

PRODUCT ENVIRONMENTAL PROFILE Environmental Product Declaration Fusegear – Fuse Switch Disconnectors EasyLine – XLP00 (CN)

REGISTRATION NUMBER		IN COMPLIANCE WITH PCR-ED4-EN-2021 09 06		
ABBG-00132-V01.01-EN 5		SUPPLEMENTED BY PSR-0005-ED2-EN-2016 03 29		
VERIFIER ACCREDITATION NUMB	ER	INFORMATION AND REFERENCE DOCUMENT	S	
VH42		www.pep-ecopassport.org		
DATE OF ISSUE		VALIDITY PERIOD		
03-2023		5 years		
INDEPENDENT VERIFICATION OF	THE DECLARATION AND DATA, IN	COMPLIANCE WITH ISO 14025: 2006		
INTERNAL	EXTERNAL 🗵			
THE PCR REVIEW WAS CONDUCT	ED BY A PANEL OF EXPERTS CHAIF	RED BY JULIE ORGELET (DDEMAIN)		
PEP ARE COMPLIANT WITH XP C	08-100-1 :2016 OR EN 50693:2019		eco	
THE ELEMENTS OF THE PRESEN	T PEP CANNOT BE COMPARED WIT	H ELEMENTS FROM ANOTHER PROGRAM.	PASS	
DOCUMENT IN COMPLIANCE WITH ISO 14025: 2006 « ENVIRONMENTAL LABELS AND DECLARATIONS. TYPE III ENVIRONMENTAL DECLARATIONS »				
© Copyright 2023 ABB. All rights i	reserved.			

EPD Owner	ABB Oy, Smart Power, P.O. Box 622,FI-65101 Vaasa, Finland www.abb.com
Manufacturer name and address	ABB Xiamen Low Voltage Equipment Co. Ltd. Xiamen, Fujian, China, 361006
Company contacts	EPD_ELSP@in.abb.com
Reference product	XLP00 Fuse Switch Disconnector
Description of the product	EasyLine range of fuse switch-disconnectors ensures high protection and reli- able operation in critical power applications, distribution boards, switch- boards, capacitor banks. A wide range of cable terminals and Snap-On acces- sories make the installation easy and fast. EasyLine can be fitted into different distribution systems by means of busbar adapters
Functional unit	The functional unit to this study is a single Fuse switch disconnector which establishes, supports and interrupts for 20 years rated currents in normal con- ditions of circuit characterized by the current Ith, including any conditions specified for overload in operation characterized by the current Ie, for the op- erating voltage Ue.
	Ue = Rated voltage (V) = 500 Ith = Rated current in continuous operation (A) = 160 Ie = Overcurrent (A) = 256
Other products covered	XLP000-6CC, XLP00, XLP00-6BC, XLP00-EFM-6BC, XLP1, XLP1-6BC, XLP1 6M10, XLP1-EFM-6BC, XLP2, XLP2-6BC, XLP2-EFM-6BC
Reference lifetime	20 years
Product category	Electrical, Electronic and HVAC-R Products
Use Scenario	The use phase has been modeled based on the sales mix data (2021), and the corresponding low voltage electricity countries mix
Geographical representativeness	Raw materials & Manufacturing: [China / Global] Assembly: [China] Distribution / Use: [Global] specific sales mix EoL: [Global]
Technological representa- tiveness	Materials and processes data are specific for the production of XLP Fuse Switch Disconnector
LCA Study	This study is based on the LCA study described in the LCA report 1SCC311169D0201
EPD type	Products family declaration
EPD scope	"Cradle to grave"
Year of reported primary data	2021
LCA software	SimaPro 9.3.0.3 (2021)
LCI database	Ecoinvent v3.8 (2021)

STATUS	SECURITY LEVEL	PEP ECOPASSPOR REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	ABBG-00132-V01.01-EN	1SCC311170D0201	A.002	en	2/18
© Copyright 2023 ABB. All rights reserved.						

Contents

ABB Purpose & Embedding Sustainability	4
General Information	4
Constituent Materials	6
LCA background information	.7
Functional unit and Reference Flow	7
System boundaries and life cycle stages	7
Temporal and geographical boundaries	. 8
Boundaries in the life cycle	. 8
Data quality	. 8
Environmental impact indicators	. 8
Allocation rules	. 9
Limitations and simplifications	9
Energy Models	. 9
Inventory analysis	10
Environmental impacts	13
Additional environmental information	17
References	18

STATUS	SECURITY LEVEL	PEP ECOPASSPOR REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	ABBG-00132-V01.01-EN	1SCC311170D0201	A.002	en	3/18
© Copyright 2023 ABB. All rights reserved.						

ABB Purpose & Embedding Sustainability

ABB is a leading global technology company that energizes the transformation of society and industry to achieve a more productive, sustainable future. By connecting software to its electrification, robotics, automation and motion portfolio, ABB pushes the boundaries of technology to drive performance to new levels. With a history of excellence stretching back more than 130 years, ABB's success is driven by about 105 thousand talented employees in over 100 countries.

ABB's Electrification business offers a wide-ranging portfolio of products, digital solutions and services, from substation to socket, enabling safe, smart and sustainable electrification. Offerings encompass digital and connected innovations for low voltage and medium voltage, including EV infrastructure, solar inverters, modular substations, distribution automation, power protection, wiring accessories, switchgear, enclosures, cabling, sensing and control. ABB is committed to continually promoting and embedding sustainability across its operations and value chain, aspiring to become a role model for others to follow. With its ABB Purpose, ABB is focusing on reducing harmful emissions, preserving natural resources and championing ethical and humane behavior.

.

General Information

Located in Xiang'an Torch Industrial Park of Xiamen, ABB Xiamen Hub, with an investment of 2 billion yuan (approximate \$300 million) and covering an area of ~ 430000 square meters, officially came into service on Nov. 2018. It integrated eight ABB companies in Xiamen to create smarter production workshop and workplace with higher efficiency through optimized resource allocation and unified management. ABB in Xiamen, with nearly 3,500 employees in total, has a full range of businesses including R&D, manufacturing, engineering, sales and services, as well as ABB China's supply chain management and corporate functions.

The ABB Xiamen Hub is ABB's biggest manufacturing centre for middle & low voltage switchgears and air circuit breakers. With powerful R&D and innovation capability, it is home to:

- One of ABB's largest R&D centres for NeoGear and MNS low-voltage systems
- ABB's first digitally connected remote service centre in China
- ABB Technology Experience Centre covering full ABB solution & focusing on user experience

As a modernized large industrial park, ABB Xiamen Hub widely implements environment friendly materials, energy - saving technique and intelligent solutions. They include BMS system for centralized control and monitoring of equipment, PMCS solution for comprehensive management of energy consumption, i-Bus® intelligent building control system for lighting control, rainwater recovery system, and electric vehicle charging facility. With all these solutions, ABB Xiamen Hub has set an example for building a green, low - carbon and intelligent industrial park.

STATUS	SECURITY LEVEL	PEP ECOPASSPOR REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	ABBG-00132-V01.01-EN	1SCC311170D0201	A.002	en	4/18
© Copyright 2023 ABB. All rights reserved.						

EasyLine – XLP product cluster

EasyLine range of fuse switch-disconnectors ensures high protection and reliable operation in critical power applications, distribution boards, switchboards, capacitor banks. A wide range of cable terminals and Snap-On accessories make the installation easy and fast. EasyLine can be fitted into different distribution systems by means of busbar adapters. The degree of protection from the front is IP30 in closed position and IP20 in open position. EasyLine fuse switch disconnectors can be padlocked in closed and open positions

EasyLine XLP Product rating

Fuse Switch Disconnector	XLP00	XLP000	XLP1	XLP2
Rated voltage [V]	500	500	800	800
Rated current [A]	160	100	250	400
Utilization Category		AC22	В	
Number of Poles		3		

Table 1: Technical characteristics of XLP Fuse Switch Disconnectors (Refer Technical catalogue for complete details).

STATUS	SECURITY LEVEL	PEP ECOPASSPOR REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	ABBG-00132-V01.01-EN	1SCC311170D0201	A.002	en	5/18
© Copyright 2023 ABB. All rights reserved.						

Constituent Materials

XLP00

The representative product is XLP00 fuse switch disconnector which weighs 0.56 kg including its installed accessories, paper documentation and packaging.

