Hauptgehäusebaugruppen	41
	Kabelverschraubungen	41
	Kabelverschraubungen (2er-Pack)	41
	Montagesätze	41
	Schaltschrank-Montagesatz	41
	Rohr-Montagesatz	41
	Wand-Montagesatz	
	Wetterschutz-Satz	
	Wetterschutz-Satz	
	Wetterschutz und Rohrmontagekit	

1 Gesundheit und Sicherheit

Dokumentsymbole

Die in diesem Dokument verwendeten Symbole werden nachstehend erläutert:

GEFAHR

Das Signalwort "**GEFAHR**" weist auf eine drohende Gefahr hin. Die Nichtbeachtung dieser Informationen führt zu tödlichen oder schweren Verletzungen.

↑ WARNUNG

Das Signalwort "**WARNUNG**" weist auf eine drohende Gefahr hin. Die Nichtbeachtung dieser Informationen kann zu tödlichen oder schweren Verletzungen führen.

NORSICHT

Das Signalwort "VORSICHT" weist auf eine drohende Gefahr hin. Die Nichtbeachtung dieser Informationen kann zu leichten oder mittelschweren Verletzungen führen.

HINWEIS

Das Signalwort "**HINWEIS**" weist auf einen potenziellen Sachschaden hin.

Hinweis

"Anmerkung" weist auf nützliche oder wichtige Informationen zum Produkt hin.

Sicherheitsvorkehrungen

Lesen, verstehen und befolgen Sie die in diesem Handbuch enthaltenen Anweisungen vor und während des Gebrauchs der Geräte. Andernfalls kann es zu Verletzungen oder zur Beschädigung des Geräts kommen.

⚠ WARNUNG

Schwere Gesundheitsschäden/Lebensgefahr

Beim AWT210 Messumformer handelt es sich um ein zertifiziertes Produkt, das für den Einsatz in Gefahrenbereichen geeignet ist. Vor der Inbetriebnahme dieses Produkts sind Details zur Zertifizierung für Gefahrenbereiche den Typenschildern zu entnehmen. Wartungs- und Installationsarbeiten dürfen nur vom Hersteller, autorisierten Vertretern oder von Personen ausgeführt werden, die mit mit den Baunormen für explosionsgeschützte Geräte vertraut sind.

Potenzielle Gefahrenquellen

AWT210 Messumformer – elektrisch Schaden an der Ausrüstung

MARNUNG

Körperverletzung.

Für einen sicheren Gebrauch bei Betrieb dieses Geräts sind die folgenden Punkte zu beachten:

 Zur Vermeidung von Unfällen während des Betriebs mit Hochdruck und/oder unter hohen Temperaturen sind die üblichen Sicherheitsmaßnahmen zu ergreifen.

Sicherheitsanweisungen bezüglich des Betriebs der in dieser Bedienungsanleitung beschriebenen Einrichtungen oder relevante Datenblätter zur Werkstoffsicherheit (sofern zutreffend) sowie Reparatur- und Ersatzteilinformationen können vom Unternehmen bezogen werden.

Sicherheitsbestimmungen

Dieses Produkt wurde so konstruiert, dass die Anforderungen von IEC61010-1:2010, 3. Ausgabe: "Safety Requirements for Electrical Equipment for Measurement, Control and Laboratory Use" (DIN EN 61010-1:2010: Sicherheitsbestimmungen für elektrische Mess-, Steuer-, Regel- und Laborgeräte) sowie US NEC 500, NIST und OSHA eingehalten werden.

Am Produkt verwendete Symbole

Nachfolgend sind die Symbole, mit denen dieses Produkt gegebenenfalls gekennzeichnet ist, dargestellt:

Schutzerdungsklemme.

Funktionserdungsklemme.

Dieses Symbol auf einem Produkt warnt vor einer potenziellen Gefahr, die zu schweren Verletzungen und/oder zum Tod von Personen führen kann. Der Benutzer muss sich durch diese Bedienungsanleitung über die Bedienung und/oder Sicherheitsfragen informieren.

Dieses Symbol weist bei Anbringung an einem Produktgehäuse oder einer Barriere auf die Gefahr eines Stromschlags und/oder eines tödlichen Stromschlags hin und besagt, dass nur Personen das Gehäuse öffnen bzw. die Barriere entfernen dürfen, die über eine entsprechende Qualifizierung für den Umgang mit gefährlichen Spannungen verfügen.

Gemäß der europäischen Richtlinie über Elektround Elektronik-Altgeräte vom allgemeinen Hausmüll getrennt recyceln.

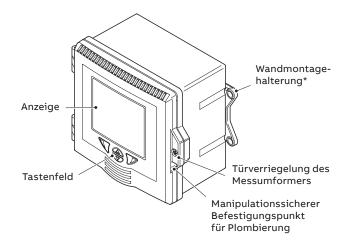
Recycling und Entsorgung des Produkts (nur Europa)

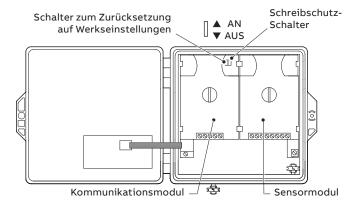
ABB ist stets darum bemüht zu gewährleisten, dass von seinen Produkten ausgehende Gefahren für die Umwelt so weit wie möglich minimiert werden. Die am 13. August 2005 in Kraft getretene europäische Richtlinie über Elektro- und Elektronik-Altgeräte (WEEE) zielt darauf ab, die durch Elektro- und Elektronikgeräte verursachten Abfälle zu reduzieren und die Umweltleistung aller am Lebenszyklus von Elektro- und Elektronikgeräten Beteiligten zu verbessern. Entsprechend den europäischen örtlichen und nationalen Bestimmungen dürfen mit dem obigen Symbol markierte Geräte in Europa nach dem 12. August 2005 nicht mehr in öffentlichen Entsorgungseinrichtungen entsorgt werden.

Entsorgung der Batterie

Der Messumformer enthält eine kleine Lithiumbatterie (auf der Prozessor-/Anzeigenplatine), die nach dem Ausbau entsprechend den örtlichen Umweltschutzbestimmungen zu entsorgen ist.

Informationen zur RoHS-Richtlinie 2011/65/EU (RoHS II)


ABB, Industrial Automation, Measurement & Analytics, GB, unterstützt die Ziele der RoHS II-Richtlinie vollständig. Alle Produkte des Geltungsbereichs, die von IAMA UK ab dem 22. Juni 2017 auf dem Markt vertrieben werden, sind mit der RoHS II-Richtlinie 2011/65/EU konform.


2 Cybersicherheit

Dieses Produkt ist für den Anschluss und die Kommunikation von Informationen und Daten über eine digitale Kommunikationsschnittstelle konzipiert. Es liegt in Ihrer alleinigen Verantwortung, eine sichere Verbindung zwischen dem Produkt und Ihrem Netzwerk oder einem anderen Netzwerk (je nach Fall) herzustellen und kontinuierlich zu gewährleisten. Sie sind verpflichtet, alle geeigneten Maßnahmen (wie z.B. die Anwendung von Authentifizierungsmaßnahmen usw.) zum Schutz des Produkts, des Netzwerks, seines Systems und der Schnittstelle gegen jegliche Art von Sicherheitsverletzungen, unbefugten Zugriff, Störungen, Eindringen, Verlust und/oder Diebstahl von Daten oder Informationen einzurichten und aufrechtzuerhalten.

ABB Ltd. und ihre Tochtergesellschaften haften nicht für Schäden und/oder Verluste im Zusammenhang mit solchen Sicherheitsverletzungen, unbefugtem Zugriff, Störungen, Eindringen, Verlust und/oder Diebstahl von Daten oder Informationen.

3 Übersicht

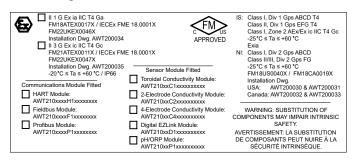
* Optionen zur Schalttafel- und Rohrmontage sind ebenso erhältlich – siehe Seite 13

Abbildung 1 Messumformer AWT210 - Hauptbestandteile

HINWEIS

Nach der Inbetriebnahme muss der Schalter für die Werkseinstellungen in der **AUS**-Stellung sein. Dies gewährleistet, dass die Konfigurationseinstellungen nach einem Netzausfall nicht verlorengehen.

Typenschild/Zertifizierungsetikett


Die folgenden Typenschilder sind nur Beispiele. Die am Messumformer angebrachten Typenschilder können unterschiedlich sein.

Messumformer ohne Zulassung für Gefahrenbereiche

Messumformer mit cFMus-Zulassung und ATEX, IECEX & UKEX

Aluminiumgehäuse

$\label{eq:messum} \mbox{Messumformer mit cFMus-Zulassung und ATEX, IECEx \& \mbox{UKEX}$

Kunststoffgehäuse

II 1 G Ex la IIC 74 Ga FM18ATEXD017X / IECEX FM FM22UKEX0046X Installation Dwg. AMVT200034 II 3 G Ex la IIC 74 Gc FM21ATEXD011X / IECEX FM FM22UKEX0047X Installation Dwg. AMVT200035 -20°C \$ Ta \$ +60 °C / IP66 Communications Module Fitted HART Module: AMVT210xxxxH1xxxxxxxxx	IE 18.0001X C FM US APPROVED	: Class I, Div 1 Gps ABCD T4 Class II, Div 1 Gps EFG T4 Class II, Div 1 Gps EFG T4 Class I, Zone 2 AEX/Ex ic IIC T4 Gc -25°C x Ta s +60°C Exia FM18US0040X / FM18CA0019X Installation Dwg. USA: AWT200030 Canada: AWT200032
Fieldbus Module: AWT210xxxxF1xxxxxxxxxx Profibus Module: AWT210xxxxP1xxxxxxxx	4-Electrode Conductivity Module: AWT210xxC4xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	WARNING: SUBSTITUTION OF COMPONENTS MAY IMPAIR INTRINSIC SAFETY. AVERTISSEMENT: LA SUBSTITUTION DE COMPOSANTS PEUT NUIRE À LA SÉCURITÉ INTRINSÈQUE.

4 Aspekte für Gefahrenbereiche

Für den Anschluss von Notstromversorgung, Signalein-/ ausgängen und den Erdanschluss sind in explosionsgefährdeten Bereichen besondere Vorschriften zu beachten. Der Benutzer muss die Variante des Kommunikationsmoduls und des Sensormoduls bei der Installation auf dem Aufkleber eintragen.

GEFAHR

- Alle Teile müssen entsprechend den Herstellerinformationen sowie den entsprechenden Normen und Vorschriften installiert werden.
- Die Inbetriebsetzung und der Betrieb müssen gemäß der ATEX Benutzerrichtlinie 99/92/EG oder der BetrSichV (EN60079-14) erfolgen.

Zulassung

CE- und UKCA-Zeichen

Der Messumformer AWT210 entspricht allen Anforderungen für das CE-Kennzeichen gemäß den geltenden EG-Richtlinien 2004/108/EG (EMV), 2006/95/EG (LVD) und 2014/34/EU (ATEX).

Zündschutz

Der Messumformer AWT210 ist mit cFMUS- und ATEX-, IECEx- und UKEX-Zulassung erhältlich. Informationen zu explosionsgefährdeten Bereichen finden Sie weiter unten in diesem Abschnitt.

Masse

Wenn der eigensichere Stromkreis aus Funktionsgründen durch Anschluss an ein Potentialausgleichssystem geerdet werden muss, darf er nur an einem einzigen Ort geerdet werden.

Zusammenschaltung

Bei Verwendung des Messumformers in Gefahrenbereichen sind, abhängig von den Sicherheitsanforderungen, spezielle Zusammenschaltungen erforderlich. Ein Zusammenschaltungsnachweis kann während der Installation erforderlich sein, wenn der Messumformer in einem eigensicheren Stromkreis betrieben wird.

Stromversorgung für eigensichere Anwendungen

Die SPS-Eingänge der Stromversorgung müssen über entsprechende Eingangsschutzschaltungen verfügen, um Zündgefahren auszuschließen. Es muss eine Inspektion der Zusammenschaltung durchgeführt werden. Zum Nachweis der Eigensicherheit müssen die elektrischen Grenzwerte als Grundlage für die Prototypentestzertifikate der Messumformer, einschließlich der Kapazitäts- und Induktivitätswerte der Drähte verwendet werden. Der Nachweis der Eigensicherheit ist gegeben, wenn die folgenden Bedingungen erfüllt sind.

Ausgangsparameter der Stromversorgung/SPS-Eingang				gangsparameter des T210-Messumformers				
Maximale Ausgangsspannung	Uo	≤	Ui	Maximale Eingangsspannung				
Maximaler Ausgangsstrom	lo	≤	li	Maximaler Eingangsstrom				
Maximale Ausgangsleistung	Ро	≤	Pi	Maximale Eingangsleistung				
Maximale Ausgangsinduktivität	Lo	≥	Li+Lc	Interne Induktivität + Induktivität des Kabels				
Maximale Ausgangskapazität	Со	≥	Ci=Cc	Interne Kapazität + Kapazität des Kabels				

Konfiguration

AWT210-Messumformer können in explosionsgefährdeten Bereichen unter Einhaltung des Koppelnachweises und direkt in einem explosionsgefährdeten Bereich mit zugelassenen tragbaren HART/Feldbusklemmen (ein Koppelnachweis kann während der Installation erforderlich sein) sowie durch Kopplung eines zündfesten Modems an den Stromkreis außerhalb des explosionsgefährdeten Bereichs installiert werden.

Kundendienst und Reparatur

▲ GEFAHR

Dieses Produkt hat keine Live-Wartungseinrichtung. Das Instrument muss abgeschaltet sein, bevor Wartungsarbeiten durchgeführt werden.

Wenn sich das Instrument in einem explosionsgefährdeten Bereich befindet, dann dürfen, abgesehen von den Wartungselementen, die auf Seite 41 aufgeführt sind, keine Komponenten des Geräts vom Benutzer gewartet werden. Nur das Personal von ABB, seines/r autorisierten Vertreter/s oder Personen, die mit den Baunormen zertifizierter Ausrüstungen für Gefahrenbereiche vertraut sind, ist/sind befugt, Reparaturen am System auszuführen. Dabei dürfen nur vom Hersteller genehmigte Komponenten verwendet werden. Reparaturversuche am Instrument unter Verletzung dieser Prinzipien können zur Beschädigung des Instruments und zu Verletzungen der die Reparatur ausführenden Person führen. Die Garantie wird damit ungültig und die Zertifizierung für Gefahrenbereiche, die korrekte Funktion des Geräts, die elektrische Integrität sowie die CE/UKCA-Zertifizierung des Geräts können beeinträchtigt werden.

