Measurement Accuracy Quick guide

A quick guide to calculating the accuracy of measurement devices

Measurement made easy.

01 ABB products in the field

Introduction

When measuring, accuracy is a critical factor for deciding what device to choose. Unfortunately, the accuracy of devices is not always clear, as there are different methods to specify accuracy. The two primary methods for specifying accuracy are "\% of Reading" and "\% of Full Scale".

Datasheets

Datasheets provide a multitude of technical details for a specific device. From datasheets, accuracy will typically be listed in designated sections. Below is a list of shortcuts to ABB datasheets, for their respective device.

Product
Mflo 6213
XFC 6200/6201 EX
XFCG5
266CST
266JST

Definitions

Throughout this document, the terms listed below will be used. They have been defined for the reader's understanding.

Limits*

URL

Upper Range Limit is the the upper pressure limit of the sensor used in the device.

LRL

Lower Range Limit is the lower pressure limit of the sensor used in the device.
*It is important to note that these limits are set at the factory, and cannot be changed by the end user. Measurements above the URL or below the LRL are come with no accuracy specification and are not recommended by the manufacturer.

Values**
URV
Upper Range Value is the factory calibrated pressure of the finished device. Upper Range Value can also be referred to as "Full Scale" or "Factory Calibrated Span (FCS)".

LRV

Lower Range Value is the lowest pressure the device is specified to measure. Lower Range Value can also be referred to as "Span Limit". It is typically specified as a percentage of the Upper Range Limit (URL).
**It is important to note that these values are set at the factory, but unlike limits, these values can be changed, within the specified limits.
** For the μ Flo 6213, XFC, and 266 JST the Upper Range Limit (URL) is the Upper Range Value (URV). Accordingly, the Lower Range Limit (LRL) is the Lower Range Value (LRV). This is not true for the 266CST. The 266CST's URL, LRL, and LRV are based on the type of sensor ordered with the device.

Turndown

Turndown or "Turndown Ratio", is a way to specify the LRV of a device. As an example, a 1500 PSI device, specified from 1:1 to 5:1, states that the highest possible URV is 1500 PSI ($1: 1$) and the lowest possible LRV is $300 \mathrm{PSI}(1500 \div 5)$.

Base Accuracy

Base Accuracy is typically specified in a \pm percentage, and is specified from the Upper Range Value (URV) to the Lower Range Value (LRV). An example of base accuracy would be $\pm .05 \%$.

\% Full Scale (\% of Span)

\% Full Scale specifies a percentage of the URV to define $a \pm$ band in pressure (PSI), from the URV to the LRV.

With \% Full scale, each pressure point from URV to LRV has the same error in PSI.

As an example, the datasheet states the device has an URV of 1500 PSI, with a base accuracy of $.05 \%$ of full scale, from 100% to 20% of full scale. This means that from 1500 PSI through 300 PSI (20\% of your URV), there will be a ($1500 \times .05 \%=.75 \mathrm{PSI}$) error at each point.

Table 1: \% Full Scale

Lower -.75 PSI	Measurement	Upper +.75 PSI
1499.25	1500	1500.75
1349.25	1350	1350.75
1199.25	1200	1200.75
1049.25	1050	1050.75
899.25	900	900.75
749.25	750	750.75
599.25	600	600.75
449.25	450	450.75
299.25	300	300.75

\% Reading (\% Value)

$\%$ Reading specifies a \pm percentage from the URV to the LRV.

With \% Reading, each pressure point from URV to LRV has the same error \%.

As an example, the datasheet states the device has an URV of 1500 PSI, with a base accuracy of $.05 \%$ of reading, from 100% to 20% of full scale. This means that from 1500 PSI through 300 PSI (20\% of your URV), there will be a $.05 \%$ error at each point.

Table 2: \% Reading

Lower $-.50 \%$	Measurement	Upper +.05\%
1499.25	1500	1500.75
1349.325	1350	1350.675
1199.4	1200	1200.6
1049.475	1050	1050.525
899.55	900	900.45
749.625	750	750.375
599.7	600	600.3
449.775	450	450.225
299.85	300	300.15

Comparing a \% Full Scale Device to a \% Reading Device

The easiest approach to comparing \% Full Scale to \% Reading is by converting the \% Full scale into \% Reading. To do this, we use Table 1 above, but we add another column to the left.

This column calculates the \% Reading at each point
(1-(Lower \div Measurement)) \%
OR
(1-(Measurement \div Upper))\%

Table 3: Converting \% Full Scale to \% Reading

\% Reading	Lower -.75 PSI	Measurement	Upper +.75 PSI
0.05%	1499.25	1500	1500.75
0.06%	1349.25	1350	1350.75
0.06%	1199.25	1200	1200.75
0.07%	1049.25	1050	1050.75
0.08%	899.25	900	900.75
0.10%	749.25	750	750.75
0.12%	599.25	600	600.75
0.17%	449.25	450	450.75
0.25%	299.25	300	300.75

How Does the Base Accuracy of ABB Devices Compare to Each Other?