Materials	Name	IEC 62474 MC	[g]	Weight %
	Polyamide (PA)	M-258	330.2	58.80%
Plastics	Polycarbonate (PC)	M-254	26.4	4.60%
Plastics	Polyethylene (PE)	M-251	4.3	0.80%
	PolyPropylene (PP)	M-252	0.9	0.20%
	Cu and CU alloys	M-121	81.9	14.60%
Metals	Zinc and its alloys	M-124	43.2	7.70%
	Steel	M-119	13.9	2.50%
Others	Paper / Cardboard	M-341	61.1	10.80%
Total			561.9	100%

Table 2: Weight of materials XLP00

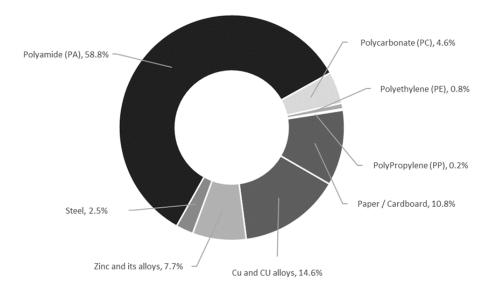


Figure 1: Composition of XLP00

Packaging for XLP00 weight the following substance composition.

Materials	Unit	XLP00
Corrugated Cardboard	g	54.6
Polyethylene	g	4.33
Polypropylene	g	0.68

Table 3: Weight of materials XLP00 - Packaging

Along the whole XLP00 product cluster a set of different build configurations have been covered by this analysis. Main differences consist of current rating and voltage. The LCA SimaPro model has been fully parametrized to fulfill each different configuration.

STATUS	SECURITY LEVEL	PEP ECOPASSPOR REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE
© Copyright 202	Public 3 ABB. All rights reserved.	ABBG-00132-V01.01-EN	1SCC311170D0201	A.002	en	6/18

Ē

LCA background information

Functional unit and Reference Flow

The functional unit is the reference unit used to quantify the performance of the service delivered by a product to the user. The main purpose of the functional unit is to provide a reference to which inputs and outputs are related in the LCA.

The functional unit to this study is a single Fuse switch disconnector which establishes, supports and interrupts for 20 years rated currents in normal conditions of circuit characterized by the current Ith, including any conditions specified for overload in operation characterized by the current le, for the operating voltage Ue.

Fuse Switch Disconnector	XLP00
Ue = Rated voltage (V)	500
Ith = Rated current in continuous operation	(A) 160
le = Overcurrent (A)	256

The Reference Flow of the study is a fuse witch disconnector (including its packaging and accessories) with mass described in table 3.

System boundaries and life cycle stages

The life cycle of the Fuse Switch Disconnector, an EEPS (Electronic and Electrical Products and Systems), is a "from cradle to grave" analysis and covers the following main life cycle stages: manufacturing, including the relevant acquisition of raw material, preparation of semi-finished goods, etc. and processing steps; distribution; installation, including the relevant steps for the preparation of the product for use; use including the required maintenance steps within the RSL (reference service life of the product) associated to the reference product; end-of-life stage, including the necessary steps until final disposal or recovery of the product system.

The following table shows the stages of the product life cycle and the information stages according to EN 50693:2019 [3] for the evaluation of electronic and electrical products and systems

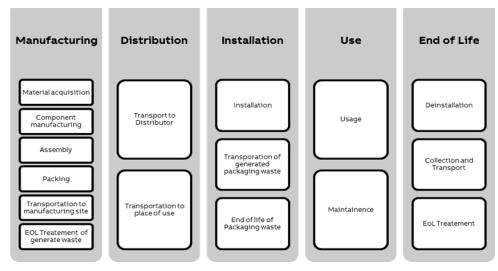


Table 4: Phases for the evaluation of construction products according to EN50693:2019 [3].

STATUS	SECURITY LEVEL	PEP ECOPASSPOR REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	ABBG-00132-V01.01-EN	1SCC311170D0201	A.002	en	7/18

Temporal and geographical boundaries

The ABB component suppliers are sourced within China. All primary data collected from ABB are from 2021, which is a representative production year. Secondary data are also representative for this year, as provided by Ecoinvent [6].

The selected Ecoinvent [6] processes in the LCA model have a global representativeness, Due to the unclear origin of each component. In this way, a conservative approach has been adopted.

Boundaries in the life cycle

As indicated in the PCR capital goods such as buildings, machinery, tools and infrastructure, the packaging for internal transport which cannot be allocated directly to the production of the reference product, may be excluded from the system boundary.

Infrastructures, when present, such as processes deriving from the ecoinvent [6] database have not been excluded.

Data quality

In this PEP, both primary and secondary data are used. Site specific foreground data have been provided by ABB. Main data sources are the bill of materials & drawings which are available on the ERP (SAP) & Windchill. For all processes for which primary are not available, generic data originating from the ecoinvent database [6], allocation cut-off by classification, are used. The ecoinvent database available in the SimaPro software [7] is used for the calculations.

The data quality characterized by quantitative and qualitative aspects, is presented in Appendix 1. Each data quality parameter has been rated according to DQR tables from Chapter 7.19.2.2 of the Product Environmental Footprint Guide v.6.3 to give an indication of geography, technology and temporal representativeness.

Environmental impact indicators

The information obtained from the inventory analysis is aggregated according to the effects related to the various environmental issues. According to "PCR-ed4-EN-2021 09 06" and EN 50693 [3] the environmental impact indicators must be determined using the characterization factors and impact assessment methods specified in EN 15804:2012+A2:2019 [8].

PCR-ed4-EN-2021 09 06 and the EN 50693:2019 [3] standard establish four indicators for climate change: Climate change (total) which includes all greenhouse gases; Climate change (fossil fuels); Climate change (biogenic) which includes the emissions and absorption of biogenic carbon dioxide and biogenic carbon stored in the product; Climate change (land use) - land use and land use transformation. Other indicators as per the PCR [1].

© Copyright 2023 ABB. All rights reserved.						
Approved	Public	ABBG-00132-V01.01-EN	1SCC311170D0201	A.002	en	8/18
STATUS	SECURITY LEVEL	PEP ECOPASSPOR REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE

Allocation rules

An allocation key is used for consumptions related to the manufacturing process in the production site, as well for company waste. Since the factory produces several products (different ACB, MCCB, Fusegear and Contactor products) only a part of the environmental impact has been allocated to the XLP production line.

All these flows have been allocated and divided by the total number of XLP Fuse Switch Disconnectors produced in 2021.

Limitations and simplifications

Raw materials life cycle stage includes the extraction of raw materials as well as the transport distances to the manufacturing suppliers. These distances are assumed to be 1000 km assuming no specific data available (PCR-ed4-EN-2021_09_06, ch 2.5.3). This distance has been added to the one already included in the market processes used for the model, as a result of a conservative choice made by the LCA operators.

Application of grease lubricant on the Fuse Switch Disconnector operating mechanism has been excluded since it is negligible. Surface treatments like galvanizing, tin and silver plating as well as their related transport processes (back and forth from the finishing suppliers) have been considered in the LCA model. Scraps for metal working and plastic processes are included when already defined in Ecoinvent [6].

Printed circuit boards (PCB) have been modelled with a representative cluster dataset including: every single component, the unpopulated board as well as the surface mounting technology (SMD) process. For some components with no equivalent on ecoinvent database [6], the dataset "Electronic component, passive, unspecified {GLO}| market for | Cut-off, S" was used.

LCA Stage	EN 15804:2012 +A2:2019 module	Energy model	Notes
Raw material extrac- tion and processing	A1-A2	Electricity, {RoW} market group for Cut-off Electricity, {GLO} market group for Cut-off	Based on materials and supplier's locations
Manufacturing	A3	ABB Green Mix Low Volt- age	Specific Energy model for ABB Xiamen, manufacturing plant, 100% renewable
Installation (Packaging EoL)	A5	Electricity, {GLO} market group for Cut-off	
Use Stage	B1	Electricity, [country]x market for Cut-off, S **	Low voltage, based on 2021 country sales mix
EoL	C1-C4	Electricity, {GLO} market group for Cut-off	

Energy Models

Table 5: Energy models used in each LCA stage

STATUS	SECURITY LEVEL	PEP ECOPASSPOR REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	ABBG-00132-V01.01-EN	1SCC311170D0201	A.002	en	9/18
© Copyright 202	3 ABB. All rights reserved.					

ſ	<	
l		
L		

Inventory analysis

In this PEP, both primary and secondary data are used. Site specific foreground data have been provided by ABB. For data collection, Bills of Material (BOM) extracted from ABB's internal SAP and Windchill ERP were used. They are a list of all the components and assemblies that constitute the finished product, organized by hierarchy level. Each item is matched with its code, quantity, weight and supplier. The BOMs were then processed, adding material, surface area, volume and weight data, taken from technical drawings/datasheets. Finally, the manufacturing process and surface treatment were assigned, according to information provided by R&D personnel. Road distances between the suppliers and ABB were calculated using Google Maps, and marine distances using Distances & Time (Searates).