Wenn Probleme bei Installation, Start oder Verwendung des Instruments auftreten, wenden Sie sich bitte an das Unternehmen, bei dem Sie das Gerät erworben haben. Falls das nicht möglich ist oder die Ergebnisse dieser Vorgehensweise nicht zufriedenstellend sind, wenden Sie sich bitte an den Kundendienst des Herstellers.

Risiko von elektrostatischer Entladung

Wenn das Instrument in einem gefährlichen Bereich befestigt ist und die Außenseite des Instruments der Reinigung bedarf, sollte darauf geachtet werden, das Risiko von elektrostatischer Entladung zu minimieren. Verwenden Sie ein feuchtes Tuch oder ähnliches, um alle Oberflächen zu reinigen.

...4 Aspekte für Gefahrenbereiche

Für den Gefahrenbereich relevante Informationen

HINWEIS

Die Bezeichnung Gefahrenbereich wird auf dem Typenschild/Zertifizierungsetikett angezeigt – siehe Seite 6.

cFMus

Eigensicherheit

KLASSE I, BEREICH 1 GRUPPE A, B, C, D; T4 KLASSE II, BEREICH 1 GRUPPE E, F, G; T4 KLASSE I, ZONE 2 AEX/EX ic IIC T4 Gc

Schutzartklassifizierung 4X*/IP66

Umgebungstemperaturbereich

-25 °C =< Ta =< 60 °C

cFMus-Eigensicherheit-Schaltplan

<u>Klicken Sie hier</u>, um den cFMus-Eigensicherheits-Schaltplan für die USA herunterzuladen, oder scannen Sie diesen Code:

<u>Klicken Sie hier</u>, um den cFMus-Eigensicherheitsplan für Kanada herunterzuladen, oder scannen Sie diesen Code:

Tabelle 1 Eingangsparameter des AWT210-Transmitters: HART

KLASSE I, BEREICH 1 GRUPPE A, B, C, D; T4 KLASSE II, BEREICH 1 GRUPPE E, F, G; T4			
Maximale Spannung	Ui	=	30 V
Maximaler Eingangsstrom	li	=	100 mAss
Maximale Leistung	Pi	=	0,8 W
Innere Induktivität	Li	=	3,3 mH
Innere Kapazität	Ci	=	0,56 nF
KLASSE I, ZONE 2 AEx/Ex ic IIC T4 Gc			
Maximale Spannung	Ui	=	30 V
Maximale Spannung Maximaler Eingangsstrom	Ui Li		30 V 152 mAss
		=	
Maximaler Eingangsstrom	Li	=	152 mAss

Tabelle 2 Eingangsparameter des AWT210-Transmitters: Feldbus

Tabelle 2 Eingangsparame	eter des l	AW 1210-	irans	mitte	rs: Fe	iabus
KLASSE I, BEREICH 1 GRUPPE A, KLASSE II, BEREICH 1 GRUPPE E						
Einheitenmodell (linear)						
Maximale Spannung				Ui	=	24 V
Maximaler Eingangsstrom				Li	=	174 mAss
Maximale Leistung				Pi	=	1,2 W
Innere Induktivität				Li	=	0,0 mH
Innere Kapazität				Ci	=	1,1 nF
FISCO-Feldgerät						
Maximale Spannung				Ui	=	17,5 V
Maximaler Eingangsstrom				Li	=	380 mAss
Maximale Leistung				Pi	=	5,32 W
Innere Induktivität				Li	=	0,0 mH
Innere Kapazität				Ci	=	1,1 nF
KLASSE I, ZONE 2 AEx/Ex ic IIC	T4 Gc					
Einheitenmodell (linear)						
Maximale Spannung				Ui	=	24 V
Maximaler Eingangsstrom				Li	=	250 mAss
Maximale Leistung				Pi	=	1,2 W
Innere Induktivität				Li	=	0,0 mH
Innere Kapazität				Ci	=	1,1 nF
FISCO-Feldgerät						
Maximale Spannung	Ui	= 14,0 V	15,0 V	16,0 V	17,0 V	17,5 V
Maximaler Eingangsstrom	Li	= 274 mAss	199 mAss	154 mAss	121 mAss	112 mAss
Maximale Leistung				Pi	=	5,32 W
Innere Induktivität				Li	=	0,0 mH
Innere Kapazität				Ci	=	1,1 nF

Tabelle 3 Eingangsparameter des AWT210-Transmitters: Profibus

KLASSE I, BEREICH 1 GRUPPE A, KLASSE II, BEREICH 1 GRUPPE E,		4				
Einheitenmodell (linear)						
Maximale Spannung				Ui	=	24\
Maximaler Eingangsstrom				Li	=	174 mAss
Maximale Leistung				Pi	=	1,2 W
Innere Induktivität				Li	=	0,0 mF
Innere Kapazität				Ci	=	1,1 nF
FISCO-Feldgerät						
Maximale Spannung				Ui	=	17,5 \
Maximaler Eingangsstrom				Li	=	360 mAss
Maximale Leistung				Pi	=	2,52 W
Innere Induktivität				Li	=	0,0 mF
Innere Kapazität				Ci	=	1,1 nF
KLASSE I, ZONE 2 AEx/Ex ic IIC	Г4 Gc					
Einheitenmodell (linear)						
Maximale Spannung				Ui	=	24 \
Maximaler Eingangsstrom				Li	=	250 mAss
Maximale Leistung				Pi	=	1,2 W
Innere Induktivität				Li	=	0,0 mF
Innere Kapazität				Ci	=	1,1 nF
FISCO-Feldgerät						
Maximale Spannung	Ui	= 14,0 V	15,0 V	16,0 V	17,0 V	17,5 \
Maximaler Eingangsstrom	Li	= 274 mAss	199 mAss	154 mAss	121 mAss	112 mAss
Maximale Leistung				Pi	=	2,52 W
Innere Induktivität				Li	=	0,0 mF
Innere Kapazität				Ci	=	1,1 nF

Tabelle 4 Ausgabeparameter des Sensors: 4 Elektroden, 2 Elektroden, Toroidal, pH

KLASSE I, BEREICH 1 GRUPPE A, B, C, D; T4 KLASSE II, BEREICH 1 GRUPPE E, F, G; T4 KLASSE I, ZONE 2 AEx/Ex ic IIC T4 Gc			
Maximale offene Klemmenspannung	Uo	=	11,8 V
Maximaler Kurzschlussstrom	Lo	=	11,8 mAss
Maximale Ausgangsleistung	Ро	=	36 mW
Innere Induktivität	Lo	=	1 H
Innere Kapazität	Co	=	1,5 μF

Tabelle 5 Ausgabeparameter des Sensors: EZLink

KLASSE I, BEREICH 1 GRUPPE A, B, C, D; T4 KLASSE II, BEREICH 1 GRUPPE E, F, G; T4 KLASSE I, ZONE 2 AEX/EX ic IIC T4 Gc			
Maximale offene Klemmenspannung	Uo	=	5,21 V
Maximaler Kurzschlussstrom	Lo	=	98,2 mAss
Maximale Ausgangsleistung	Po	=	127,9 mW
Innere Induktivität	Lo	=	43 mH
Innere Kapazität	Co	=	60 μF

...4 Aspekte für Gefahrenbereiche

...Für den Gefahrenbereich relevante Informationen

cFMus

Nicht zündend

KLASSE I, BEREICH 2, GRUPPE A,B,C,D T4 KLASSE II/III, BEREICH 2, GRUPPE F,G T4

Schutzartklassifizierung

4X*/IP66

Umgebungstemperaturbereich

-25 °C =< Ta =< 60 °C

cFMus Nicht zündend Sicherheits-Schaltplan

<u>Klicken Sie hier</u>, um den cFMus-Sicherheits-Schaltplan für nicht zündende Geräte für die USA herunterzuladen, oder scannen Sie diesen Code:

Klicken Sie hier, um den cFMus-Sicherheits-Schaltplan für nicht zündende Geräte für Kanada herunterzuladen, oder scannen Sie diesen Code:

Tabelle 6 Eingangsparameter des AWT210-Transmitters: HART

KLASSE I, BEREICH 2, GRUPPE A,B,C,D T4 KLASSE II/III, BEREICH 2, GRUPPE F,G T4			
Maximale Spannung	Ui	=	30 V
Maximaler Eingangsstrom	Li	=	100 mAss
Maximale Leistung	Pi	=	0,8 W
Innere Induktivität	Li	=	3,3 mH
Innere Kapazität	Ci	=	0,56 nF

Tabelle 7 Eingangsparameter des AWT210-Transmitters: Feldbus

KLASSE I, BEREICH 2, GRUPPE A,B,C,D T4 KLASSE II/III, BEREICH 2, GRUPPE F,G T4			
Maximale Spannung	Ui	=	24 V
Maximaler Eingangsstrom	Li	=	250 mAss
Maximale Leistung	Pi	=	1,2 W
Innere Induktivität	Li	=	0,0 mH
Innere Kapazität	Ci	=	1,1 nF

Tabelle 8 Eingangsparameter des AWT210-Transmitters: Profibus

3, 3,1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
KLASSE I, BEREICH 2, GRUPPE A,B,C,D T4 KLASSE II/III, BEREICH 2, GRUPPE F,G T4			
Maximale Spannung	Ui	=	24 V
Maximaler Eingangsstrom	Li	=	250 mAss
Maximale Leistung	Pi	=	1,2 W
Innere Induktivität	Li	=	0,0 mH
Innere Kapazität	Ci	=	1,1 nF

Tabelle 9 Ausgabeparameter des Sensors: 4 Elektroden, 2 Elektroden, Toroidal, pH

KLASSE I, BEREICH 2, GRUPPE A,B,C,D T4 KLASSE II/III, BEREICH 2, GRUPPE F,G T4			
Maximale offene Klemmenspannung	Uo	=	11,8 V
Maximaler Kurzschlussstrom	Lo	= 1	1,8 mAss
Maximale Ausgangsleistung	Ро	=	36 mW
Innere Induktivität	Lo	=	1 H
Innere Kapazität	Co	=	1,5 μF

Tabelle 10 Ausgabeparameter des Sensors: EZLink

KLASSE I, BEREICH 2, GRUPPE A,B,C,D T4 KLASSE II/III, BEREICH 2, GRUPPE F,G T4			
Maximale offene Klemmenspannung	Uo	=	5,21 V
Maximaler Kurzschlussstrom	Lo	=9	8,2 mAss
Maximale Ausgangsleistung	Po	= ;	127,9 mW
Innere Induktivität	Lo	=	43 mH
Innere Kapazität	Co	=	60 μF

HINWEIS

Die Parameter gelten für das gesamte System, inklusive Kahel

Jeder spezifizierte elektrische Parameter muss individuell und in Kombination angewandt werden. Überschreiten Sie die Höchstwerte nicht, wenn Sie die elektrischen Parameter einzeln oder in Kombination anwenden.

*4X Strahlwasserschutz selbst bewertet, nicht von Dritten genehmigt.

HINWEIS

USA:

Die Installation muss gemäß National Electric Code (NFPA 70) ausgeführt werden.

Kanada

Die Installation muss gemäß C22.1 Canadian Electrical Code, Teil 1, ausgeführt werden.

ATEX, IECEx & UKEX Eigensicherheit

II 1 G Ex ia IIC T4 Ga

II 3 G Ex ic IIC T4 Gc

Bei Verwendung mit dem entsprechenden zugehörigen Gerät.

Schutzartklassifizierung

IP66

Umgebungstemperaturbereich

-20 °C =< Ta =< 60 °C

II 1 G Ex ia IIC T4 Ga Sicherheitsschaltplan

Klicken Sie hier, um den II 1 G Ex ia IIC T4 Ga Sicherheitsschaltplan für den Messumformer WT210 herunterzuladen, oder scannen Sie diesen Code:

II 3 G Ex ic IIC T4 Gc Sicherheitsschaltplan

Klicken Sie hier, um den II 3 G Ex ic IIC T4 Gc Sicherheitsschaltplan für den Messumformer AWT210 herunterzuladen, oder scannen Sie diesen Code:

Tabelle 11 Eingangsparameter des AWT210-Transmitters: HART

II 1 G Ex ia IIC T4 Ga			
Maximale Spannung	Ui	=	30 V
Maximaler Eingangsstrom	li	=	100 mAss
Maximale Leistung	Pi	=	0,8 W
Innere Induktivität	Li	=	3,3 mH
Innere Kapazität	Ci	=	0,56 nF
II 3 G Ex ic IIC T4 Gc			
Maximale Spannung	Ui	=	30 V
Maximale Spannung Maximaler Eingangsstrom	Ui Li		30 V 152 mAss
Maximaler Eingangsstrom	Li Pi	=	152 mAss

Tabelle 12 Eingangsparameter des AWT210-Transmitters: Feldbus

Tabelle 12 Eingangspar	amet	er	aes A	W 1 2 1 0 ·	-ıransr	nitters	: Felabus
II 1 G Ex ia IIC T4 Ga							
Einheitenmodell (linear)							
Maximale Spannung					Ui	=	24 V
Maximaler Eingangsstrom					li	=	250 mAss
Maximale Leistung					Pi	=	1,2 W
Innere Induktivität					Li	=	0,0 mH
Innere Kapazität					Ci	=	1,1 nF
FISCO-Feldgerät							
Maximale Spannung					Ui	=	17,5 V
Maximaler Eingangsstrom					Li	=	380 mAss
Maximale Leistung					Pi	=	5,32 W
Innere Induktivität					Li	=	0,0 mH
Innere Kapazität					Ci	=	1,1 nF
II 3 G Ex ic IIC T4 Gc							
Einheitenmodell (linear)							
Maximale Spannung					Ui	=	24 V
Maximaler Eingangsstrom					li	=	250 mAss
Maximale Leistung					Pi	=	1,2 W
Innere Induktivität					Li	=	0,0 mH
Innere Kapazität					Ci	=	1,1 nF
FISCO-Feldgerät							
Maximale Spannung	Uo	=	14,0 V	15,0 V	16,0 V	17,0 V	17,5 V
Maximaler Eingangsstrom	Li	=	274	199	154	121	112
	LI	_	mA	mA	mA	mA	mA
Maximale Leistung					Pi	=	5,32 W
Innere Induktivität					Li	=	0,0 mH
Innere Kapazität					Ci	=	1,1 nF