μ FLO 6213 \& XFC 6200/6201EX
DP $- \pm 0.075 \%$ of user calibrated span from 20% to 100% of URL
SP $- \pm 0.075 \%$ of user calibrated span from 20% to 100% of URL

XFC G5

DP - $\pm 0.05 \%$ of user calibrated spans from 20% to 100% of URL
SP - $\pm 0.05 \%$ of user calibrated spans from 20% to 100% of URL

266CST
DP - $\pm 0.04 \%$ of calibrated span from 1:1 to $10: 1$ of calibrated span
SP $- \pm 0.04 \%$ of calibrated span from 1:1 to 10:1 of calibrated span

266JST
DP - $\pm 0.04 \%$ Value from 5% to 100% of full scale
SP - $\pm 0.05 \%$ Value from barometric to 100% of full scale

Other Factors That Affect Device Accuracy

Temperature (Ambient Temperature Effect)

Deviations in the ambient temperature will affect your readings. As an example, you calibrate your device in the morning and the ambient temperature is $50^{\circ} \mathrm{F}$. When you return in the afternoon, the ambient temperature has increased to $100^{\circ} \mathrm{F}$. This difference in ambient temperature, will affect accuracy. This effect varies between products.
μ FLO 6213 \& XFC 6200/6201EX
$\pm 0.075 \%$ of URL $\pm 0.06 \%$ of reading
XFCG5
$\pm 0.075 \%$ of URL $\pm 0.06 \%$ of reading

266CST

± 0.03 \% URL + 0.045 \% measuring span
266JST
$\pm 0.05 \%$ reading from 10 to 100% FCS,
$\pm 0.125 \%$ reading from 0 to 10% FCS

Age (Stability)

As a device ages, the measurement accuracy can be affected. This effect also varies between products.
μ FLO 6213 \& XFC 6200/6201EX
12 months $- \pm 0.1 \%$ of URL

XFCG5
12 months $- \pm 0.1 \%$ of URL
266CST
$\pm 0.15 \%$ of URL over a period of 10 years

266JST
$\pm 0.15 \%$ of FCS over a period of 24 months

Total Probable Error (TPE)
Total Probable Error (TPE) is a method of calculating a hypothetical "worst case scenario" for each device. The calculation is performed by using the "Sum of Squares" method, where three metrics are squared, and the result has its square root taken. The formula is as follows: $\sqrt{ }\left((\text { Base Accuracy Error })^{2}+(\text { Temperature Error })^{2}+(\text { Age Error })^{2}\right)$.

As an example, consider the following scenario of a 266CST with the following parameters:

- Factory calibrated to 800 InH 2 O .
- Base accuracy of $\pm 0.04 \%$ of calibrated span from 1:1 to $10: 1$ of calibrated span.
- Ambient temperature effect of $\pm 0.03 \%$ of the Upper Rate Limit (URL) $+0.045 \%$ measuring span.
- Age (stability) of $\pm 0.15 \%$ of the URL, over a period of 10 years.

With a 266CST, we first have to look up the sensor URL. While we're at it, we'll also grab the turndown for later.
The images below are from the datasheet.

Measuring range limits and span limits

Sensor Code	Measuring range upper limit (URL)	Measuring range lower limit (LRL)		Minimum measuring span	
		$\begin{gathered} \hline \text { Models 26CSH/ } \\ \text { CST } \end{gathered}$	$\begin{gathered} \hline \text { Models 266JSH/ } \\ \text { JST } \end{gathered}$	Models 266HSH/ CST	Models 266JSH/JST
A	1 kPa	0	$-1 \mathrm{kPa}$	0.05 kPa	0.05 kPa
	10 mbar		-10 mbar	0.5 mbar	0.5 mbar
	4 inH 2 O		-4inH2O	0.2 inH 20	0.2 inH 20
C	6 kPa	0	-6 kPa	0.2 kPa	0.2 kPa
	60 mbar		-60 mbar	2 mbar	2 mbar
	24 inH 2 O		-24 inH2O	$0.8 \mathrm{inH2})$	$0.8 \mathrm{inH2O}$
F	40 kPa	0	-40 kPa	0.4 kPa	0.4 kPa
	400 mbar		-400 mbar	4 mbar	4 mbar
	160 inH 2 O		-160 inH2O	1.6 inH 2 O	1.6 in H 2 O
L	250 kPa	0	-250 kPa	2.5 kPa	2.5 kPa
	2500 bar		-2500 bar	25 mbar	25 mbar
	1000 inH 20		-1000 inH2O	10 inH 2 O	10 inH 2 O
N	2000 kPa	0	-2000 kPa	20 kPa	20 kPa
	20 bar		-20 bar	0.2 mbar	0.2 mbar
	290 psi		-290 psi	2.9 psi	2.9 psi
R	10000 kPa	-	$-10000 \mathrm{kPa}$	-	100 kPa
	100 bar		-100 bar		1 bar
	1450 psi		-1450 psi		14.5 psi

Measuring error

\% of calibrated span, consisting of terminal-based nonlinearity, hysteresis, and non-repeatability.