All primary data collected from ABB are from 2021, which was a representative production year. The ecoinvent cut-off by classification system processes [6] are used to represent the LCA model

To improve both the inventory and modelling phase of the product, a specific modular dataset framework has been adopted. Raw materials and Manufacturing processes datasets from Ecoinvent database [6] have been clustered and listed inside two distinct mater data tables ABB Raw Materials and ABB Materials & Processes. Data used in the analysis is not older than 10 years.

Manufacturing stage

The Fuse Switch Disconnectors are composed of a multitude of components, all of which are made from of numerous materials. Most of the inputs to the products' manufacturing stage are already produced component parts.

All the fuse switch disconnector's components have been modelled according to their specific raw materials and manufacturing processes.

The single use packaging as well as paper documentation are also included in the analysis in the manufacturing stage. ABB receives unpackaged product from supplier, sorts, packs and delivers to the customer according to the orders.

Most of the inputs to the products' manufacturing stage are already produced component parts from the supply chain.

The entire supplier's network has been modelled with the calculation of each transportation stage, from the first manufacturing supplier to the next.

All the distances from the last subassembly suppliers' factories to the ABB facility have been calculated.

The energy mix used for the production phase is representative for ABB production site and includes renewable energy only.

The complete energy mix has been modelled considering the documents on energy origins provided to ABB for the year 2021.

STATUS	SECURITY LEVEL	PEP ECOPASSPOR REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	ABBG-00132-V01.01-EN	1SCC311170D0201	A.002	en	10/18
@ Convright 202	3 ABB All rights reserved					

Distribution

The transport distances from ABB manufacturing plant to the distribution centers (regional distribution centers / local sales organizations) have been calculated considering the specific 2021 sales mix data for XLP product cluster (SAP ERP sales data as a source). The Distribution mix is representative of entire product cluster including reference product and products listed in the extrapolation tables.

The other parameter affecting the environmental impact for this LCA stage is the total mass of the product (including its packaging). Different mass values for each specific configuration covered by this study have been considered in the model.

As per PSR, additional distance of 1000km is considered to account for the last mile delivery distance

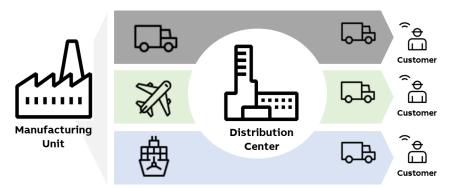


Figure 2: Distribution methodology.

Installation

The installation phase only implies manual activities, and no energy is consumed. This phase also includes the disposal of the packaging of the Fuse switch Disconnector.

For the disposal of the packaging after installation of the product at the end of its life, a transport distance of 1000 km (according to PCR [1]) was assumed.

The actual disposal site is unknown and is managed by the customer. The disposal scenario of the packaging was calculated based on the latest China Materials Recycling Association data available.

STATUS	SECURITY LEVEL	PEP ECOPASSPOR REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	ABBG-00132-V01.01-EN	1SCC311170D0201	A.002	en	11/18
© Copyright 2023	ABB. All rights reserved.					

Use

Use and maintenance are modelled according to the PCR [1].

During the use phase, XLP Fuse Switch Disconnectors dissipate some electricity due to power losses. They are calculated according to the data provided in the catalogue of the fuse switch disconnector and following the PCR [1] & PSR [2] rules:

Parameters		
In	[A]	160
In	[%]	50
h/year	[h]	8760
RSL	[years]	20
Time operating coefficient	[%]	30

Table 6: Use phase parameters

The formula for the calculation of the electricity consumed is shown below and it is described as follows, where P_{use} is the power consumed by the switch at a given value of current:

$$E_{use} [kWh] = \frac{P_{use} * 8760 * RSL * \alpha}{1000}$$

The above calculations have been performed according to the number of poles (3) on which relevant current flows during use phase.

The Energy model used for this phase was built based on the 2021 actual sales mix data for the specific XLP product (SAP ERP sales data as a source). This approach has been taken since this list of countries will be the most representative also for the other products listed in the extrapolation tables.

From Ecoinvent [6] database, the low voltage electricity country mix for each country(x) has been selected with its respective percentage on the total sales mix (Electricity, low voltage [country]x | market for | Cut-off, S).

Since no maintenance happens during the use phase, the environmental impacts linked to this procedure have been considered as null in the analysis.

End of life

The end-of-life stage is modelled according to PCR [1] and IEC/TR 62635 [9]. The percentages for end-of-life treatments of materials are taken from IEC/TR 62635 [9].

Since no specific data is available, the transport distances from the place of use to the place of disposal are assumed to be 1000 km (local/domestic transport by lorry, according to PCR [1]).

© Copyright 2023 ABB. All rights reserved.						
Approved	Public	ABBG-00132-V01.01-EN	1SCC311170D0201	A.002	en	12/18
STATUS	SECURITY LEVEL	PEP ECOPASSPOR REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE

₽

Environmental impacts

XLP00

The following table show the environmental impact indicators of the life cycle of a single XLP00 Fuse Switch Disconnector, as indicated by PCR [1] and EN 50693:2019 [3]. The indicators are divided into the contribution of the processes to the different stages (manufacturing, distribution, installation, use and end-of-life).