Tabelle 13 Eingangsparameter des AWT210-Transmitters: Profibus

Tabelle 13 Eingangspara	amet	er des AV	VT210-	Transm	itters:	Profibus
II 1 G Ex ia IIC T4 Ga						
Einheitenmodell (linear)						
Maximale Spannung				Ui	=	24 V
Maximaler Eingangsstrom				li	=	250 mAss
Maximale Leistung				Pi	=	1,2 W
Innere Induktivität				Li	=	0,0 mH
Innere Kapazität				Ci	=	1,1 nF
FISCO-Feldgerät						
Maximale Spannung				Ui	=	17,5 V
Maximaler Eingangsstrom				Li	= :	360 mAss
Maximale Leistung				Pi	=	2,52 W
Innere Induktivität				Li	=	0,0 mH
Innere Kapazität				Ci	=	1,1 nF
II 3 G Ex ic IIC T4 Gc						
Einheitenmodell (linear)						
Maximale Spannung				Ui	=	24 V
Maximaler Eingangsstrom				Li	= ;	250 mAss
Maximale Leistung				Pi	=	1,2 W
Innere Leitfähigkeit				Li	=	0,0 mH
Innere Kapazität				Ci	=	1,1 nF
FISCO-Feldgerät						
Maximale Spannung	Uo	= 14,0 V	15,0 V	16,0 V	17,0 V	17,5 V
Maximaler Eingangsstrom	Li	= 274 mA	199 mA	154 mA	121 mA	112 mA
Maximale Leistung				Pi	=	2,52 W
Innere Kapazität				Ci	=	1,1 nF
Innere Induktivität				Li	=	0,0 mH

...4 Aspekte für Gefahrenbereiche

... Für den Gefahrenbereich relevante Informationen

Tabelle 14 Ausgabeparameter des Sensors: 4 Elektroden, 2 Elektroden, Toroidal, pH

II 1 G Ex ia IIC T4 Ga			
II 3 G Ex ic IIC T4 Gc			
Maximale offene Klemmenspannung	Uo	=	11,8 V
Maximaler Kurzschlussstrom	lo	=	11,8 mAss
Maximale Ausgangsleistung	Ро	=	36 mW
Innere Induktivität	Lo	=	1 H
Innere Kapazität	Co	=	1,5 μF

Tabelle 15 Ausgabeparameter des Sensors: EZLink

II 1 G Ex ia IIC T4 Ga			
II 3 G Ex ic IIC T4 Gc			
Maximale offene Klemmenspannung	Uo	=	5,21 V
Maximaler Kurzschlussstrom	lo	=	98,2 mAss
Maximale Ausgangsleistung	Po	=	127,9 mW
Innere Induktivität	Lo	=	43 mH
Innere Kapazität	Co	=	60 μF

HINWEIS

Die Parameter gelten für das gesamte System, inklusive Kabel.

Jeder spezifizierte elektrische Parameter muss individuell und in Kombination angewandt werden. Überschreiten Sie die Höchstwerte nicht, wenn Sie die elektrischen Parameter einzeln oder in Kombination anwenden.

HINWEIS

Die Installation muss gemäß IEC 60079-14 und den Verkabelungspraktiken im Land der Installation ausgeführt werden.

Spezifische Nutzungsbedingungen

1 Für das Aluminiumgehäuse für EPL Ga – die AWT210 Gehäuseoption (Code-Position 8, Option 2 – siehe Datenblatt DS/AWT210-DE) enthält Aluminium und wird als potenzielles Entzündungsrisiko durch Schlag oder Reibung erachtet. Bei der Installation und Verwendung sollte darauf geachtet werden, Stöße oder Reibung zu vermeiden.

2 Für das Aluminiumgehäuse -

in explosionsgefährdeten Staubbereichen kann die lackierte Oberfläche des AWT210 elektrostatische Ladung speichern und bei Anwendungen mit einer relativen Luftfeuchtigkeit von <~30 % relativer Luftfeuchtigkeit zu einer Zündquelle werden, wenn die lackierte Oberfläche relativ frei von Oberflächenverunreinigungen wie Schmutz, Staub oder Öl ist. Richtlinien zum Schutz gegen Entzündungsgefahr durch elektrostatische Entladung finden Sie in IEC TS 60079-32-1. Die Reinigung der lackierten Oberfläche darf nur gemäß den Anweisungen des Herstellers erfolgen (siehe Seite 7).

3 Für das LEXAN™-Gehäuse -

in explosionsgefährdeten Gasbereichen kann das Lexangehäuse AWT210 elektrostatische Ladung speichern und bei Anwendungen mit einer relativen Luftfeuchtigkeit von <30 % relativer Luftfeuchtigkeit zu einer Zündquelle werden, wenn das Lexan relativ frei von Oberflächenverunreinigungen wie Schmutz, Staub oder Öl ist. Richtlinien zum Schutz gegen Entzündungsgefahr durch elektrostatische Entladung finden Sie in IEC TS 60079-32-1. Die Reinigung der Oberfläche darf nur gemäß den Anweisungen des Herstellers erfolgen (siehe Seite 7).

4 Für Aluminium- und LEXAN-Gehäuse – der AWT210 darf nicht verwendet werden, wo UV-Licht oder -Strahlung auf das Gehäuse oder auf das Fenster des Gehäuses einwirken können.

5 Bei nicht zündfähigen Anwendungen darf der Sensor **nur** in nicht entzündbaren Materialien verwendet werden.

5 Mechanische Installation

Installation des Sensors

Für Installationsanweisungen siehe die Betriebsanleitung des Sensors.

Installation des Messumformers

Abmessungen Messumformer Abmessungen in mm

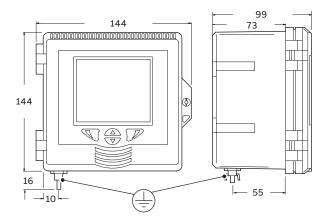


Abbildung 2 Abmessungen Messumformer

Anbringen von Kommunikationsmodulen Siehe Abbildung 3:

- 1 Stellen Sie sicher, dass sich die Verriegelungsspindel in beiden Modulen in der Stellung ENTRIEGELT befindet.
- 2 Befestigen Sie das Kommunikationsmodul (A) an der Sockelleiste (B) (links, Position KOMMUNIKATIONSMODUL).
- 3 Drehen Sie die Verriegelungsspindel mit einer ½-Drehung in die Position VERRIEGELT.
- 4 Befestigen Sie das Sensormodul © an der Sockelleiste D (rechts, Position SENSORMODUL).
- 5 Drehen Sie die Verriegelungsspindel mit einer ¼-Drehung in die Position VERRIEGELT.

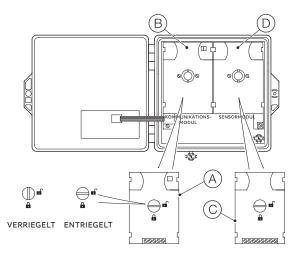


Abbildung 3 Anbringen von Kommunikationsmodulen

Standort

Für allgemeine Standortanforderungen siehe Abbildung 4. Wählen Sie einen Aufstellort, an dem keine starken elektrischen und magnetischen Felder auftreten. Lässt sich dies nicht vermeiden, müssen abgeschirmte Kabel mit geerdeten Metallkabelschutzrohren verwendet werden. Dies gilt insbesondere für Anwendungsbereiche, bei denen mobile Kommunikationseinrichtungen verwendet werden sollen.

Das Gerät sollte an einem sauberen, trockenen, gut belüfteten und vibrationsfreien Ort aufgestellt werden, der leicht zugänglich ist. Vermeiden Sie Räume mit korrosiven Gasen oder Dämpfen, in denen z. B. Chlorierungsausrüstungen oder Chlorgaszylinder untergebracht sind.

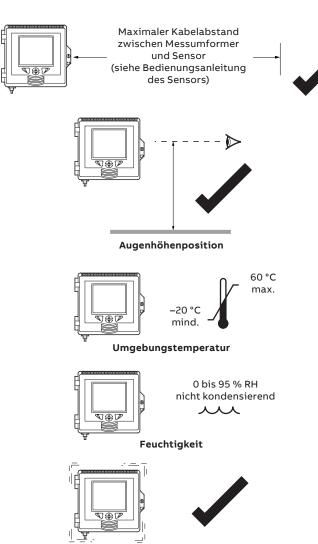


Abbildung 4 Aufstellungsort des Messumformers

IEC 60068-2-6 Test FC: Vibration, sinusförmig

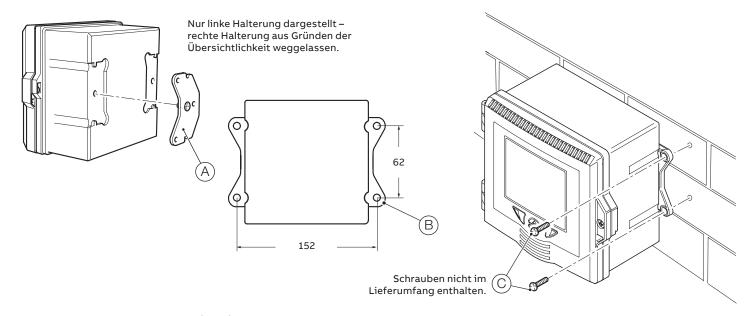
Optionales Zubehör (siehe Seite 41)

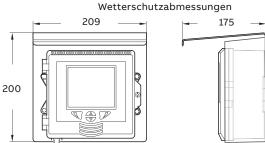
- Kabelverschraubungssätze
- Schaltschrank-Montagesatz
- · Rohr-Montagesatz

...5 Mechanische Installation

... Installation des Messumformers

Wandmontage


Siehe Abbildung 5:


- 1 Linke und rechte Halterungen (A) an den Aussparungen an der Rückseite des Messumformers anbringen und mit den Klemmschrauben befestigen. Die Kunststoffbeilagscheiben müssen an ihrer Position bleiben.
- **2** Die Bohrlochmittelpunkte (B) an der Wand markieren und die Löcher bohren.
- **3** Den Messumformer mit je 2 Schrauben © (nicht enthalten) pro Halterung sicher an der Wand befestigen.

HINWEIS

Wenn der optionale Wetterschutz D verwendet wird, dann muss dieser zwischen dem Messumformer und der Wand positioniert werden und es müssen 2 Schrauben C durch die Befestigungslöcher (beidseitig) im Wetterschutz durchgeführt werden.

Abmessungen in mm

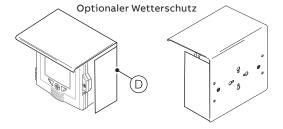


Abbildung 5 Wandmontage des Messumformers

Schalttafelmontage (optional)

Siehe Abbildung 6:

- 1 Schneiden Sie eine Fläche mit der richtigen Größe (A) aus der Tafel aus.
- 2 Setzen Sie den Messumformer in den Schalttafelausschnitt $\stackrel{\frown}{(\mathbb{B})}$ ein.
- 3 Eine Tafelklemm-Ankerschraube © in die linke Halterung D einsetzen, sodass 10 bis 15 mm des Gewindes auf der anderen Seite der Halterung hervorstehen, und eine Spannklammer E am Ende des Gewindes anbringen.

HINWEIS

Das richtige Drehmoment ist entscheidend, um eine korrekte Kompression der Paneldichtung zu gewährleisten und die Schutzklasse IP66/NEMA 4X zu erreichen - siehe Stufe **6**.

- **4** Den Zusammenbau (F) zusammenhalten, die Klammer (D) in die Aussparung links auf der Rückseite des Messumformers positionieren und mit der Halterungssicherungsschraube (G) festziehen. Sicherstellen, dass die Kunststoffunterlegscheibe in der angepassten Position bleibt.
- 5 Schritte 3 und 4 für die rechte Spannklammeranordnung wiederholen.
- 6 Spannklammerankerschrauben mit 0,5 bis 0,6 Nm festziehen.

Abmessungen in mm

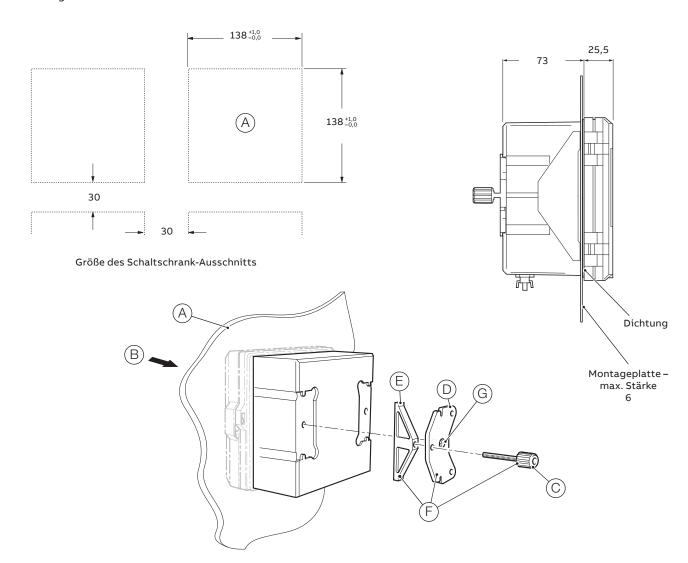


Abbildung 6 Schalttafelmontage des Messumformers

...5 Mechanische Installation

... Installation des Messumformers

Rohrmontage (optional)

Wie in Abbildung 7 gezeigt, den Messumformer wie folgt an einem Rohr befestigen:

- 1 Zwei Sechskantschrauben M6 x 50 mm (A) wie gezeigt durch eine der Klemmplatten stecken
- 2 Die Klemmplatte an der Halterung für Rohrbefestigungen (B) mit zwei M6 x 8 mm Sechskantschrauben und Federverriegelungsscheiben (C) unter Verwendung der passenden Bohrungen für vertikale und horizontale Rohre verbinden.
- 3 Die Halterung für Rohrbefestigung wie gezeigt an den Aussparungen an der Rückseite des Messumformers anbringen und mit den beiden Klemmschrauben (D) befestigen. Sicherstellen, dass die Kunststoff-Unterlegscheiben in den angepassten Positionen bleiben.
- **4** Den Messumformer mit der verbleibenden Klemmplatte, Federringen und Muttern sicher am Rohr (E) befestigen.