Model	$\begin{aligned} & \text { DP Sen- } \\ & \text { sor } \end{aligned}$	For TD Range	Measuring error
$\begin{aligned} & \text { 266CSH, } \\ & 266 \mathrm{JST} \end{aligned}$	A to R 1)	From 1:1 to 10:1	± 0.075 \%
	A	From 10:1 to 20:1	$\pm(0.075+0.005 \times$ TD $=0.05$) \%
	C	From 10:1 to 30:1	$\pm(0.075+0.005 \times$ TD $=0.05$) \%
	Fto R 1)	From 10:1 to 100:1	$\pm(0.075+0.005 \times$ TD $=0.05$) \%
$\begin{aligned} & \text { 266CST, } \\ & \text { 266JST } \end{aligned}$	A tor 1)	From 1:1 to 10:1	$\pm 0.04 \%$
	A	From 10:1 to 20:1	$\pm(0.04+0.005 \times$ TD $=0.05$) \%
	C	From 10:1 to 30:1	$\pm(0.04+0.005$ X TD $=0.05$) \%
	F to R 1)	From 10:1 to 100:1	$\pm(0.04+0.005 \times$ TD $=0.05$) \%

We select sensor code "L" (highlighted in yellow) since it's closest to the $800 \mathrm{InH2O}$ target. The URL for our calculations will be 1000 InH 2 O .

Next, calculate the base accuracy over the measurement range (span). From the Scenario Outline, the base accuracy is $\pm 0.04 \%$ of the calibrated span (URV) and the calibrated pressure is $800 \mathrm{InH2O}$. With these values, the following formula is used: 0.04% of 800 $\mathrm{InH} 2 \mathrm{O}=0.32 \mathrm{InH} 2 \mathrm{O}$
After that, the calculation for the Ambient Temperature Effect is needed. From the Scenario Outline, it is stated to be 0.03% of the Upper Rate Limit (URL) $+0.045 \%$ measuring span. With these values, the follow-ing formula is used: (0.03% of $1000 \operatorname{lnH2O}$) + (0.045 \% of $800 \mathrm{InH2O})=0.66 \mathrm{InH} 2 \mathrm{O}$

Then, calculate the error due to age, using the stated stability. From the Scenario Outline, the Age (Stability) is $\pm 0.15 \%$ of URL over a period of 10 years; the URL is $1000 \mathrm{InH2O}$. With this information provided, the following formula is used: (0.15% of $1000 \mathrm{InH2O}$) / 10 years $=0.15 \mathrm{InH} 2 \mathrm{O}$.

Finally, the calculations are combined as follows:
TPE $=\sqrt{ }\left((\text { Base Accuracy Error })^{2}+(\text { Temperature Error })^{2}+(\text { Age Error })^{2}\right)$.
Below is a step-by-step breakdown of each calculation:
TPE $\quad=\sqrt{ }\left((0.32)^{2}+(0.66)^{2}+(0.15)^{2}\right)$
$=\sqrt{ }((0.1024)+(0.4356)+(0.0225))$
$=\sqrt{ }$ (0.5605)
$=.748665 \mathrm{InH} 2 \mathrm{O}$
TPE
$\approx .75 \mathrm{InH} 2 \mathrm{O}$

Total Probable Error (TPE)... Continued

From the previous page we know that he Total Probable Error (TPE) throughout the measurement range, is $.75 \operatorname{lnH} 2 \mathrm{O}$.
$800 \mathrm{InH2O}$ is the URV, and $100 \mathrm{InH2O}$ is the the LRV (URL/Turndown = 1000/10).
The .75 InH 2 O is applied at each measurement point, throughout the measurement range (span). We then add the column to the left to convert that to \% Reading.

Table: TPE\% Throughout the Measuring Range

\% Reading	Lower -.75 PSI	Measurement	Upper +.75 PSI
0.09%	799.25	800	800.75
0.11%	699.25	700	700.75
0.12%	599.25	600	600.75
0.15%	499.25	500	500.75
0.19%	399.25	400	400.75
0.25%	299.25	300	300.75
0.37%	199.25	200	200.75
0.75%	99.25	100	100.75

This \% Reading data is shown in the chart below with the black solid line.
***Note the difference in the \%Full Scale devices and the \% Reading device.

Comparison of ABB Devices and their Total Probable Error (TPE)

Comparison of ABB and competitor devices and their Total Probable Error (TPE)