GWP-total kg CO2 eq 1.58E+02 4.94E+00 1.62E-01 4.96E-02 1.52E+02 1.19E-01 GWP-fossil kg CO2 eq 6.34E-01 -3.72E-04 1.25E-04 3.88E-02 5.92E-01 3.03E-03 GWP-luluc kg CO2 eq 6.34E-01 -3.72E-04 1.25E-04 3.88E-02 5.92E-01 3.03E-03 GWP-luluc kg CO2 eq 2.27E-02 3.30E-03 6.08E-05 2.39E-06 1.93E-02 7.03E-05 ODP kg CPC11 eq 1.08E-06 2.28E-07 3.67E-08 1.34E-09 7.97E-07 1.19E-08 AP mol H+ eq 8.58E-01 5.56E-02 8.23E-04 3.58E-05 8.01E-01 6.27E-04 EP-marine kg N eq 1.79E-01 2.17E-04 1.82E-03 1.38E-04 1.80E+00 1.47E-03 POCP kg NMVOC eq 4.90E-01 2.14E-02 9.09E-04 3.96E-05 4.68E-01 4.27E-04 MDP-mam kg Sb eq 4.53E-03 4.07E-03 3.72E-07 1.51E-08 4.58E-04 1.33E+00	Impact category	Unit	Total	Manuf	Distr	Install	Use	EoL
GWP-biogenic kg CO2 eq 6.34E-01 -3.72E-04 1.25E-04 3.88E-02 5.92E-01 3.03E-03 GWP-luluc kg CO2 eq 2.27E-02 3.30E-03 6.08E-05 2.39E-06 1.93E-02 7.03E-05 ODP kg CPC11 eq 1.08E-06 2.28E-07 3.67E-08 1.34E-09 7.97E-07 1.19E-08 AP molH+eq 8.58E-01 5.56E-02 8.23E-04 3.58E-05 8.01E-01 6.25E-04 EP-freshwater kg P eq 3.26E-02 4.21E-03 1.18E-05 5.08E-07 2.84E-02 2.56E-05 EP-marine kg Neq 1.79E-01 9.05E-03 2.37E-04 1.41E-05 1.69E-01 1.77E-04 EP-trestrial mol N eq 4.90E-01 2.14E-02 3.07E-07 1.51E-08 4.58E-04 3.27E-03 POCP kg NMVOC eq 4.90E-01 2.49E+00 9.18E-02 1.34E+03 1.33E+00 WDP m3 2.04E+01 4.68E+00 9.64E-03 1.26E-03 1.57E+01 9.23E-03 PENR	GWP-total	kg CO2 eq	1.58E+02	4.94E+00	1.62E-01	4.96E-02	1.53E+02	1.19E-01
GWP-luluc kg CO2 eq 2.27E-02 3.30E-03 6.08E-05 2.39E-06 1.93E-02 7.03E-05 ODP kg CFC11 eq 1.08E-06 2.28E-07 3.67E-08 1.34E-09 7.97E-07 1.19E-08 AP mol H+ eq 8.58E-01 5.56E-02 8.23E-04 3.58E-05 8.01E-01 6.25E-04 EP-freshwater kg P eq 3.26E-02 4.21E-03 1.18E-05 5.08E-07 2.84E-02 2.56E-05 EP-marine kg N eq 1.79E-01 9.05E-03 2.77E-04 1.41E-05 1.69E-01 1.77E-04 EP-terrestrial mol N eq 1.89E+00 8.10E-02 3.05E-03 1.38E-04 1.80E+00 1.47E-03 POCP kg NWOC eq 4.90E-01 2.14E-02 9.09E-04 3.96E-03 1.57E+01 3.32E+03 MDP-m8m kg Sb eq 4.53E-03 4.07E+03 3.72E+07 1.51E-08 4.58E+04 1.33E+00 WDP m3 2.04E+01 4.68E+00 9.08E+02 1.34E+03 1.33E+00 9.08E+02 1.34E+03	GWP-fossil	kg CO2 eq	1.57E+02	4.94E+00	1.62E-01	1.08E-02	1.52E+02	1.15E-01
ODP kg CFC11 eq mol H+ eq 1.08E-06 2.28E-07 3.67E-08 1.34E-09 7.97E-07 1.19E-08 AP mol H+ eq 8.58E-01 5.56E-02 8.23E-04 3.58E-05 8.01E-01 6.25E-04 EP-freshwater kg P eq 3.26E-02 4.21E-03 1.18E-05 5.08E-07 2.84E-02 2.56E-05 EP-marine kg N eq 1.77E-01 9.05E-03 2.79E-04 1.41E-05 1.69E-01 1.77E-04 EP-terrestrial mol N eq 1.89E+00 8.10E-02 3.05E-05 4.68E-01 4.27E-04 ADP-m& kg Sb eq 4.53E-03 4.07E-03 3.72E-07 1.51E-08 4.58E-04 1.30E-07 ADP-fossil MJ 1.42E+03 7.20E+01 2.49E+00 9.18E-02 1.34E+03 1.33E+00 WDP m3 2.04E+01 4.68E+00 9.64E-03 1.32E+03 1.33E+00 PENRE MJ 1.41E+03 6.29E+01 2.49E+00 9.18E-02 1.34E+03 1.33E+00 PENRM MJ 0.	GWP-biogenic	kg CO2 eq	6.34E-01	-3.72E-04	1.25E-04	3.88E-02	5.92E-01	3.03E-03
AP mol H+ eq 8.58E-01 5.56E-02 8.23E-04 3.58E-05 8.01E-01 6.25E-04 EP-freshwater kg P eq 3.26E-02 4.21E-03 1.18E-05 5.08E-07 2.84E-02 2.56E-05 EP-marine kg N eq 1.79E-01 9.05E-03 2.79E-04 1.41E-05 1.69E-01 1.77E-04 EP-terrestrial mol N eq 1.89E+00 8.10E-02 3.05E-03 3.96E-04 3.86E-04 1.80E+00 1.47E-03 POCP kg NMVOC eq 4.90E-01 2.14E-03 3.72E-07 1.51E-08 4.58E-04 1.30E-07 ADP-fossil MJ 1.42E+03 7.20E+01 2.49E+00 9.18E-02 1.34E+03 1.33E+00 WDP m3 2.04E+01 4.68E+00 9.08E+02 1.34E+03 1.33E+00 PENRE MJ 1.41E+03 6.29E+01 2.49E+00 9.18E-02 1.34E+03 1.33E+00 PENRT MJ 1.42E+03 7.20E+01 2.49E+00 9.08E-02 1.34E+03 1.33E+00 PERR	GWP-luluc	kg CO2 eq	2.27E-02	3.30E-03	6.08E-05	2.39E-06	1.93E-02	7.03E-05
EP-freshwater kg P eq 3.26E-02 4.21E-03 1.18E-05 5.08E-07 2.84E-02 2.56E-05 EP-marine kg N eq 1.79E-01 9.05E-03 2.79E-04 1.41E-05 1.69E-01 1.77E-04 EP-terrestrial mol N eq 1.89E+00 8.10E-02 3.05E-03 1.38E-04 1.80E+00 1.47E-03 POCP kg NMVOC eq 4.00E-01 2.14E-02 9.09E-04 3.96E-05 4.68E-01 4.27E-04 ADP-m&m kg Sb eq 4.53E-03 4.07E-03 3.72E-07 1.51E-08 4.58E-04 1.30E+00 MDP m3 2.04E+01 4.68E+00 9.64E+03 1.26E+03 1.57E+01 9.23E-03 PENRE MJ 1.41E+03 6.29E+01 2.49E+00 9.18E-02 1.34E+03 1.33E+00 PENRM MJ 9.08E+00 9.08E+00 9.00E+00 0.00E+00	ODP	kg CFC11 eq	1.08E-06	2.28E-07	3.67E-08	1.34E-09	7.97E-07	1.19E-08
EP-marine kg N eq 1.79E-01 9.05E-03 2.79E-04 1.41E-05 1.69E-01 1.77E-04 EP-terrestrial mol N eq 1.89E+00 8.10E-02 3.05E-03 1.38E-04 1.80E+00 1.47E-03 POCP kg MWVOC eq 4.90E-01 2.14E-02 9.09E-04 3.96E-05 4.68E-01 4.27E-04 ADP-m&m kg Sb eq 4.53E-03 4.07E-03 3.72E-07 1.51E-08 4.58E-04 1.30E-07 ADP-fossil MJ 1.42E+03 7.20E+01 2.49E+00 9.18E-02 1.34E+03 1.33E+00 WDP m3 2.04E+01 4.68E+00 9.64E-03 1.26E-03 1.37E+01 9.23E-03 PENRE MJ 1.41E+03 6.29E+01 2.49E+00 9.18E-02 1.34E+03 1.33E+00 PENRT MJ 1.42E+03 7.20E+01 2.49E+00 9.18E-02 1.34E+03 1.33E+00 PERM MJ 1.42E+03 7.20E+01 2.49E+00 9.08E-02 1.38E+02 9.05E-02 PERT <	AP	mol H+ eq	8.58E-01	5.56E-02	8.23E-04	3.58E-05	8.01E-01	6.25E-04
EP-terrestrial mol N eq 1.89E+00 8.10E-02 3.05E-03 1.38E-04 1.80E+00 1.47E-03 POCP kg NMVOC eq 4.90E-01 2.14E-02 9.09E-04 3.96E-05 4.68E-01 4.27E-04 ADP-m&m kg Sb eq 4.53E-03 4.07E-03 3.72E-07 1.51E-08 4.58E-04 1.30E-07 ADP-fossil MJ 1.42E+03 7.20E+01 2.49E+00 9.18E-02 1.34E+03 1.33E+00 WDP m3 2.04E+01 4.68E+00 9.64E-03 1.26E-03 1.57E+01 9.23E-03 PENRE MJ 1.41E+03 6.29E+01 2.49E+00 9.08E+02 1.34E+03 1.33E+00 PENRT MJ 1.42E+03 7.20E+01 2.49E+00 9.08E+02 1.34E+03 1.33E+00 PERE MJ 1.42E+03 7.20E+01 2.49E+00 9.08E+02 1.34E+03 1.33E+00 PERT MJ 1.02E+00 1.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00	EP-freshwater	kg P eq	3.26E-02	4.21E-03	1.18E-05	5.08E-07	2.84E-02	2.56E-05
POCP kg NMVOC eq 4.90E-01 2.14E-02 9.09E-04 3.96E-05 4.68E-01 4.27E-04 ADP-m&m kg Sb eq 4.53E-03 4.07E-03 3.72E-07 1.51E-08 4.58E-04 1.30E-07 ADP-fossil MJ 1.42E+03 7.20E+01 2.49E+00 9.18E-02 1.34E+03 1.33E+00 WDP m3 2.04E+01 4.68E+00 9.64E-03 1.26E-03 1.57E+01 9.23E-03 PENRE MJ 1.41E+03 6.29E+01 2.49E+00 9.18E-02 1.34E+03 1.33E+00 PENRM MJ 9.08E+00 9.00E+00 0.00E+00	EP-marine	kg N eq	1.79E-01	9.05E-03	2.79E-04	1.41E-05	1.69E-01	1.77E-04
ADP-m&m kg Sb eq 4.53E-03 4.07E-03 3.72E-07 1.51E-08 4.58E-04 1.30E-07 ADP-fossil MJ 1.42E+03 7.20E+01 2.49E+00 9.18E-02 1.34E+03 1.33E+00 WDP m3 2.04E+01 4.68E+00 9.64E-03 1.26E-03 1.57E+01 9.23E-03 PENRE MJ 1.41E+03 6.29E+01 2.49E+00 9.18E-02 1.34E+03 1.33E+00 PENRM MJ 9.08E+00 9.08E+00 0.00E+00 0.00E+00 0.00E+00 PENRT MJ 1.42E+03 7.20E+01 2.49E+00 9.18E-02 1.34E+03 1.33E+00 PERE MJ 1.42E+03 7.20E+01 2.49E+00 9.18E-02 1.34E+03 1.33E+00 PERE MJ 1.42E+03 7.20E+01 2.49E+00 9.18E-02 1.34E+03 1.33E+00 PERE MJ 1.44E+02 5.63E+00 2.76E-02 1.18E-03 1.38E+02 9.05E-02 SM kg 5.05E-02 0.00E+00	EP-terrestrial	mol N eq	1.89E+00	8.10E-02	3.05E-03	1.38E-04	1.80E+00	1.47E-03