HINWEIS

Wenn der potenzielle Wetterschutz (F) verwendet wird, dann bringen Sie ihn an der Rückseite des Messumformers an und befestigen Sie den Rohr-Montagesatz auf der Rückseite des Wetterschutzes und Messumformers.

Abmessungen in mm

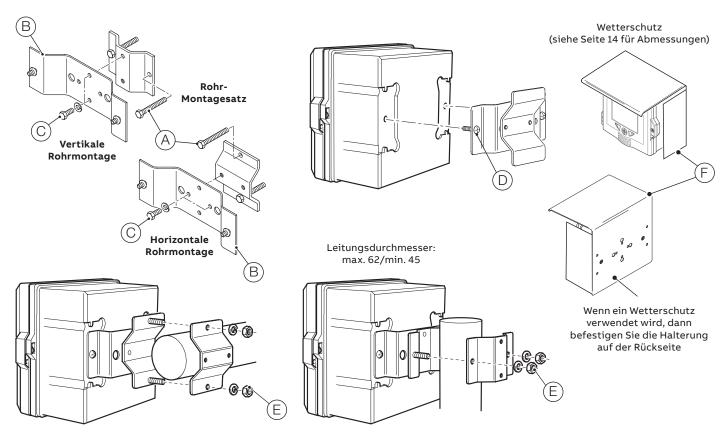
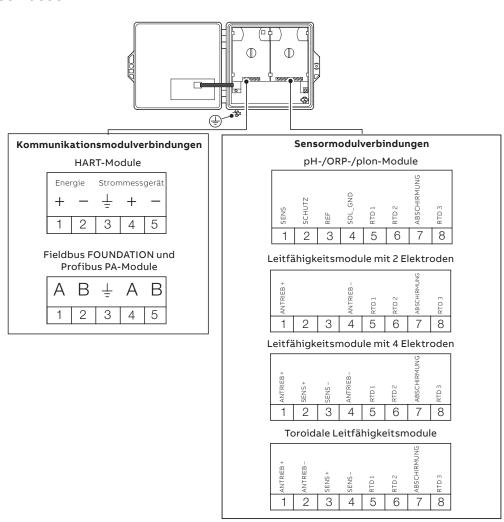


Abbildung 7 Rohrmontage des Messumformers

6 Elektrische Installation


▲ GEFAHR

- Wenn der Messumformer nicht entsprechend den Herstellerangaben eingesetzt wird, kann der vom Gerät vorgesehene Schutz beeinträchtigt werden.
- Nehmen Sie Bezug auf Seite 7 für Aspekte der Elektroinstallation in Gefahrenbereichen.
- Der Messumformer entspricht der Installationskategorie II der IEC 61010.
- Alle Vorrichtungen, die über Anschlussklemmen mit dem Messumformer verbunden werden, müssen den örtlichen Sicherheitsstandards (IEC 60950, EN 61010-1) entsprechen.

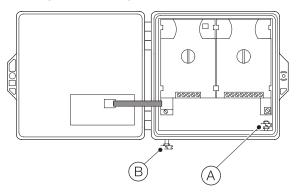
▲ GEFAHR – ANSCHLUSS-/ KABELANFORDERUNGEN

- Die Anschlussklemmen akzeptieren Kabel mit einem peripheren Draht-Querschnitt von:
 - min.: 0,14 mm² (26 AWG)
 - max.: 1,5 mm² (14 AWG)
- Verwenden Sie kein starres Leitermaterial, da dies zu Drahtbrüchen führen kann.
- Achten Sie darauf, dass die Anschlussleitung flexibel ist.
- Um sicherzustellen, dass die Sensorkabellänge ausreichend ist, lassen Sie zusätzliche 100 mm Kabel durch Kabelverschraubungen in das Gehäuse laufen.
- Stellen Sie sicher, dass die richtigen Anschlüsse herstellt werden, um der Messumformervariante zu entsprechen.

Klemmenanschlüsse

...6 Elektrische Installation

Erdverbindung


In der Regel werden alle Masseklemmen auf der Seite der Steuerwarte angeschlossen. In diesem Fall muss die Feldseite der Abschirmung angemessen geschützt werden, um den Kontakt mit metallischen Gegenständen zu vermeiden. Das Gehäuse des Messumformers ist zu erden.

⚠ WARNUNG

Körperverletzung

Wenn Leitungshubs verwendet werden, stellen sie keinen Anschluss zwischen Gehäuse oder System her.

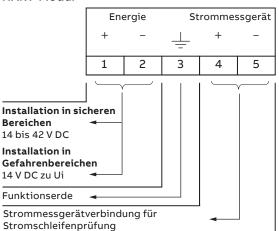
Unter Bezugnahme auf Abbildung 9, werden Erdungsanschlüsse intern $\widehat{\mathbb{A}}$ und extern $\widehat{\mathbb{B}}$ bereitgestellt.

Abbildung 9 AWT210 Erdanschlüsse

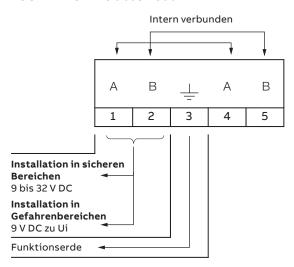
Bei IS-Systemen soll die Masse an der Masseverbindung der Sicherheitsbarriere anliegen. Bei Systemen mit Bus sollte die Masse sich in der Nähe der Stromversorgungseinheit befinden. Die Entstörsicherheit und die Menge der ausgestrahlten Störungen ist nur dann gewährleistet, wenn die Busabschirmung voll wirksam ist – z.B. wenn die Abschirmung durch vorhandene Anschlussdosen aufrechterhalten wird. Um Abweichungen beim Potential zwischen den verschiedenen Bestandteilen der Anlage zu vermeiden, ist eine geeignete Equipotentialverbindung erforderlich.

Zur fehlerfreien Kommunikation bei Feldbus-Installationen® (FF oder PA) muss der Bus ordnungsgemäß an beiden Enden angeschlossen sein. In eigensicheren Schaltungen dürfen nur zugelassene Busterminatoren verwendet werden.

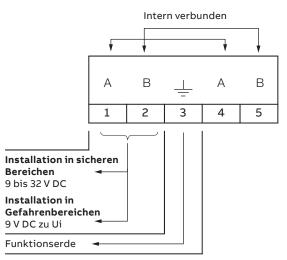
HINWEIS


HART-°, PROFIBUS-° und Feldbus-°Protokolle sind nicht sicher. Deshalb sollte die beabsichtigte Anwendung vor der Implementierung bewertet werden, um die Eignung dieser Protokolle sicherzustellen.

Verschraubungseingänge


Bei Installationen in Gefahrenbereichen müssen geeignete Ex-Verschraubungen und Blindverschraubungen verwendet werden, um die Eingangslöcher zu versiegeln.

Kommunikationsmodulverbindungen


HART-Modul

FOUNDATION Fieldbusmodul

PROFIBUS PA-Modul

pH-/ORP-/pION-Sensormodulanschlüsse

HINWEIS

ORP (Redox)- und Antimon-pH-Sensoren verfügen nicht über eine Temperaturkompensation, und haben daher keine Temperatursensoren oder eine entsprechende Verkabelung.

Standardsensoren ohne Diagnosefunktionen

HINWEIS

Stellen Sie sicher, dass die Sensordiagnose **AUS** ist, wenn Sie Standardsensoren ohne Diagnosefunktionen verwenden.

Sensortyp	RTD- Verkabelung	SENS 1	SCHUTZ 2	REF 3	S.GND 4	RTD 1 5	RTD 2 6	ABSCHIRMUNG 7	RTD 3 8
2867	2-Leiter-	Löschen	_	Schwarz	-	Rot	Weiß	_	
TB5	2-Leiter-	Blau	_	Schwarz	_	Rot	Weiß	_	_
AP1xx	2-Leiter-	Löschen	_	Schwarz	-	Rot Rot	Weiß	_	_
	3-Leiter-	Löschen	_	Schwarz	_	Weiß	Rot	_	Rot
4 B2	2-Leiter*	Blau	_	Schwarz	-	Rot	Weiß	_	_
AP3xx	3-Leiter-	Blau	_	Schwarz	-	Rot	Weiß	_	Grau
APS1xx APS5xx	2-Leiter*	Blau	Gelb	Schwarz	_	Rot	Weiß	_	_
APS7xx	3-Leiter-	Blau	Gelb	Schwarz	-	Rot	Weiß	_	Grau

^{*} Graues Kabel abschneiden und entfernen

Standardsensoren mit Diagnosefunktionen

HINWEIS

Stellen Sie sicher, dass die Sensordiagnose **An** ist, wenn Sie Standardsensoren mit Diagnosefunktionen verwenden.

Sensortyp	RTD- Verkabelung	SENS 1	SCHUTZ 2	REF 3	S.GND 4	RTD 1 5	RTD 2 6	ABSCHIRMUNG 7	RTD 3 8
TBX5	2-Leiter-	Blau	Gelb	Schwarz	Grün	Rot	Weiß	Dunkelgrün	_
AP2xx	2-Leiter*	Löschen	Rot	Blau	Grün/Gelb	Grün	Weiß	-	_
All EXX	3-Leiter-	Löschen	Rot	Blau	Grün/Gelb	Grün	Weiß	_	Grau

^{*} Graues Kabel abschneiden und entfernen

HINWEIS

Die AWT210 pH-Sensormodule werden standardisiert nach den theoretischen Sensoreigenschaften geliefert. Nach der Installation, aber vor der Verwendung, sollte eine Prozesskalibrierung durchgeführt werden, um optimale Genauigkeit sicherzustellen. Für die Kalibrierungsverfahren für pH-Sensoren siehe Seite 33.

...6 Elektrische Installation

Leitfähigkeitssensor-Modulverbindungen

Sensoren mit 2 Elektroden

Sensortyp	RTD- Verkabelung	ANTRIEB +	2	3	ANTRIEB – 4	RTD 1 5	RTD 2 6	ABSCHIRMUNG 7	RTD 3 8
2085-Direktverbindung	2-Leiter-	Rot	_	_	Blau	Gelb	Grün	_	_
2085 mit Verlängerungskabel	3-Leiter-	Grün	-	-	Schwarz	Rot	Gelb	-	Blau
TB2	2-Leiter-	Grün	-	-	Schwarz	Blau	Gelb	Dunkelgrün	_
	2-Leiter-	Grün	-	_	Schwarz	Blau/rot	Gelb	Weiß	_
AC2xx	3-Leiter-	Grün	_	_	Schwarz	Gelb	Rot	Weiß	Blau

HINWEIS

Die AWT210 Leitfähigkeitssensormodule mit 2 Elektroden werden standardisiert nach den theoretischen Sensoreigenschaften geliefert. Nach der Installation, aber vor der Verwendung, sollte eine Prozesskalibrierung durchgeführt werden, um optimale Genauigkeit sicherzustellen. Für das Verfahren zur Leitfähigkeitssensorkalibrierung mit 2 Elektroden siehe Seite 35.

Sensoren mit 4 Elektroden

Sensortyp	RTD- Verkabelung	ANTRIEB +	SENS + 2	SENS – 3	ANTRIEB – 4	RTD 1 5	RTD 2 6	ABSCHIRMUNG 7	RTD 3 8
TB4	2-Leiter-	Grün	Rot	Weiß	Schwarz	Blau	Gelb	Dunkelgrün	

HINWEIS

Die AWT210 Leitfähigkeitssensormodule mit 4 Elektroden werden standardisiert nach den theoretischen Sensoreigenschaften geliefert. Nach der Installation, aber vor der Verwendung, sollte eine Prozesskalibrierung durchgeführt werden, um optimale Genauigkeit sicherzustellen. Für das Verfahren zur Leitfähigkeitssensorkalibrierung mit 4 Elektroden siehe Seite 36.

Ringsensoren

Sensortyp	RTD- Verkabelung	ANTRIEB +	ANTRIEB – 2	SENS + 3	SENS – 4	RTD 1 5	RTD 2 6	ABSCHIRMUNG 7	RTD 3 8
TB4	2-Leiter-	Schwarz	Blau	Weiß	Rot	Grün	Gelb	Dunkelgrün	

HINWEIS

AWT210 Ringkern-Leitfähigkeitssensormodule werden standardisiert nach theoretischen Sensoreigenschaften geliefert. Nach der Installation, aber vor der Verwendung, sollte eine Prozesskalibrierung durchgeführt werden, um optimale Genauigkeit sicherzustellen. Für das Verfahren zur Kalibrierung von Toroidal-Leitfähigkeitssensoren siehe Seite 36.

Verschraubungseingänge

Bei Installationen in Gefahrenbereichen müssen geeignete Ex-Verschraubungen und Blindverschraubungen verwendet werden, um die Eingangslöcher zu versiegeln.

Einbauen der EZLink-Module

Siehe Abbildung 10:

- 1 Führen Sie das EZLink-Probeneinlaufkabel (A) durch den rechten 16-mm-Kabeleingang.
- **2** Führen Sie das EZLink-Probeneinlaufkabel durch die Rotationsschutz-Unterlegscheibe (B). Stellen Sie sicher, dass die Ausrichtungslasche korrekt ausgerichtet ist.
- 3 Führen Sie das EZLink-Probeneinlaufkabel \bigcirc durch die Kontermutter \bigcirc .
- **4** Für die Variante mit Kunststoffgehäuse: Führen Sie die Ausrichtungslasche (E) in den Schlitz in der Abdeckungsplatte ein.
- 5 Für die Variante mit Aluminiumgehäuse: Führen Sie die Ausrichtungslasche (E) in den Schlitz in dem Gehäuseboden ein.
- **6** Führen Sie das EZLink-Probeneinlauf-Steckergehäuse D vollständig in die Kabeleinführung ein und richten Sie es an den flachen Unterlegscheiben aus.
- 7 Schrauben Sie die Kontermutter (J) auf das Probeneinlauf-Steckergehäuse mit einem Schraubenschlüssel auf.