ADP-fossilMJ1.42E+037.20E+012.49E+009.18E-021.34E+031.33E+00WDPm32.04E+014.68E+009.64E-031.26E-031.57E+019.23E-03PENREMJ1.41E+036.29E+012.49E+009.18E-021.34E+031.33E+00PENRMMJ9.08E+009.08E+000.00E+000.00E+000.00E+000.00E+00PENRTMJ1.42E+037.20E+012.49E+009.18E-021.34E+031.33E+00PEREMJ1.43E+024.61E+002.76E-021.18E-031.38E+029.05E-02PERMMJ1.02E+001.02E+000.00E+000.00E+000.00E+000.00E+00PERTMJ1.44E+025.63E+002.76E-021.18E-031.38E+029.05E-02SMkg5.05E-025.05E-020.00E+000.00E+000.00E+000.00E+00RSFMJ0.00E+000.00E+000.00E+000.00E+000.00E+00NRSFMJ0.00E+000.00E+000.00E+000.00E+000.00E+00FWm35.36E-011.53E-013.13E-013.14E-053.82E-013.79E-04HWDkg7.14E-044.53E-046.12E-062.27E-072.53E-041.91E-06N-HWDkg1.33E+015.26E-012.31E-011.01E-021.24E+019.35E-02RWDkg5.39E-013.46E-020.00E+000.00E+000.00E+004.73E-01MfRkg5.39E-01<	POCP	kg NMVOC eq	4.90E-01	2.14E-02	9.09E-04	3.96E-05	4.68E-01	4.27E-04
WDP m3 2.04E+01 4.68E+00 9.64E-03 1.26E-03 1.57E+01 9.23E-03 PENRE MJ 1.41E+03 6.29E+01 2.49E+00 9.18E-02 1.34E+03 1.33E+00 PENRM MJ 9.08E+00 9.08E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 PENRT MJ 1.42E+03 7.20E+01 2.49E+00 9.18E-02 1.34E+03 1.33E+00 PERE MJ 1.43E+02 4.61E+00 2.76E-02 1.18E-03 1.38E+02 9.05E-02 PERM MJ 1.02E+00 1.02E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 PERT MJ 1.44E+02 5.63E+00 2.76E-02 1.18E+03 1.38E+02 9.05E+02 SM kg 5.05E+02 5.05E+02 0.00E+00	ADP-m&m	kg Sb eq	4.53E-03	4.07E-03	3.72E-07	1.51E-08	4.58E-04	1.30E-07
PENRE MJ 1.41E+03 6.29E+01 2.49E+00 9.18E-02 1.34E+03 1.33E+00 PENRM MJ 9.08E+00 9.08E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 PENRT MJ 1.42E+03 7.20E+01 2.49E+00 9.18E-02 1.34E+03 1.33E+00 PERE MJ 1.43E+02 4.61E+00 2.76E-02 1.18E-03 1.38E+02 9.05E-02 PERM MJ 1.02E+00 1.02E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 PERT MJ 1.44E+02 5.63E+00 2.76E-02 1.18E-03 1.38E+02 9.05E-02 SM kg 5.05E-02 0.00E+00 0.	ADP-fossil	MJ	1.42E+03	7.20E+01	2.49E+00	9.18E-02	1.34E+03	1.33E+00
PENRM MJ 9.08E+00 9.08E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 PENRT MJ 1.42E+03 7.20E+01 2.49E+00 9.18E-02 1.34E+03 1.33E+00 PERE MJ 1.43E+02 4.61E+00 2.76E-02 1.18E-03 1.38E+02 9.05E-02 PERM MJ 1.02E+00 1.02E+00 0.00E+00 0.00E+00 0.00E+00 PERT MJ 1.44E+02 5.63E+00 2.76E-02 1.18E-03 1.38E+02 9.05E-02 SM kg 5.05E-02 5.05E-02 0.00E+00 <td>WDP</td> <td>m3</td> <td>2.04E+01</td> <td>4.68E+00</td> <td>9.64E-03</td> <td>1.26E-03</td> <td>1.57E+01</td> <td>9.23E-03</td>	WDP	m3	2.04E+01	4.68E+00	9.64E-03	1.26E-03	1.57E+01	9.23E-03
PENRTMJ1.42E+037.20E+012.49E+009.18E-021.34E+031.33E+00PEREMJ1.43E+024.61E+002.76E-021.18E-031.38E+029.05E-02PERMMJ1.02E+001.02E+000.00E+000.00E+000.00E+000.00E+00PERTMJ1.44E+025.63E+002.76E-021.18E-031.38E+029.05E-02SMkg5.05E-025.05E-020.00E+000.00E+000.00E+000.00E+00RSFMJ0.00E+000.00E+000.00E+000.00E+000.00E+00NRSFMJ0.00E+000.00E+000.00E+000.00E+000.00E+00FWm35.36E-011.53E-013.13E-044.21E-053.82E-013.79E-04HWDkg7.14E-044.53E-046.12E-062.27E-072.53E-041.91E-06N-HWDkg1.33E+015.26E-012.31E-011.01E-021.24E+019.35E-02RWDkg9.13E-041.17E-041.65E-055.81E-077.72E-046.21E-06MfRkg3.02E-020.00E+000.00E+002.00E+004.73E-01MfERkg3.02E-020.00E+000.00E+002.60E-020.00E+004.22E-03Efpdisease inc.1.16E-053.33E-071.91E-087.14E-101.12E-051.10E-08IrHHkBqU-235 eq2.92E+003.46E-011.17E-024.22E-042.56E+007.97E-03ETX FWCTUe4.51E+03 <td< td=""><td>PENRE</td><td>MJ</td><td>1.41E+03</td><td>6.29E+01</td><td>2.49E+00</td><td>9.18E-02</td><td>1.34E+03</td><td>1.33E+00</td></td<>	PENRE	MJ	1.41E+03	6.29E+01	2.49E+00	9.18E-02	1.34E+03	1.33E+00
PEREMJ1.43E+024.61E+002.76E-021.18E-031.38E+029.05E-02PERMMJ1.02E+001.02E+000.00E+000.00E+000.00E+000.00E+00PERTMJ1.44E+025.63E+002.76E-021.18E-031.38E+029.05E-02SMkg5.05E-025.05E-020.00E+000.00E+000.00E+000.00E+00RSFMJ0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00NRSFMJ0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00FWm35.36E-011.53E-013.13E-044.21E-053.82E-013.79E-04HWDkg7.14E-044.53E-046.12E-062.27E-072.53E-041.91E-06N-HWDkg9.13E-041.17E-041.65E-055.81E-077.72E-046.21E-06MFRkg3.02E-020.00E+000.00E+000.00E+003.14E-020.00E+004.22E-03MfERkg3.02E-020.00E+000.00E+002.60E-020.00E+004.22E-03Efpdisease inc.1.16E-053.33E-071.91E-087.14E-101.12E-051.10E-08IrHHkBq U-235 eq2.92E+003.46E-011.17E-024.22E-042.56E+007.97E-03ETX FWCTUe4.51E+035.65E+022.09E+001.22E-013.94E+032.23E+00HTX N-CECTUh5.24E-081.40E-085.43E-114.26E-123.82E-08	PENRM	MJ	9.08E+00	9.08E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PERMMJ1.02E+001.02E+000.00E+000.00E+000.00E+000.00E+00PERTMJ1.44E+025.63E+002.76E-021.18E-031.38E+029.05E-02SMkg5.05E-025.05E-020.00E+000.00E+000.00E+000.00E+00RSFMJ0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00NRSFMJ0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00FWm35.36E-011.53E-013.13E-044.21E-053.82E-013.79E-04HWDkg7.14E-044.53E-046.12E-062.27E-072.53E-041.91E-06N-HWDkg1.33E+015.26E-012.31E-011.01E-021.24E+019.35E-02RWDkg9.13E-041.17E-041.65E-055.81E-077.72E-046.21E-06MfRkg5.39E-013.46E-020.00E+003.14E-020.00E+004.73E-01MfRkg3.02E-020.00E+000.00E+002.60E-020.00E+004.22E-03Efpdisease inc.1.16E-053.33E-071.91E-087.14E-101.12E-051.10E-08IrHHkBq U-235 eq2.92E+003.46E-011.17E-024.22E-042.56E+007.97E-03ETX FWCTUe4.51E+035.65E+022.09E+001.22E-013.94E+032.23E+00HTX N-CECTUh5.24E-081.40E-085.43E-114.26E-123.82E-081.50E-10 </td <td>PENRT</td> <td>MJ</td> <td>1.42E+03</td> <td>7.20E+01</td> <td>2.49E+00</td> <td>9.18E-02</td> <td>1.34E+03</td> <td>1.33E+00</td>	PENRT	MJ	1.42E+03	7.20E+01	2.49E+00	9.18E-02	1.34E+03	1.33E+00
PERTMJ1.44E+025.63E+002.76E-021.18E-031.38E+029.05E-02SMkg5.05E-025.05E-020.00E+000.00E+000.00E+000.00E+000.00E+00RSFMJ0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00NRSFMJ0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00FWm35.36E-011.53E-013.13E-044.21E-053.82E-013.79E-04HWDkg7.14E-044.53E-046.12E-062.27E-072.53E-041.91E-06N-HWDkg1.33E+015.26E-012.31E-011.01E-021.24E+019.35E-02RWDkg9.13E-041.17E-041.65E-055.81E-077.72E-046.21E-06MfRkg5.39E-013.46E-020.00E+003.14E-020.00E+004.73E-01MfERkg3.02E-020.00E+000.00E+002.60E-020.00E+004.22E-03Efpdisease inc.1.16E-053.33E-071.91E-087.14E-101.12E-051.10E-08IrHHkBq U-235 eq2.92E+003.46E-011.17E-024.22E-042.56E+007.97E-03ETX FWCTUe4.51E+035.65E+022.09E+001.22E-013.94E+032.23E+00HTX CECTUh5.24E-081.40E-085.43E-114.26E-123.82E-081.50E-10HTX N-CECTUh3.96E-062.28E-062.16E-091.72E	PERE	MJ	1.43E+02	4.61E+00	2.76E-02	1.18E-03	1.38E+02	9.05E-02
SMkg5.05E-025.05E-020.00E+000.00E+000.00E+000.00E+00RSFMJ0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00NRSFMJ0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00FWm35.36E-011.53E-013.13E-044.21E-053.82E-013.79E-04HWDkg7.14E-044.53E-046.12E-062.27E-072.53E-041.91E-06N-HWDkg1.33E+015.26E-012.31E-011.01E-021.24E+019.35E-02RWDkg9.13E-041.17E-041.65E-055.81E-077.72E-046.21E-06MfRkg5.39E-013.46E-020.00E+003.14E-020.00E+004.73E-01MfERkg3.02E-020.00E+000.00E+002.60E-020.00E+004.22E-03Efpdisease inc.1.16E-053.33E-071.91E-087.14E-101.12E-051.10E-08IrHHkBq U-235 eq2.92E+003.46E-011.17E-024.22E-042.56E+007.97E-03ETX FWCTUe4.51E+035.65E+022.09E+001.22E-013.94E+032.23E+00HTX CECTUh5.24E-081.40E-085.43E-114.26E-123.82E-081.50E-10HTX N-CECTUh3.96E-062.28E-062.16E-091.72E-101.67E-069.12E-09	PERM	MJ	1.02E+00	1.02E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
RSFMJ0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00NRSFMJ0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00FWm35.36E-011.53E-013.13E-044.21E-053.82E-013.79E-04HWDkg7.14E-044.53E-046.12E-062.27E-072.53E-041.91E-06N-HWDkg1.33E+015.26E-012.31E-011.01E-021.24E+019.35E-02RWDkg9.13E-041.17E-041.65E-055.81E-077.72E-046.21E-06MfRkg5.39E-013.46E-020.00E+003.14E-020.00E+004.73E-01MfERkg3.02E-020.00E+000.00E+002.60E-020.00E+004.22E-03Efpdisease inc.1.16E-053.33E-071.91E-087.14E-101.12E-051.10E-08IrHHkBq U-235 eq2.92E+003.46E-011.17E-024.22E-042.56E+007.97E-03ETX FWCTUe4.51E+035.65E+022.09E+001.22E-013.94E+032.23E+00HTX CECTUh5.24E-081.40E-085.43E-114.26E-123.82E-081.50E-10HTX N-CECTUh3.96E-062.28E-062.16E-091.72E-101.67E-069.12E-09	PERT	MJ	1.44E+02	5.63E+00	2.76E-02	1.18E-03	1.38E+02	9.05E-02
NRSFMJ0.00E+000.00E+000.00E+000.00E+000.00E+000.00E+00FWm35.36E-011.53E-013.13E-044.21E-053.82E-013.79E-04HWDkg7.14E-044.53E-046.12E-062.27E-072.53E-041.91E-06N-HWDkg1.33E+015.26E-012.31E-011.01E-021.24E+019.35E-02RWDkg9.13E-041.17E-041.65E-055.81E-077.72E-046.21E-06MfRkg5.39E-013.46E-020.00E+003.14E-020.00E+004.73E-01MfERkg3.02E-020.00E+000.00E+002.60E-020.00E+004.22E-03Efpdisease inc.1.16E-053.33E-071.91E-087.14E-101.12E-051.10E-08IrHHkBq U-235 eq2.92E+003.46E-011.17E-024.22E-042.56E+007.97E-03ETX FWCTUe4.51E+035.65E+022.09E+001.22E-013.94E+032.23E+00HTX CECTUh5.24E-081.40E-085.43E-114.26E-123.82E-081.50E-10HTX N-CECTUh3.96E-062.28E-062.16E-091.72E-101.67E-069.12E-09	SM	kg	5.05E-02	5.05E-02	0.00E+00	0.00E+00	0.00E+00	0.00E+00
FWm35.36E-011.53E-013.13E-044.21E-053.82E-013.79E-04HWDkg7.14E-044.53E-046.12E-062.27E-072.53E-041.91E-06N-HWDkg1.33E+015.26E-012.31E-011.01E-021.24E+019.35E-02RWDkg9.13E-041.17E-041.65E-055.81E-077.72E-046.21E-06MfRkg5.39E-013.46E-020.00E+003.14E-020.00E+004.73E-01MfERkg3.02E-020.00E+000.00E+002.60E-020.00E+004.22E-03Efpdisease inc.1.16E-053.33E-071.91E-087.14E-101.12E-051.10E-08IrHHkBq U-235 eq2.92E+003.46E-011.17E-024.22E-042.56E+007.97E-03ETX FWCTUe4.51E+035.65E+022.09E+001.22E-013.94E+032.23E+00HTX CECTUh5.24E-081.40E-085.43E-114.26E-123.82E-081.50E-10HTX N-CECTUh3.96E-062.28E-062.16E-091.72E-101.67E-069.12E-09	RSF	МЈ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
HWDkg7.14E-044.53E-046.12E-062.27E-072.53E-041.91E-06N-HWDkg1.33E+015.26E-012.31E-011.01E-021.24E+019.35E-02RWDkg9.13E-041.17E-041.65E-055.81E-077.72E-046.21E-06MfRkg5.39E-013.46E-020.00E+003.14E-020.00E+004.73E-01MfERkg3.02E-020.00E+000.00E+002.60E-020.00E+004.22E-03Efpdisease inc.1.16E-053.33E-071.91E-087.14E-101.12E-051.10E-08IrHHkBq U-235 eq2.92E+003.46E-011.17E-024.22E-042.56E+007.97E-03ETX FWCTUe4.51E+035.65E+022.09E+001.22E-013.94E+032.23E+00HTX CECTUh5.24E-081.40E-085.43E-114.26E-123.82E-081.50E-10HTX N-CECTUh3.96E-062.28E-062.16E-091.72E-101.67E-069.12E-09	NRSF	МЈ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
N-HWDkg1.33E+015.26E-012.31E-011.01E-021.24E+019.35E-02RWDkg9.13E-041.17E-041.65E-055.81E-077.72E-046.21E-06MfRkg5.39E-013.46E-020.00E+003.14E-020.00E+004.73E-01MfERkg3.02E-020.00E+000.00E+002.60E-020.00E+004.22E-03Efpdisease inc.1.16E-053.33E-071.91E-087.14E-101.12E-051.10E-08IrHHkBq U-235 eq2.92E+003.46E-011.17E-024.22E-042.56E+007.97E-03ETX FWCTUe4.51E+035.65E+022.09E+001.22E-013.94E+032.23E+00HTX CECTUh5.24E-081.40E-085.43E-114.26E-123.82E-081.50E-10HTX N-CECTUh3.96E-062.28E-062.16E-091.72E-101.67E-069.12E-09	FW	m3	5.36E-01	1.53E-01	3.13E-04	4.21E-05	3.82E-01	3.79E-04
RWDkg9.13E-041.17E-041.65E-055.81E-077.72E-046.21E-06MfRkg5.39E-013.46E-020.00E+003.14E-020.00E+004.73E-01MfERkg3.02E-020.00E+000.00E+002.60E-020.00E+004.22E-03Efpdisease inc.1.16E-053.33E-071.91E-087.14E-101.12E-051.10E-08IrHHkBq U-235 eq2.92E+003.46E-011.17E-024.22E-042.56E+007.97E-03ETX FWCTUe4.51E+035.65E+022.09E+001.22E-013.94E+032.23E+00HTX CECTUh5.24E-081.40E-085.43E-114.26E-123.82E-081.50E-10HTX N-CECTUh3.96E-062.28E-062.16E-091.72E-101.67E-069.12E-09	HWD	kg	7.14E-04	4.53E-04	6.12E-06	2.27E-07	2.53E-04	1.91E-06
MfR kg 5.39E-01 3.46E-02 0.00E+00 3.14E-02 0.00E+00 4.73E-01 MfER kg 3.02E-02 0.00E+00 0.00E+00 2.60E-02 0.00E+00 4.22E-03 Efp disease inc. 1.16E-05 3.33E-07 1.91E-08 7.14E-10 1.12E-05 1.10E-08 IrHH kBq U-235 eq 2.92E+00 3.46E-01 1.17E-02 4.22E-04 2.56E+00 7.97E-03 ETX FW CTUe 4.51E+03 5.65E+02 2.09E+00 1.22E-01 3.94E+03 2.23E+00 HTX CE CTUh 5.24E-08 1.40E-08 5.43E-11 4.26E-12 3.82E-08 1.50E-10 HTX N-CE CTUh 3.96E-06 2.28E-06 2.16E-09 1.72E-10 1.67E-06 9.12E-09	N-HWD	kg	1.33E+01	5.26E-01	2.31E-01	1.01E-02	1.24E+01	9.35E-02
MfER kg 3.02E-02 0.00E+00 0.00E+00 2.60E-02 0.00E+00 4.22E-03 Efp disease inc. 1.16E-05 3.33E-07 1.91E-08 7.14E-10 1.12E-05 1.10E-08 IrHH kBq U-235 eq 2.92E+00 3.46E-01 1.17E-02 4.22E-04 2.56E+00 7.97E-03 ETX FW CTUe 4.51E+03 5.65E+02 2.09E+00 1.22E-01 3.94E+03 2.23E+00 HTX CE CTUh 5.24E-08 1.40E-08 5.43E-11 4.26E-12 3.82E-08 1.50E-10 HTX N-CE CTUh 3.96E-06 2.28E-06 2.16E-09 1.72E-10 1.67E-06 9.12E-09	RWD	kg	9.13E-04	1.17E-04	1.65E-05	5.81E-07	7.72E-04	6.21E-06
Efp disease inc. 1.16E-05 3.33E-07 1.91E-08 7.14E-10 1.12E-05 1.10E-08 IrHH kBq U-235 eq 2.92E+00 3.46E-01 1.17E-02 4.22E-04 2.56E+00 7.97E-03 ETX FW CTUe 4.51E+03 5.65E+02 2.09E+00 1.22E-01 3.94E+03 2.23E+00 HTX CE CTUh 5.24E-08 1.40E-08 5.43E-11 4.26E-12 3.82E-08 1.50E-10 HTX N-CE CTUh 3.96E-06 2.28E-06 2.16E-09 1.72E-10 1.67E-06 9.12E-09	MfR	kg	5.39E-01	3.46E-02	0.00E+00	3.14E-02	0.00E+00	4.73E-01
IrHH kBq U-235 eq 2.92E+00 3.46E-01 1.17E-02 4.22E-04 2.56E+00 7.97E-03 ETX FW CTUe 4.51E+03 5.65E+02 2.09E+00 1.22E-01 3.94E+03 2.23E+00 HTX CE CTUh 5.24E-08 1.40E-08 5.43E-11 4.26E-12 3.82E-08 1.50E-10 HTX N-CE CTUh 3.96E-06 2.28E-06 2.16E-09 1.72E-10 1.67E-06 9.12E-09	MfER	kg	3.02E-02	0.00E+00	0.00E+00	2.60E-02	0.00E+00	4.22E-03
ETX FWCTUe4.51E+035.65E+022.09E+001.22E-013.94E+032.23E+00HTX CECTUh5.24E-081.40E-085.43E-114.26E-123.82E-081.50E-10HTX N-CECTUh3.96E-062.28E-062.16E-091.72E-101.67E-069.12E-09	Efp	disease inc.	1.16E-05	3.33E-07	1.91E-08	7.14E-10	1.12E-05	1.10E-08
HTX CE CTUh 5.24E-08 1.40E-08 5.43E-11 4.26E-12 3.82E-08 1.50E-10 HTX N-CE CTUh 3.96E-06 2.28E-06 2.16E-09 1.72E-10 1.67E-06 9.12E-09	IrHH	kBq U-235 eq	2.92E+00	3.46E-01	1.17E-02	4.22E-04	2.56E+00	7.97E-03
HTX N-CE CTUh 3.96E-06 2.28E-06 2.16E-09 1.72E-10 1.67E-06 9.12E-09	ETX FW	CTUe	4.51E+03	5.65E+02	2.09E+00	1.22E-01	3.94E+03	2.23E+00
	HTX CE	CTUh	5.24E-08	1.40E-08	5.43E-11	4.26E-12	3.82E-08	1.50E-10
IrLS Pt 3.38E+02 3.26E+01 2.82E+00 9.96E-02 3.02E+02 1.09E+00	HTX N-CE	CTUh	3.96E-06	2.28E-06	2.16E-09	1.72E-10	1.67E-06	9.12E-09
	IrLS	Pt	3.38E+02	3.26E+01	2.82E+00	9.96E-02	3.02E+02	1.09E+00