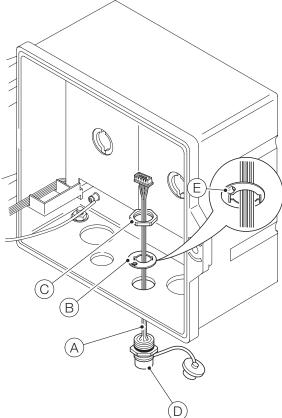


Abbildung 10 Montage des Probeneinlaufs

8 Installieren Sie das EZLink-Modul in der Sensormodul-Position auf der Sockelplatte und verriegeln Sie es in Position. Siehe Abbildung 11:

- **9** Setzen Sie den EZLink-Kabelstecker (B) in die EZLink-Anschlussklemmenvorrichtung (C) ein.
- **10** Stecken Sie die Anschlussklemmenvorrichtung (C) des Anschlussblocks in das EZLink-Modul (A).

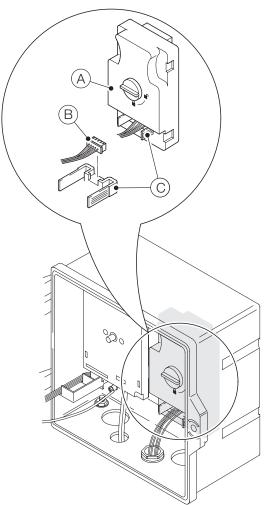


Abbildung 11 Anschließen der EZLink-Kabelbaugruppe

...6 Elektrische Installation

Anschließen der EZLink-Sensoren

HINWEIS

Maximale Kabellänge zwischen Messumformer und Sensor(en) – siehe Bedienungsanleitung des Sensors.

Siehe Abbildung 12:

- 1 Richten Sie die Anschlussstifte des Sensorkabel-Steckverbinders (A) zu den Buchsenkontakten im EZLink-Steckverbinder (B) aus, und fügen Sie die Steckverbinder zusammen.
- 2 Drehen Sie die Mutter © im Uhrzeigersinn, um die Steckverbinder zu sichern.

Der Messumformer erkennt den Typ des angeschlossenen Sensors automatisch.

HINWEIS

Wenn Sie die Sensorverlängerungskabel installieren, stellen Sie sicher, dass der Kabelstecker (Ende mit Schild) in Richtung Messumformer installiert ist.

Lange Kabel

Wenn Kabel länger als 30 m sind oder im Freien verlaufen, müssen sie abgeschirmt oder in einem leitfähigen Kabelkanal verlegt werden:

- Digitaler E/A
- Analogausgänge
- Kommunikation

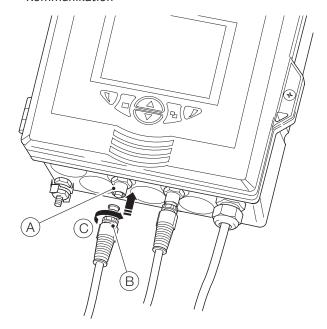


Abbildung 12 Anschluss des EZLink-Steckverbinders des Sensors - Der AWT210 kann nur einen EZLink in der gezeigten Position aufnehmen

Anschließen und Trennen unter Spannung (nur EZLink-Sensoren)

Das Anschließen und Trennen unter Spannung ist eine Funktion des Messumformers AWT210, dank der Sensoren ohne Ausschalten des Messumformers angeschlossen, getrennt oder ausgetauscht werden können. Mit dem EZLink-Steckverbinder können Sensoren ohne Werkzeug oder Öffnen des Messumformergehäuses angeschlossen oder getrennt werden. Durch die Funktion 'Anschließen und Trennen unter Spannung' kann ein Sensor auch an einem Standort konfiguriert und an einem anderen Standort installiert werden, ohne dass der Sensor erneut konfiguriert werden muss, da alle Konfigurationswerte in Verbindung mit der Prozessmessung (wie etwa der Messbereich, die Einheiten und die Kalibrierungsdaten etc.) im Sensor gespeichert sind.

Sensor hinzufügen

Schließen Sie den Sensor an den EZLink-Steckverbinder des Messumformers an – siehe Anschluss der EZLink-Sensoren. Der Messumformer erkennt den neuen Sensor automatisch und lädt die im Sensor gespeicherten Einrichtungsparameter des Sensors. Die Meldung "Sensor erkannt" wird auf der Bedienerseite angezeigt:

Drücken Sie die Taste , um das Bedienermenü zu öffnen. Verwenden Sie im Bedienermenü die Tasten, um das Sensoreinrichtungs-Menü zu markieren, und drücken Sie die Taste, um das Sensoreinrichtungs-Menü auszuwählen:

Sensor ersetzen

Ein Sensor kann durch einen Sensor desselben Typs oder eines anderen Typs ersetzt werden. Wenn ein Sensor durch einen Sensor desselben Typs ersetzt wird, können die Einrichtungsparameter des entfernten Sensors beibehalten und beim neuen Sensor verwendet werden. Es können aber auch die im neuen Sensor gespeicherten Werte verwendet werden.

Einen Sensor mit einem Sensor desselben Typs ersetzen Trennen Sie den alten Sensor vom EZLink-Steckverbinder. Die Diagnosemeldung Elektronik wird auf der Bedienerseite aufgrund eines offensichtlichen Ausfalls des Sensormoduls angezeigt. Schließen Sie den neuen Sensor an den EZLink-Steckverbinder des Messumformers an – siehe Anschluss der EZLink-Sensoren. Der Messumformer erkennt den neuen Sensor automatisch und die Nachricht "Sensor geändert" erscheint auf der Bedienerseite:

Um die bestehenden Einrichtungsparameter des Sensors beizubehalten

Drücken Sie die Taste ¶, um das Bedienermenü zu öffnen. Nutzen Sie im Bedienermenü die Tasten ♠ ♥, um Download Konfig / Messumformer→Sensor zu markieren, und drücken Sie die Taste ₱, um die bestehenden Einrichtungsparameter des Sensors von dem Messumformer auf den neuen Sensor herunterzuladen.

Um die Einrichtungsparameter des neuen Sensors zu nutzen Drücken Sie die Taste √, um das Bedienermenü zu öffnen. Nutzen Sie im Bedienermenü die Tasten △, um Upload Konfig / Sensor→Messumformer zu markieren, und drücken Sie die Taste √, um die Einrichtungsparameter des neuen Sensors von dem neuen Sensor auf den Messumformer hochzuladen.

7 Betrieb

Bedienerseite – normale Bedingungen

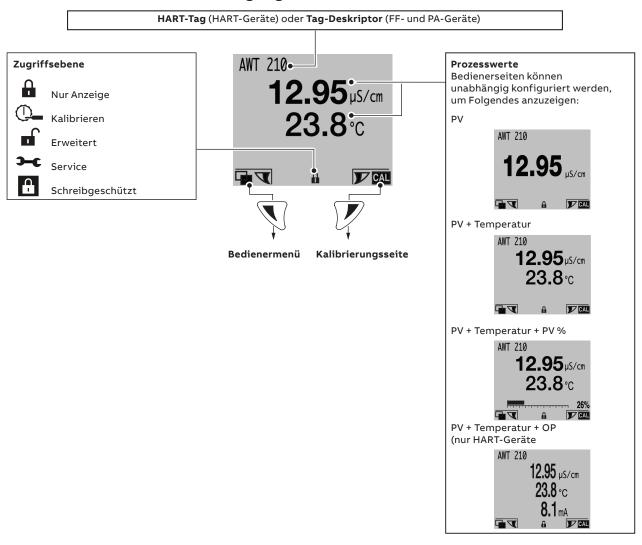


Abbildung 13 Beispiel Bedienerseiten – normale Bedingungen

Hinweis.

Wenn das Instrument startet, kann der ABB Initializing-Startbildschirm je nach Software-Version ein- oder zweimal angezeigt werden. Er wird einmal eingeblendet, wenn das Instrument mit Strom versorgt wird und dann nochmals, sobald alle Subsysteme initialisiert wurden. In einigen Software-Versionen werden diese Aktionen in einem einzelnen Arbeitsschritt ausgeführt.

Abbildung 14 Der Startbildschirm kann zweimal angezeigt werden.

...7 Bedienung

Bedienerseite - Alarmbedingungen

Wenn Diagnosealarme aktiv sind, wird der NAMUR-Status des Geräts durch Anzeige der Klasse und Kategorie des aktiven Alarms mit der höchsten Priorität angegeben.

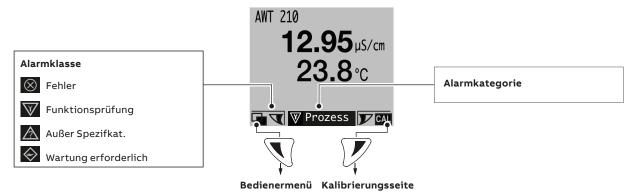
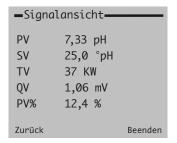



Abbildung 15 Beispiel Bedienerseiten - Alarmbedingungen

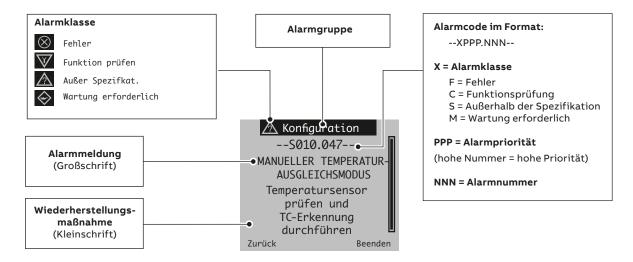
Bedienermenü


Verwenden Sie aus dem Bedienermenü die \triangle/∇ Tasten, um das erforderliche Menü hervorzuheben, und drücken Sie die Taste \mathbb{F} Taste, um auszuwählen:

Bedienermenüs umfassen:

- Konfiguration herunterladen: Startet den Download der Einrichtungsparameter des Sensors von dem Messumformer auf den Sensor (nur verfügbar, wenn ein EZLink-Sensor durch einen Sensor desselben Typs ersetzt wurde).
- Konfiguration hochladen: Startet den Upload der Einrichtungsparameter eines neuen Sensors auf den Messumformer (nur verfügbar, wenn ein EZLink-Sensor durch einen Sensor desselben Typs ersetzt wurde).
- Diagnose: Zeigt eine Liste mit aktiven Diagnosealarmmeldungen nach Priorität an siehe Seite 21.
- Konfiguration: Öffnet die Konfigurationsebenenmenüs
- Ausgang halten/Ausgang freigeben: Hält den Stromausgang bei seinem aktuellen Wert. Der Ausgang bleibt fest, bis er freigegeben wird (nur HART-Versionen).
- Bedienerseite 1: Zeigt die erste Bedienerseite an.
- Bedienerseite 2: Zeigt die zweite Bedienerseite an (nur verfügbar, wenn Bedienerseite 2 aktiviert ist).
- Autoscroll: Schaltet automatisch zwischen den zwei Bedienerseiten hin und her (nur verfügbar, wenn Bedienerseite 2 aktiviert ist).
- Signalansicht: Zeigt eine Liste mit aktiven Signalen an.

Signalansicht


Standardsensoren

Signal	Sensortyp pH	Sensortyp Leitfähigkeit mit 2 Elektroden Leitfähigkeit mit 4 Elektroden Toroidale Leitfähigkeit	Sensortyp pH (EZLink)	Sensortyp
PV	pH, ORP, Ion Conc oder pION	Leitfähigkeit oder Konzentration	Leitfähigkeit oder Konzentration	Leitfähigkeit oder Konzentration
SV	Temperatur	Temperatur	Temperatur	Temperatur
TV	Referenzwiderstand	Leitfähigkeit ohne Temperaturkompensation	Leitfähigkeit ohne Temperaturkompensation	Leitfähigkeit ohne Temperaturkompensation
QV	Zellenausgang (mV)	Leitfähigkeit	Leitfähigkeit	Leitfähigkeit
PV%	Primärer, variabler Prozentsatz des technischen Bereichs	Primärer, variabler Prozentsatz des technischen Bereichs	Primärer, variabler Prozentsatz des technischen Bereichs	Primärer, variabler Prozentsatz des technischen Bereichs
O/P	Stromausgang (nur HART-Versionen)	Stromausgang (nur HART-Versionen)	Stromausgang (nur HART-Versionen)	Stromausgang (nur HART-Versionen)

EZLink-Sensoren

Signal	Sensortyp pH	Sensortyp Redox
PV	рН	Redox/ORP
SV	Temperatur	n/a
TV	n/a	n/a
QV	Zellenausgang (mV)	Leitfähigkeit
PV%	Primärer, variabler Prozentsatz des technischen Bereichs	Primärer, variabler Prozentsatz des technischen Bereichs
O/P	Stromausgang (nur HART-Versionen)	Stromausgang (nur HART-Versionen)

8 Diagnose-Alarme

Abbildung 16 Beispiel Diagnose-Alarm

Hinweis.

Alarme werden in der Prioritätenreihenfolge der Alarme aufgeführt (hohe Nummer = Alarm mit hoher Priorität).