Table 7: Impact indicators for XLP00

Impact category	Unit	XLP00
Biogenic Carbon content of the product	kg	3.45E-03
Biogenic Carbon content of the associated packaging	kg	9.88E-03

Table 8: Inventory flow other indicators

LANG.	PAGE
en	13/18
	en

Environmental impact indicators

Environnentarinn										
GWP-total	Global Warming Potential total (Climate change)									
GWP-fossil	Global Warming Potential fossil									
GWP-biogenic	Global Warming Potential biogenic									
GWP-luluc	Global Warming Potential land use and land use change									
ODP	Depletion potential of the stratospheric ozone layer									
AP	Acidification potential									
EP-freshwater	Eutrophication potential - freshwater compartment									
EP-marine	Eutrophication potential - fraction of nutrients reaching marine end compartment									
EP-terrestrial	Eutrophication potential -Accumulated Exceedance									
POCP	Formation potential of tropospheric ozone									
ADP-m&m	Abiotic Depletion for non-fossil resources potential									
ADP-fossil	Abiotic Depletion for fossil resources potential, WDP									
WDP	Water deprivation potential.									

Resource use indicators

PERE	Use of renewable primary energy excluding renewable primary energy resources used as raw material
PERM	Use of renewable primary energy resources used as raw material
PERT	Total use of renewable primary energy resources (primary energy and primary energy resources used as raw materials)
PENRE	Use of non-renewable primary energy excluding non-renewable pri- mary energy resources used as raw material
PENRM	Use of non-renewable primary energy resources used as raw material
PENRT	Total use of non-renewable primary energy resources (primary energy and primary energy resources used as raw materials)

Secondary materials, water and energy resources

SM	Use of secondary materials
RSF	Use of renewable secondary fuels
NRSF	Use of non-renewable secondary fuels
FW	FW: Net use of fresh water

Waste category indicators

HWD	Hazardous waste disposed
N-HWD	Non-hazardous waste disposed
RWD	Radioactive waste disposed

Output flow indicators

MfR	Materials for recycling
MfER	Materials for energy recovery

Others indicators

Efp	Emissions of Fine particles
IrHH	Ionizing radiation, human health
ETX FW	Ecotoxicity, freshwater
HTX CE	Human toxicity, carcinogenic effects
HTX N-CE	Human toxicity, non-carcinogenic effects
IrLS	Impact related to Land use / soil quality

STATUS	SECURITY LEVEL	PEP ECOPASSPOR REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE				
Approved	Public	ABBG-00132-V01.01-EN	1SCC311170D0201	A.002	en	14/18				
© Copyright 2023 ABB. All rights reserved.										

Extrapolation for Homogeneous environmental family

This LCA covers different build configurations than the representative product. All the analyzed configurations have the same main functionality, product standards and manufacturing technology

The different life cycle stages can be extrapolated to other products of the same homogeneous environmental family by applying a rule of proportionality to the parameters in the following tables, divided by different life cycle stages

LCA Phase: Manufacturing

Impact category	GWP-total	GWP-fossil	GWP-biogenic	GWP-luluc	ODP	AP	EP-freshwater	EP-marine	EP-terrestrial	РОСР	ADP-minerals & metals	ADP-fossil	WDP
XLP00	1	1	1	1	1	1	1	1	1	1	1	1	1
XLP000-6CC	0.75	0.75	-48.56	0.70	0.77	0.70	0.70	0.73	0.72	0.73	0.68	0.75	0.73
XLP00-6BC	1.06	1.06	-37.88	1.11	1.09	1.03	1.03	1.04	1.04	1.05	1.00	1.05	1.02
XLP00-EFM-6BC	1.53	1.53	-50.47	2.29	1.74	1.70	1.68	1.43	1.54	1.69	1.19	1.46	1.18
XLP1	3.12	3.10	-232.60	2.87	2.85	2.96	2.85	2.64	2.79	2.94	2.37	2.86	2.43
XLP1-6BC	3.30	3.27	-346.22	3.17	3.08	3.03	2.93	2.74	2.91	3.09	2.38	3.00	2.48
XLP1-EFM-6BC	4.04	4.01	-366.21	4.99	4.10	4.10	4.04	3.34	3.68	4.02	2.69	3.64	2.76
XLP1-6M10	3.24	3.22	-312.86	3.06	3.00	3.01	2.90	2.70	2.86	3.04	2.37	2.95	2.46
XLP2	4.17	4.16	-200.49	3.76	3.66	4.34	4.12	3.54	3.83	4.03	3.20	3.83	3.26
XLP2-6BC	4.72	4.68	-560.50	4.65	4.39	4.55	4.37	3.85	4.17	4.48	3.22	4.23	3.40
XLP2-EFM-6BC	5.57	5.53	-615.67	6.75	5.56	5.95	5.74	4.60	5.15	5.69	3.63	4.98	3.72

Table 9: Extrapolation factors for Manufacturing stage Reference product: XLP00

LCA Phase: Distribution

Distribution	Factor
XLP00	1
XLP000-6CC	0.67
XLP00-6BC	1.14
XLP00-EFM-6BC	1.27
XLP1	3.25
XLP1-6BC	3.63
XLP1-EFM-6BC	3.88
XLP1-6M10	3.54
XLP2	4.54
XLP2-6BC	5.90
XLP2-EFM-6BC	6.15

Table 10 Extrapolation factors for Distribution stage Reference product: XLP00

LCA Phase: Installation

Installation phase impacts are common across all variants of the Fuse Switch Disconnectors.

STATUS	SECURITY LEVEL	PEP ECOPASSPOR REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	ABBG-00132-V01.01-EN	1SCC311170D0201 A.002 en			
	PUDIIC 3 ABB. All rights reserved.	p	15003111/0D0201	A.002	en	15/18

LCA Phase: Use

Use Phase	Factor
XLP00	
XLP00-6BC	1
XLP00-EFM-6BC	
XLP000-6CC	0.4
XLP1	
XLP1-6BC	2.14
XLP1-EFM-6BC	2.14
XLP1-6M10	
XLP2	
XLP2-6BC	3.71
XLP2-EFM-6BC	
XLP2-EFM-6BC	

Table 11: Extrapolation factors for XLP00 Fuse Switch Disconnectors

LCA Phase: EOL

Frame	GWP-total	GWP-fossil	GWP-biogenic	GWP-luluc	ODP	AP	EP-freshwater	EP-marine	EP-terrestrial	РОСР	ADP-minerals & metals	ADP-fossil	WDP
XLP00	1	1	1	1	1	1	1	1	1	1	1	1	1
XLP000-6CC	0.68	0.74	0.43	0.79	0.77	0.74	0.71	0.73	0.76	0.76	0.77	0.74	0.72
XLP00-6BC	1.06	1.07	1.00	1.05	1.13	1.07	1.03	1.08	1.10	1.10	1.12	1.09	1.06
XLP00-EFM-6BC	1.13	1.13	1.11	1.08	1.24	1.12	1.05	1.17	1.18	1.18	1.22	1.16	1.10
XLP1	3.13	3.32	2.21	3.64	3.48	3.37	3.27	3.28	3.47	3.46	3.48	3.39	3.28
XLP1-6BC	3.30	3.51	2.21	3.77	3.85	3.56	3.35	3.50	3.76	3.75	3.83	3.63	3.43
XLP1-EFM-6BC	3.55	3.78	2.39	4.10	4.13	3.85	3.65	3.77	4.05	4.03	4.10	3.92	3.71
XLP1-6M10	3.26	3.47	2.21	3.74	3.76	3.51	3.33	3.45	3.69	3.68	3.74	3.57	3.40
XLP2	4.33	4.66	2.68	5.39	4.41	4.81	4.97	4.44	4.68	4.64	4.50	4.66	4.71
XLP2-6BC	4.83	5.26	2.69	5.81	5.61	5.40	5.21	5.11	5.60	5.57	5.60	5.44	5.19
XLP2-EFM-6BC	5.02	5.51	2.53	6.12	5.85	5.67	5.50	5.34	5.86	5.82	5.84	5.69	5.44

Table 12: Extrapolation factors for XLP00 Fuse Switch Disconnectors

G. PAGE	LANG.	REV.	DOCUMENT ID.	PEP ECOPASSPOR REG. NUMBER	SECURITY LEVEL	STATUS
16/18	en	A.002	1SCC311170D0201	ABBG-00132-V01.01-EN	Public	Approved
	en	A.002	1SCC311170D0201	ABBG-00132-V01.01-EN	Public 23 ABB. All rights reserved.	<u> </u>

Additional environmental information

According to the waste treatment scenario calculation in Simapro [7], based on the recycling rate in the technical report IEC/TR 62635 Edition 1.0 [9] Table D.6, the following recyclability potentials were calculated. The recyclability potential is calculated based on the product weight (excluding packaging).

	XLP00
Recyclability potential	94.1%

Table 13: Recyclability potential of XLP00

STATUS	SECURITY LEVEL	PEP ECOPASSPOR REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	ABBG-00132-V01.01-EN	1SCC311170D0201	A.002	en	17/18
© Copyright 2023 ABB. All rights reserved.						

References

- [1] PCR "PEP-PCR-ed4-EN-2021_09_06" Product Category Rules for Electrical, Electronic and HVAC-R Products (published: 6th September 2021)
- [2] PSR "PSR-0005-ed2-EN-2016 03 29" SPECIFIC RULES FOR Electrical switchgear and control gear Solutions (Circuit breakers)
- [3] EN 50693:2019 Product category rules for life cycle assessments of electronic and electrical products and systems
- [4] ISO 14040:2006 Environmental management -Life cycle assessment Principles and framework
- [5] ISO 14044:2006 Environmental management Life cycle assessment Requirements and guidelines
- [6] ecoinvent v3.8 (2021). ecoinvent database version 3.8 (https://ecoinvent.org/)
- [7] SimaPro Software version 9.3.0.3 PRé Sustainability
- [8] UNI EN 15804:2012+A2:2019: Sustainability of constructions Environmental product declarations (September 2019)
- [9] IEC/TR 62635 Guidelines for end-of-life information provided by manufacturers and recyclers and for recyclability rate calculation of electrical and electronic equipment -Edition 1.0 2012-10

STATUS	SECURITY LEVEL	PEP ECOPASSPOR REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	ABBG-00132-V01.01-EN	1SCC311170D0201	A.002	en	18/18
© Copyright 2023 ABB. All rights reserved.						