Tabelle 16 Diagnose-Alarme

Diagnosemeldung	ALARMMELDUNG	Wiederherstel- lungsmaßnahme	рН	Leitfähigkeit mit 2 Elektroden	Leitfähigkeit mit 4 Elektroden	Toroidale Leitfähigkeit	pH (EZLink)	HART	FF	PA
Elektronik	SENSORMODUL SPEICHERFEHLER	Sensormodul ersetzen	1	✓	1	1		/	✓	√
	KOMMUNIKATIONSMODUL SPEICHERFEHLER	Kommunikationsmodul ersetzen	✓	✓	✓	✓		✓	1	✓
	STROMAUSGANG NICHT KALIBRIERT	Trim Ausgang Wenn das Problem bestehen bleibt, KommModul ändern	✓	✓	✓	✓		✓		
▼ KonfigurationC098.041	DATENSIMULATION		✓	✓	✓	✓		✓	✓	✓
▼ KonfigurationC097.030	STROMAUSGANG FESTGELEGT	Schleifenstrom-Modus aktivieren. Regelkreisprüfung/Trim & PV Kal. deaktivieren	1	✓	✓	✓		✓		
ProzessC096.031	STROMAUSGANG GESÄTTIGT	Einheitenbereich einstellen	✓	✓	✓	✓		✓		
	SENSORMODUL FEHLER	Sensormodul ersetzen	1	✓	1	1	√	√	1	√
♦ ProzessF087.040	OFFENES KABEL ODER SENSOR AUSSERHALB DER LÖSUNG	Sensorverdrahtung prüfen Prüfen, ob sich der Sensor in der Lösung befindet	✓				✓	√	1	√
	LESEFEHLER DES PRIMÄREN VARIABLENEINGANGS	Sensor prüfen Wenn das Problem bestehen bleibt, Sensormodul wechseln	✓	✓	✓	✓		✓	✓	1
	LESEFEHLER DES 2. PRIMÄREN VARIABLENEINGANGS	Sensor prüfen Wenn das Problem bestehen bleibt, Sensormodul wechseln		✓				✓	✓	✓
	KABELKURZSCHLUSS ODER ERDUNGSKREISE VORHANDEN	Sensorverdrahtung prüfen		✓	✓			1	1	1
SensorM083.007	SENSORPOLARISIERUNG	Überprüfen Sie den Prozess. Sensorverdrahtg. prüfen, Sensor reinigen		✓				√	1	✓

...Tabelle 16 Diagnose-Alarme

Diagnosemeldung	ALARMMELDUNG	Wiederherstel- lungsmaßnahme	рН	Leitfähigkeit mit 2 Elektroden	Leitfähigkeit mit 4 Elektroden	Toroidale Leitfähigkeit	pH (EZLink)	HART	FF	PA
♦ ProzessM082.005	SENSOR VERSCHMUTZT	Sensor reinigen			✓	,		1	✓	✓
Elektronik	DIAGNOSE LESEFEHLER EINGANG	Klemmen prüfen Sensorverdrahtung prüfen Elektrode prüfen			✓			✓	✓	1
♠ ElektronikM080.039	NIEDRIGE ELEKTRODENIMPEDANZ	Klemmen prüfen Sensorverdrahtung prüfen Elektrode prüfen	1				✓	√	✓	✓
<u>^</u> Prozess S078.004	PRIMÄRE VARIABLE AUSSERHALB DER PHYS. GRENZEN	Sensorverdrahtung prüfen Konfiguration überprüfen	1	✓	✓	✓	✓	✓	✓	√
<u>↑</u> Prozess	PRIMÄRE VARIABLE AUßERHALB DER BEREICHSGRENZEN	Einheitenbereich einstellen	✓	✓	✓	✓	✓	1	✓	/
★ Elektronik S074.001	TEMPERATUR LESEFEHLER EINGANG	Sensor prüfen Wenn das Problem bestehen bleibt, Sensormodul wechseln	1	✓	✓	✓		1	1	_
↑ Prozess S072.011	SENSORTEMPERATUR AUSSERHALB DER GRENZEN	Sensorverdrahtung prüfen Temperaturkonfiguration überprüfen	1	✓	✓	✓	√	1	1	/
	HOHE SENSOREFFIZIENZ (Steigung)	Kalibrierung überprüfen Sensor reinigen Sensorverdrahtung prüfen	1					√	✓	V
<u>^</u> Sensor F066.044	NIEDRIGE SENSOREFFIZIENZ (Steigung)	Kalibrierung überprüfen Sensor reinigen Sensorverdrahtung prüfen	1				√	1	1	•
<u>^</u> Sensor S064.045	HOHER SENSORVERSATZ	Kalibrierung überprüfen Sensor reinigen Sensorverdrahtung prüfen	1					1	1	~
	GERINGER SENSORVERSAT	Kalibrierung überprüfen Sensor reinigen Sensorverdrahtung prüfen	1					√	✓	•
Elektronik	DIAGNOSE LESEFEHLER EINGANG	Sensorverdrahtung prüfen Wenn das Problem bestehen bleibt, Sensormodul wechseln	✓					✓	1	
	REFERENZWIDERSTAND LESEFEHLER EINGANG	Sensor prüfen Wenn das Problem bestehen bleibt, Sensormodul wechseln	✓					1	✓	
SensorM054.012	HOHER REFERENZWIDERSTAND	Sensor prüfen Sensorverdrahtung prüfen	1					✓	✓	
→ BetriebM024.033	NETZSPANNUNG AUSSERHALB DER GRENZEN	Trim Ausgang Sicherstellen, dass Netzspannung innerhalb der Grenzen liegt	1	✓	✓	✓		1		
Elektronik	SENSORMODUL SPANNUNGSWARNUNG	Sensorverdrahtung prüfen Wenn das Problem bestehen bleibt, Sensormodul wechseln	✓	✓	✓	✓		✓	1	•
∧ Konfiguration	MODUS MANUELLE TEMPERATURKOM- PENSATION	Temperatursensor prüfen und TC- Erkennung durchführen	1	✓	✓	✓		1	✓	•

9 Passwortsicherheit und Zugriffsebene

Passwörter werden im Bildschirm Passwort eingeben eingegeben, auf den über die Zugriffsebene zugegriffen wird – siehe unten.

Zugriffsebene

Die Zugriffsebene wird über den Bediener/bzw. über die Menüoption Konfiguration eingeben aufgerufen. Verwenden Sie die 🛋 / 🐨 Tasten, um die erforderliche Ebene zu markieren, und drücken Sie 📝, um die Ebene einzugeben.

Abbildung 17 Bildschirm "Zugriffsebene"

Tabelle 17 Details des Menüs "Zugriffsebene"

Füllstand	Zugriff
Abmeldung	Wird nur angezeigt, wenn auf die Ebenen Kalibrieren oder Erweitert zugegriffen wurde. Meldet den Benutzer von der aktuellen Ebene ab. Wenn Passwörter festgelegt sind, muss nach der Abmeldung ein Passwort eingegeben werden, um erneuten Zugriff auf diese Ebenen zu erhalten.
Nur Anzeige	Anzeige aller Parameter im schreibgeschützten Modus.
Kalibrieren	Ermöglicht nur den Zugriff auf und die Justierung der Ebene Kalibrieren (Kalibrationsmenüs sind sensorspezifisch).
Erweitert	Ermöglicht Zugriff auf die Konfiguration aller Parameter.
Service	Ausschließlich für autorisierte Wartungstechniker reserviert.

Cursor-/Passwortanzeige (maximal 6 Zeichen)

Cursor – Scrollen Sie Zeichen mit den Tasten $\sqrt{\ }$ / $\$ drücken Sie $\sqrt{\ }$ (Weiter), um das Zeichen zu übernehmen; drücken Sie auf $\sqrt{\ }$ (OK), um das Passwort zu übernehmen, während das letzte Passwortzeichen markiert ist.

Abbildung 18 Bildschirm "Passwort eingeben"

Schreibschutz-Schalter

Wenn sich der Schalter Schreibschutz (siehe Seite 6) in der EIN Position befindet, ist der Messumformer schreibgeschützt (und das Schreibschutz-Symbol wird angezeigt – siehe Seite 23). Das heißt, dass dem Bediener nur die Schreibgeschützt Zugriffsebene zur Verfügung steht.

Wenn sich dieser Schalter in der AUS Position befindet, stehen alle Zugriffsebenen zur Verfügung (Schreibgeschützt, Kalibrieren, Erweitert und Service).

Einstellen von Passwörtern

Passwörter können so eingestellt werden, dass sie 2 Sicherheitsstufen abdecken: Kalibrieren und Erweitert. Die Ebene Service ist ab Werk passwortgeschützt und ist für die Verwendung im Werk reserviert. Passwörter können aus bis zu sechs Zeichen bestehen und werden in der Ebene Konfig Gerät / Sicherheitseinst. eingestellt, geändert oder auf die Standardeinstellungen zurückgesetzt – siehe Bedienungsanleitung OI/AWT210-EN.

Hinweis. Der Messumformer wird mit leeren Kennworten für die Ebenen **Kalibrieren** und **Erweitert** geliefert; deshalb kann auf die Ebenen **Kalibrieren** und **Erweitert** ohne Passwortschutz zugegriffen werden. Es wird empfohlen, Passwörter für diese Zugriffsebenen festzulegen.

Passwortwiederherstellung

Passwortwiederherstellung auf fortgeschrittenem Niveau Um das Passwort auf Fortgeschrittenem Niveau wiederherzustellen, muss der Schalter Schreibschutzin die AUS Position geschaltet werden (siehe Seite 6). Wählen Sie die Ebene Service-Zugriff aus und geben Sie das Passwort für die Service -Ebene ein, um Zugriff zu erhalten.. Von der Service -Ebene aus kann auf das Menü Geräteeinrichtung zugegriffen werden, um das Passwort auf Fortgeschrittener Ebene zurückzusetzen.

Passwortwiederherstellung auf Serviceniveau

Wenn das Passwort der **Service**-Ebene verloren gegangen ist, besteht die einzige Möglichkeit für eine Rücksetzung des Passworts darin, alle Parameter auf die Werkseinstellungen zurückzusetzen, wie in der Betriebsanleitung <u>OI/AWT210-EN</u> beschrieben. So werden alle Parameter, einschließlich Passwörter zurückgesetzt.

10 Menüübersicht

pH-Menüs

Füllstand - Menü -Einfache Einrichtung of a Auswahl Beenden

Sprache

нα

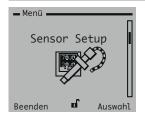
Art der Messung

- Art des pH-Sensors
 - Isothermenschnittp.
 - Asymmetr. Spannung
- PV-Einheit
- Valenz
- Größenordnung
- Endgröße
- End-mV

Temperatureinh.

- Temp. Komp. Typ
- Manuelle Temperatur
- Lösungskoeffizient

Bedienerseite 1



Autom. Puffer-Kal. PV Manuelle Kal. Temperaturkal.

Ausgang halten (nur HART)

- Autom. Puffereinst.
 - Temperaturkompensationskoeffizient
 - Puffertyp
 - Wert Puffer 1
 - Wert Puffer 2
 - Benutzerdefinierter Puffer 1
 - Benutzerdefinierter Puffer 2

Kalibrierungsgrenzwerte Kalibrierung bearb. Auf Std. zurücks.

Art der Messung

- Art des pH-Sensors
 - Isothermenschnittp.
 - Asymmetr. Spannung
- PV-Einheit
- Valenz
- Größenordnung
- Endgröße
- End-mV

Temperatureinh.

Temperaturkompensationstyp

- Manuelle Temperatur
- Lösungskoeffizient

Temperatursensortyp

Temperaturerkennungssensor

Sicherheitseinst.

PDM-Kompatibilität (nur HART) Auf Standardeinstellungen zurücksetzen

Beenden

Auswahl

Bedienerseite 1 Bedienerseite 2 Kontrast Sprache

Füllstand рΗ

Einh.Bereich niedrig Einh.Bereich hoch Dämpfung Fehlerstrom (nur HART) Ausgangstyp (nur HART) Funktion Gen Tabelle (nur HART) Trim 4mA (nur HART)

Regelkreisprüfung (nur HART) - Menü -Diagnose

Auswahl

Sensordiagnose Referenzimpedanzgrenze Diaanosestatus

Trim 20mA (nur HART)

ď

Beenden

HART-Version:

Geräteadresse HART Kennz. HART-Beschreibung Melduna Herst. ID Letzter Befehl HART-Revision Jeweilige Präambel Schleifenstrom-Modus

PA-Version:

Geräteadresse Geräte-Kennzeichnung Kennnr. des Wahlschalters Herst. ID Gerätetyp PA-Profil

FOUNDATION Fieldbusversion

Knotenadresse Geräte-Kennzeichnung Herst. ID Gerätetyp Geräterevision Simulation

Sensortyp Geräteseriennr. Software-Version

Füllstand

🗕 Menü 🕳

Beenden

Menüübersicht ...10

Leitfähigkeitsmenüs mit 2 Elektroden

Füllstand - Menü -Einfache Einrichtung of a Auswahl Beenden

Leitfähigkeit mit 2 Elektroden

Sprache Art der Messung Zellkonstante

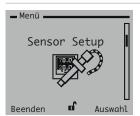
- Konzentrationseinheiten
- Konzentration Kurvenname

Temperatureinh.

Bedienerseite 1

Leitfähigkeitskalibrierung Konzentrationskalibrierung Temperaturkalibrierung Ausgang halten (nur HART) Kalibrierung bearb. Auf Std. zurücks.

Eingang/Ausgang


Auswahl

Leitfähigkeit mit 2 Elektroden

Einh.Bereich niedrig Einh.Bereich hoch Dämpfung Fehlerstrom (nur HART) Ausgangstyp (nur HART) Funktion Gen Tabelle (nur HART) Trim 4mA (nur HART) Trim 20mA (nur HART)

Regelkreisprüfung (nur HART)

Sensordiagnose Diagnosestatus

Art der Messung

- Zellkonstante
 - Konzentrationseinheiten
 - Leitfähigkeitseinheiten
 - Konzentration Kurvenname
 - Konzentration Kurventabelle

Temperatureinh.

Temperaturkompensationstyp

- Manuelle Temperatur
- Auto Temperaturkompensationsoption
 - Temperaturkompensationskoeffizient
 - Typ Reines H20
 - Benutzerdefinierte Temperaturkompensationskurve

Referenztemperatur Temperatursensortyp Temperaturerkennungssensor

Sicherheitseinst. PDM-Kompatibilität (nur HART) Auf Standardeinstellungen zurücksetzen

Bedienerseite 1 Bedienerseite 2 Kontrast Sprache

HART-Version:

Geräteadresse HART Kennz. HART-Beschreibung Melduna Herst. ID Letzter Befehl HART-Revision Jeweilige Präambel Schleifenstrom-Modus

PA-Version:

Geräteadresse Geräte-Kennzeichnung Kennnr. des Wahlschalters Herst. ID Gerätetyp PA-Profil

FOUNDATION Fieldbusversion

Knotenadresse Geräte-Kennzeichnung Herst. ID Gerätetyp Geräterevision Simulation

Sensortyp Geräteseriennr. Software-Version

Füllstand

🗕 Menü 🕳

Beenden

- Menü -

Eingang/Ausgang

Auswahl

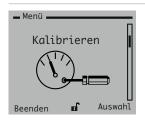
Leitfähigkeitsmenüs mit 4 Elektroden

Füllstand - Menü Einfache Einrichtung

ď

Beenden

Auswahl

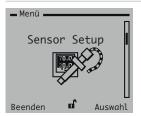

Leitfähigkeit mit 4 Elektroden

Sprache Art der Messung Sensorgruppe

- Konzentrationseinheiten
- Konzentration Kurvenname

Temperatureinh.

Bedienerseite 1


Leitfähigkeitskalibrierung Konzentrationskalibrierung Temperaturkalibrierung Ausgang halten (nur HART) Kalibrierung bearb. Auf Std. zurücks.

Leitfähigkeit mit 4 Elektroden

Einh.Bereich niedrig
Einh.Bereich hoch
Dämpfung
Fehlerstrom (nur HART)
Ausgangstyp (nur HART)
Funktion Gen Tabelle (nur HART)
Trim 4MA (nur HART)
Trim 20MA (nur HART)
Regelkreisprüfung (nur HART)

Sensordiagnose Diagnosestatus

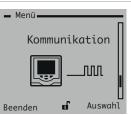
Art der Messung Sensorgruppe

- Konzentrationseinheiten
- Leitfähigkeitseinheiten
- Konzentration Kurvenname
 - Konzentration
 Kurventabelle

Temperatureinh.


Temperaturkompensationstyp

- Manuelle Temperatur
- Auto Temperaturkompensationsoption
 - Temperaturkompensationskoeffizient
 - Benutzerdefinierte Temperaturkompensationskurve


Referenztemperatur Temperatursensortyp Temperaturerkennungssensor

Sicherheitseinst. PDM-Kompatibilität (nur HART) Auf Standardeinstellungen zurücksetzen

Bedienerseite 1 Bedienerseite 2 Kontrast Sprache

HART-Version:

Geräteadresse HART Kennz. HART-Beschreibung Meldung Herst. ID Letzter Befehl HART-Revision Jeweilige Präambel Schleifenstrom-Modus

PA-Version:

Geräteadresse Geräte-Kennzeichnung Kennnr. des Wahlschalters Herst. ID Gerätetyp PA-Profil

FOUNDATION Fieldbusversion

Knotenadresse Geräte-Kennzeichnung Herst. ID Gerätetyp Geräterevision Simulation

Sensortyp Geräteseriennr. Software-Version

Menüübersicht ...10

Toroidale Leitfähigkeitsmenüs

Füllstand - Menü -Einfache Einrichtung Auswahl Beenden

Toroidale Leitfähigkeit


Sprache Art der Messung Konzentrationslösung

- Konzentrationseinheiten
- Konzentration Kurvenname

Temperatureinh. Bedienerseite 1

PV-Nullpunktkalibrierung PV-Bereichskalibrier. Temperaturkalibrierung Ausgang halten (nur HART) Kalibrierung bearb. Auf Std. zurücks.

Füllstand Toroidale Leitfähigkeit

- Menü -

Beenden

Diagnose

Einh.Bereich niedrig Einh.Bereich hoch Dämpfung Fehlerstrom (nur HART) Ausgangstyp (nur HART) Funktion Gen Tabelle (nur HART) Trim 4mA (nur HART) Trim 20mA (nur HART) Regelkreisprüfung (nur HART)

Sensordiagnose Diagnosestatus

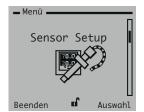
ď

Auswahl

HART-Version:

Geräteadresse HART Kennz. HART-Beschreibung Melduna Herst. ID Letzter Befehl HART-Revision Jeweilige Präambel Schleifenstrom-Modus

PA-Version:


Geräteadresse Geräte-Kennzeichnung Kennnr. des Wahlschalters Herst. ID Gerätetyp PA-Profil

FOUNDATION Fieldbusversion

Knotenadresse Geräte-Kennzeichnung Herst. ID Gerätetyp Geräterevision Simulation

Sensortyp Geräteseriennr. Software-Version

Art der Messung

- Leitfähigkeitseinheiten
- Konzentration Kurvenname
 - Konzentration Kurventabelle

Temperatureinh.

Temperaturkompensationstyp

- Manuelle Temperatur
- Auto Temperaturkompensationsoption
 - Temperaturkompensationskoeffizient
 - Renutzerdefinierte Temperaturkompensationskurve

Referenztemperatur Temperatursensortyp Temperaturerkennungssensor

Sicherheitseinst. PDM-Kompatibilität (nur HART) Auf Standardeinstellungen zurücksetzen

Bedienerseite 1 Bedienerseite 2 Kontrast Sprache

11 Kalibrierung

Kalibrierung des pH-Sensors

Autom. Puffer-Kal.

Führt eine Zweipunkt-Kalibrierung mit 2 vordefinierten Pufferlösungen durch – siehe Auto-Puffereinrichtung, Seite 29.

Nur verfügbar, wenn Messtyp = pH.

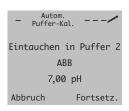
1 Eintauchen in Puffer 1

Die Details von Pufferlösung 1 werden angezeigt.

Tauchen Sie den Sensor in die Pufferlösung und drücken Sie zum Fortfahren auf $\overline{\mathbb{P}}$.

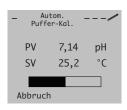
2 Überwachung (Puffer 1)

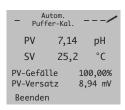

Live-Prozesswerte werden angezeigt. Der Fortschritt der Prozesswertstabilitätsprüfung wird auf dem Fortschrittsbalken angezeigt. Das Verfahren geht nach Abschluss automatisch zur nächsten Phase über.


B Eintauchen in Puffer 2

Die Details von Pufferlösung 2 werden angezeigt.

Tauchen Sie den Sensor in die Pufferlösung und drücken Sie zum Fortfahren auf $\overline{\mathbb{P}}$.



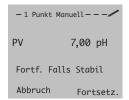

4 Überwachung (Puffer 2)

Live-Prozesswerte werden angezeigt. Der Fortschritt der Prozesswertstabilitätsprüfung wird auf dem Fortschrittsbalken angezeigt. Das Verfahren geht nach Abschluss automatisch zur nächsten Phase über.

5 Abschluss

Nach einer erfolgreichen Kalibrierung werden die kalkulierten Koeffizienten angezeigt.

...11 Kalibrierung


...Kalibrierung des pH-Sensors

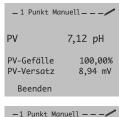
Manuelle Einpunkt-Kalibrierung

Führte eine manuelle Kalibrierung (Offset-Justierung) an einem einzelnen Referenzpunkt durch.

Warten Sie auf eine stabile Messung

Überwachen Sie den Prozesswert, und fahren Sie mit () dem nächsten Schritt fort, sobald sich der Wert stabilisiert hat.

2 Geben Sie den neuen Wert ein


Geben Sie den gewünschten PV-Wert ein, indem Sie auf die Taste drücken, um den Cursor zu bewegen und auf die Tasten, um den Wert zu ändern. Wenn der neue Wert eingegeben worden ist, dann drücken Sie die Taste, um fortzufahren.

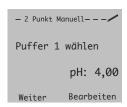
3 Abschluss

Nach einer erfolgreichen Kalibrierung werden die kalkulierten Koeffizienten angezeigt.

Nach einer misslungenen Kalibrierung wird der Grund für den Fehler angezeigt.

Manuelle Zweipunkt-Kalibrierung

Führt eine Zweipunkt-Kalibrierung mit 2 vordefinierten Pufferlösungen durch.


1 Puffertemperatur

Die Temperatur der Pufferlösungen wird angezeigt. Die Temperatur kann durch Drücken der 📝 Taste bearbeitet werden. Wenn die Puffertemperatur richtig ist, dann drücken Sie die 🕄 Taste, um fortzufahren.

2 Wert Puffer 1

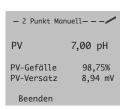
Der Wert der 1 Pufferlösung wird angezeigt. Der Wert kann durch Drücken der 📝 Taste bearbeitet werden. Wenn der Pufferwert richtig ist, dann drücken Sie die 🕄 Taste, um fortzufahren.

3 Auf eine stabile Messung warten – 1 Pufferlösung

Tauchen Sie den Sensor in die Pufferlösung, überwachen Sie den Prozesswert, und fahren Sie mit
dem nächsten Schritt fort, sobald sich der Wert stabilisiert hat.

4 Wert Puffer 2

Der Wert der 2· Pufferlösung wird angezeigt. Der Wert kann durch Drücken der 📝 Taste bearbeitet werden. Wenn der Pufferwert richtig ist, dann drücken Sie die 🕄 Taste, um fortzufahren.


Auf eine stabile Messung warten – 2. Pufferlösung

Tauchen Sie den Sensor in die Pufferlösung, überwachen Sie den Prozesswert, und fahren Sie mit dem nächsten Schritt fort, sobald sich der Wert stabilisiert hat.

6 Abschluss

Nach einer erfolgreichen Kalibrierung werden die kalkulierten Koeffizienten angezeigt.

Leitfähigkeitssensorkalibrierung mit 2 Elektroden

Eine Leitfähigkeit mit 2 Elektroden erfordert normalerweise eine Nasskalibrierung, vorausgesetzt, dass die Sensorkonstante richtig eingegeben wurde und der Sensorkabelwiderstand nicht signifikant ist. Das Verfahren bezieht sich auf eine manuelle Kalibrierung an einem einzelnen Referenzpunkt. Leitfähigkeitskalibrierungs- und Konzentrationskalibrierungs verfahren sind identisch.

Für Zellenkonstanten von 0,003 bis 0,054

- Wenn die Kalibrierung bei einem Leitfähigkeitswert von <0,2 µS/cm durchgeführt wird, wird der PV-Versatz neu berechnet.
- Wenn die Kalibrierung bei einem Leitfähigkeitswert von ≥0,2 µS/cm durchgeführt wird, wird die PV-Steigung neu berechnet.

Für Zellenkonstanten von 0,055 bis 0,299

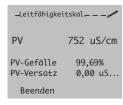

- Wenn die Kalibrierung bei einem Leitfähigkeitswert von $<1\,\mu\text{S}/\text{cm}$ durchgeführt wird, wird der PV-Versatz neu berechnet.
- Wenn die Kalibrierung bei einem Leitfähigkeitswert von ≥1 µS/cm durchgeführt wird, wird die PV-Steigungneu berechnet.

Für Zellenkonstanten von 0,3 bis 1,999

- Wenn die Kalibrierung bei einem Leitfähigkeitswert von $<5~\mu\text{S/cm}$ durchgeführt wird, wird der PV-Versatz neu berechnet.
- Wenn die Kalibrierung bei einem Leitfähigkeitswert von ≥5 μS/cm durchgeführt wird, wird die PV-Steigung neu berechnet.

Warten Sie auf eine stabile Messung

Überwachen Sie den Prozesswert, und fahren Sie mit () dem nächsten Schritt fort, sobald sich der Wert stabilisiert hat.


2 Geben Sie den neuen Wert ein

Geben Sie den gewünschten PV-Wert ein, indem Sie auf die Taste drücken, um den Cursor zu bewegen und auf die Tasten, um den Wert zu ändern. Wenn der neue Wert eingegeben worden ist, dann drücken Sie die Taste, um fortzufahren.

3 Abschluss

Nach einer erfolgreichen Kalibrierung werden die kalkulierten Koeffizienten angezeigt.

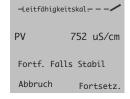
...11 Kalibrierung

Leitfähigkeitssensorkalibrierung mit 4 Elektroden

Leitfähigkeit mit 4 Elektroden kann für die höchste Genauigkeit eine Nasskalibrierung erfordern.

Das Verfahren bezieht sich auf eine manuelle Kalibrierung an einem einzelnen Referenzpunkt. Leitfähigkeitskalibrierungsund Konzentrationskalibrierungs verfahren sind identisch.

Für Sensoren der Gruppe A


- Wenn die Kalibrierung bei einem Leitfähigkeitswert von $<1\,\mu\text{S/cm}$ durchgeführt wird, wird der PV-Versatz neu berechnet.
- Wenn die Kalibrierung bei einem Leitfähigkeitswert von ≥1 µS/cm durchgeführt wird, wird die PV-Steigung neu berechnet.

Für Sensoren der Gruppe B

- Wenn die Kalibrierung bei einem Leitfähigkeitswert von $<5~\mu\text{S/cm}$ durchgeführt wird, wird der PV-Versatz neu berechnet.
- Wenn die Kalibrierung bei einem Leitfähigkeitswert von ≥ 5µS/cm durchgeführt wird, wird die PV-Steigung neu berechnet.

Warten Sie auf eine stabile Messung

Überwachen Sie den Prozesswert, und fahren Sie mit () dem nächsten Schritt fort, sobald sich der Wert stabilisiert hat.

2 Geben Sie den neuen Wert ein


Geben Sie den gewünschten PV-Wert ein, indem Sie auf die Taste drücken, um den Cursor zu bewegen und auf die Tasten, um den Wert zu ändern. Wenn der neue Wert eingegeben worden ist, dann drücken Sie die Taste, um fortzufahren.

3 Abschluss

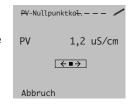
Nach einer erfolgreichen Kalibrierung werden die kalkulierten Koeffizienten angezeigt.

Nach einer misslungenen Kalibrierung wird der Grund für den Fehler angezeigt.

Toroidale Leitfähigkeitssensorkalibrierung

Die toroidale Leitfähigkeit kann für die höchste Genauigkeit eine Nasskalibrierung erfordern.

PV-Nullpunktkalibrierung


Null anwenden und auf stabile Messung warten

Stellen Sie sicher, dass eine Nulllösung am Sensor vorhanden ist, überwachen Sie den Prozesswert, und fahren Sie mit p dem nächsten Schritt fort, sobald sich der Wert stabilisiert hat.

2 Probenahme

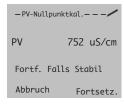
Das Verfahren geht automatisch zur nächsten Stufe über, sobald die PV-Probe genommen wurde.

_ PV-Nullpunktkal._ _ _ _

0,0 uS/cm

3 Abschluss

Nach einer erfolgreichen Kalibrierung werden die kalkulierten Koeffizienten angezeigt.


Offset Too High

Beenden

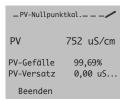
PV-Bereichskalibrierung

Spanne anwenden und auf stabile Messung warten

Stellen Sie sicher, dass eine Spannenlösung am Sensor vorhanden ist, überwachen Sie den Prozesswert, und fahren Sie mit pdem nächsten Schritt fort, sobald sich der Wert stabilisiert hat.

2 Geben Sie den neuen Wert ein

Geben Sie den gewünschten PV-Wert ein, indem Sie auf die Taste drücken, um den Cursor zu bewegen und auf die Tasten, um den Wert zu ändern. Wenn der neue Wert eingegeben worden ist, dann drücken Sie die Taste, um fortzufahren.


3 Probenahme

Das Verfahren geht automatisch zur nächsten Stufe über, sobald die PV-Probe genommen wurde.

4 Abschluss

Nach einer erfolgreichen Kalibrierung werden die kalkulierten Koeffizienten angezeigt.

12 Technische Daten

Betrieb

Display/LCD (B× H)

75 × 65 mm

Sprache

Englisch, Deutsch, Französisch, Spanisch, Italienisch, Portugiesisch, Russisch, Türkisch, Chinesisch, Polnisch

Mechanische Daten

Klemmenanschlüsse

AWG 26 bis 14 (0,14 bis 2,5 mm²)

Eingang

pH/ORP/plon Sensortypen

pH: Glas, Antimon (Sb)

ORP: (Redox): Platin (Pt), Gold (Au)

pION: Benutzerdefiniert vom Bediener programmierbar

Eingangswiderstand

>1x10 $^{13}\Omega$

pH/ORP/Messbereich und Auflösung

Тур	Bereich	Auflösung der Anzeige	Wiederholge- nauigkeit
рН	0 bis 14 pH (–2 bis 16 mA über Bereichsgrenze)	pH: 0,01	±0,01 pH
ORP	–1500 bis 1500 mV	1 mV	±1 mV
pION	–1500 bis 1500 mV	1 mV	±1 mV

Dynamisches Ansprechverhalten

< 1 Sekunde für 90 % Zykluszeit bei 0 Sekunden Dämpfung

Dämpfung

Konfigurierbar: 0 bis 99,9 Sekunden

Leitfähigkeitssensortypen

AWT210: ABB Leitfähigkeitssensoren mit 2 Elektroden AWT210: ABB Leitfähigkeitssensoren mit 4 Elektroden AWT210: Toroidale ABB Leitfähigkeitssensoren

AW 1210: Toroidale ABB Leitrariigkeitsserisori

Leitfähigkeitsmessbereich und Auflösung

AWT210 Leitfähigkeits-Messumformer mit 2 Elektroden:

Zellkon- stante	Leitfähigkeits- messbereich	Auflösung der Anzeige	Wiederholge- nauigkeit
0,01	0 bis 200 μS/cm	0,001 μS/cm	±1,0% des
0,1	0 bis 2000 μS/cm	0,01 μS/cm	Messbereichs
1	0 bis 20000 μS/cm	0,1 μS/cm	pro Dekade

AWT210 Leitfähigkeits-Messumformer mit 4 Elektroden:

Sensor- gruppe	Leitfähigkeits- messbereich	Auflösung der Anzeige	Wiederholge- nauigkeit
A	0 bis 2000 mS/cm	0,1 μS/cm	±0,5% des Messbereichs
В	0 bis 2000 μS/cm	0,01 μS/cm	pro Dekade

Toroidaler AWT210 Leitfähigkeits-Messumformer:

Sensor	Leitfähigkeits- messbereich	Auflösung der Anzeige			
ABB toroidal	0 bis 2000 mS/cm	1,0 μS/cm	±0,5% des Messbereichs pro Dekade		

EZLink (nur für digitale pH/ORP-Sensoren)

Leistungsaufnahme (max.)

1,5 mA bei 3,3 V DC (5 mW maximal)

Kabel mit fester Länge

1 oder 10 m

Schutzart des Steckers des digitalen Sensors

IP67 (im angeschlossenen Zustand)

Verlängerungskabel (Optionen)

1, 5, 10, 15, 25, 50 m

Maximale Länge (einschließlich optionalem

Verlängerungskabel)

Bis zu 60 m

Temperatureingang

remperaturemgang	
Temperaturelementtypen	
Pt100 (2- oder 3-Leiter)	Automatische Temperatur- kompensation
Pt1000 (2- oder 3-Leiter)	Automatische Temperatur- kompensation
3k Balco (2- oder 3-Leiter)	Automatische Temperatur- kompensation
Keine	Manuelle Temperatur- kompensation

Messbereich und Auflösung

Temperaturelement	Temperaturbereich	Wiederholgenauigkeit
Pt100		
Pt1000	-20 bis 200 °C	±0,1 °C
Balco 3K		– nach der Kalibrierung
Keine	Programmierbar	N/A
	20 bis 300 °C	

pH-/ORP-/plon-Temperaturkompensationsmodi

Тур	Manuell	Automatischer Nernst	Nernst mit Lösungskoeffizient	Lösungskompensa- tionskoeffizient
рН	1	✓	✓	
ORP	✓			✓
pION	/			✓

Leitfähigkeitstemperaturkompensationsmodi

Temperaturelement	AWT210 2 Elektroden	AWT210 4 Elektroden	AWT210 Toroidal
0 bis 15 % NaOH		√	
0 bis 20 % NaCl		✓	✓
0 bis 18 % HCl		✓	√
0 bis 20 % H₂SO₄		✓	✓
Reinwasser – Neutralsalz	✓		
Reinwasser – Basenspuren	✓		
Reinwasser-Säurespuren	✓		
Benutzerdefiniert	✓		✓

Stromversorgung (FF-Modelle und PA-Modelle)

Versorgungsspannung

9 bis 32 V DC(Allzweckinstallationen) 9 bis 24V DC (eigensicher Ex ia)

Ruhestrom

15 mA Ruhestrom.

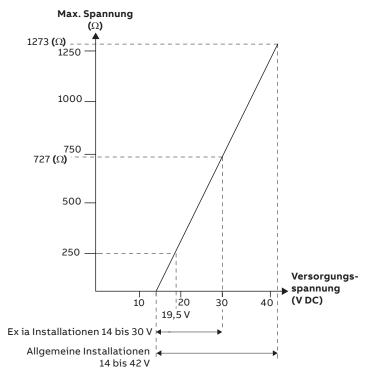
Stromversorgung (HART-Modelle)

Versorgungsspannung

14 bis 42 V DC(Allzweckinstallationen)
14 bis 30 V DC (eigensicher Ex ia Installationen)
Verpolsicher

Startspannung: 14 V DC

Unterspannungsschutz


Versorgungsspannung < 12 V DC ergibt < 3,8 mA

Maximal zulässige Welligkeit

Maximale Welligkeit für Versorgungsspannung während Kommunikation gemäß HART FSK-Spezifikation für physische Schichten, Version 8.1(08/1999) Abschnitt 8.1

Maximale Last

Max. Last = (Versorgungsspannung - 14 V)/22 mA

Mit einem 250 Ω Widerstand für die HART-Kommunikation Versorgungsspannung mind. = 19,5 V DC

Ausgang (HART-Modelle)

Konfigurierter Bereich

4 bis 20 mA, vom Benutzer über den Messbereich programmierbar.

Linear und nicht linear.

AWT210 pH-Messumformer mit 2 Elektroden:

Тур	Min. Spanne	Max. Spanne
pH	pH: 1	pH: 14
ORP	100 mV	3000 mV
pION	100 mV	3000 mV

AWT210 Leitfähigkeits-Messumformer mit 2 Elektroden:

Zellkonstante	Min. Spanne	Max. Spanne
0,01	1 μS/cm	200 μS/cm
0,1	10 μS/cm	2000 μS/cm
1	100 μS/cm	20000 μS/cm

AWT210 Leitfähigkeits-Messumformer mit 4 Elektroden:

Sensorgruppe	Min. Spanne	Max. Spanne
A	100 μS/cm	2000 mS/cm
В	10 μS/cm	2000 μS/cm

Toroidaler AWT210 Leitfähigkeits-Messumformer:

Sensorgruppe	Min. Spanne	Max. Spanne
ABB toroidal	100 μS/cm	2000 mS/cm

Alle Leitfähigkeitsmodelle – wenn für Konzentration konfiguriert:

Sensorgruppe	Min. Spanne	Max. Spanne
	5 % wenn für	
Alle	Konzentration	2000
	konfiguriert	

Dynamischer Bereich

3,8 bis 20,5 mA mit 3,6mA niedriger Alarmpegel, 21 mA hoher Alarmpegel

Umgebungsbedingungen

Betriebstemperatur

-20 bis 60 °C

Feuchtigkeit

< 95 % RL, nicht kondensierend

Lagertemperatur

-40 bis 70 °C

Schwingung

IEC 60068-2-6 Test FC: Vibration, sinusförmig

...12 Technische Daten

Zulassungen, Zertifikate und Sicherheit

Factory Mutual (cFMus) - Eigensicherheit

Erhältlich mit Polycarbonat- und Aluminiumgehäusen

Eigensicherheit

- KLASSE I, BEREICH 1 GRUPPE A, B, C, D; T4
- KLASSE II, BEREICH 1 GRUPPE E, F, G; T4
- KLASSE I, ZONE 2 AEX/Ex ic IIC T4 Gc

Gehäusetyp/Schutzartklassifizierung

4X*/IP66

Umgebungstemperaturbereich

• -25 °C =< Ta =< 60 °C

Factory Mutual (cFMus) - Nicht zündfähig

Nur mit Aluminiumgehäuse erhältlich

Entzündlichkeit

- Klasse I, Bereich 2, Gruppe A, B, C, D, T4
- Klasse II/III, Bereich 2, Gruppe F, G, T4

Gehäusetyp/Schutzartklassifizierung

4X*/IP66

Umgebungstemperaturbereich

• -25 °C =< Ta =< 60 °C

ATEX- / IECEx- & UKEX-Eigensicherheit

Erhältlich mit Polycarbonat- und Aluminiumgehäusen

Eigensicherheit

- II 1 G Ex ia IIC T4 Ga
- II 3 G Ex ic IIC T4 Gc

Bei Verwendung mit dem entsprechenden zugehörigen Gerät

Schutzartklassifizierung

IP66

Umgebungstemperaturbereich

• -20 °C =< Ta =< 60 °C

SIL

Erfüllt die Anforderungen nach IEC 61508. Siehe SI/AWT210

EMV

Strahlungen und Schutz

Erfüllt die Anforderungen von IEC 61326 für industrielle Umgebungen.

DS/AWT210-EN Rev. G

13 Ersatzteile

Kommunikationsmodulbaugruppen

Teilenummer	Beschreibung	
3KXA877210L0051 3KXA877210L0052 3KXA877210L0053	HART-Modul PA-Modul FF-Modul	

Montagesätze

Schaltschrank-Montagesatz

Teilenummer	Beschreibung	
3KXA877210L0101	Schaltschrank- Montagesatz, einschließlich Befestigungen, Flansche, Klemmen und Dichtung	

Sensormodulbaugruppen

Teilenummer	Beschreibung	
3KXA877210L0014	pH-/ORP-Modul zur Verwendung mit analogen Sensoren	7) (5
3KXA877210L0013	Leitfähigkeitsmodul mit 2 Elektroden	
3KXA877210L0011	Leitfähigkeitsmodul mit 4 Elektroden	
3KXA877210L0012 3KXA877210L0015	Toroidales Leitfähigkeitsmodul Digitales EZLink-Modul	<u> </u>

Rohr-Montagesatz

Teilenummer	Beschreibung	
3KXA877210L0102	Rohr-Montagesatz, einschließlich Rohrmontage- Adapterplatte, Halterungen und Befestigungen (ohne Rohr)	

Hauptgehäusebaugruppen

Teilenummer	Beschreibung	
AWT210A1Y0Y0Y0	Polycarbonatgehäuse- Baugruppe: CE-Kennzeichnung	
AWT210A1Y0Y0E5	Polycarbonatgehäuse- Baugruppe: ATEX/IECEX Kennzeichnung – FM/CSA Kennzeichnung	
AWT210A2Y0Y0Y0	Aluminiumgehäuse- Baugruppe: CE-Kennzeichnung	
AWT210A2Y0Y0E6	Aluminiumgehäuse- Baugruppe: ATEX/IECEX Kennzeichnung – FM/CSA Kennzeichnung	

Wand-Montagesatz

Teilenummer	Beschreibung		
3KXA877210L0105	Wand-Montagesatz	0	

Kabelverschraubungen

Kabelverschraubungen (2er-Pack)

Teilenummer	Beschreibung		
3KXA877210L0112 3KXA877210L0115	M16 Standardverschraubung M16 Exe Verschraubung		
3KXA877210L0111 3KXA877210L0114	M20 Standardverschraubung M20 Exe Verschraubung		
3KXA877210L0113	⅓ in NPT-Standard- verschraubung	M16	M20 ½ Zoll
3KXA877210L0116	½ in NPT-Exe-Verschraubung		

Wetterschutz-Satz

Wetterschutz-Satz

Teilenummer	Beschreibung	
3KXA877210L0103	Wetterschutz-Satz (geeignet für AWT210/AWT420)	3,0°,

Wetterschutz und Rohrmontagekit

Teilenummer	Beschreibung
3KXA877210L0104	Wetterschutz- Satz Rohr- Montagesatz (geeignet für AWT210/AWT420)

Geschützte Marken

- EZLink ist eine Marke von ABB Limited
- Feldbus ist ein eingetragenes Warenzeichen der Fieldbus Foundation
- HART ist ein eingetragenes Warenzeichen der FieldCOmm Group
- LEXAN ist ein Warenzeichen von SABIC Global Technologies B.V.
- Modbus ist eine eingetragene Marke von Schneider Electric USA Inc.
- PROFIBUS ist eine eingetragene Marke der Organisation PROFIBUS

Service

Software

Hinweise

ABB Measurement & Analytics

Ihren ABB-Ansprechpartner finden Sie unter:

www.abb.com/contacts

Weitere Produktinformationen finden Sie auf:

www.abb.com/measurement

Wir behalten uns das Recht vor, technische Änderungen vorzunehmen oder den Inhalt dieses Dokuments ohne vorherige Ankündigung anzupassen. Bei Bestellungen gelten die vereinbarten detaillierten Angaben. ABB übernimmt keinerlei Verantwortung für eventuelle Fehler oder Unvollständigkeiten in diesem Dokument.

Wir behalten uns alle Rechte an diesem Dokument, dem Inhalt und den Abbildungen vor. Vervielfältigung, Bekanntgabe an Dritte oder Verwendung des Inhaltes, auch auszugsweise, ist ohne vorherige schriftliche Zustimmung durch ABB verboten.