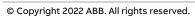


PRODUCT ENVIRONMENTAL PROFILE Environmental Product Declaration

Emax 2 - E2.2 IEC type Air Circuit Breaker



INTERNAL □ EXTERNAL ⊠				
INDEPENDENT VERIFICA	ATION OF THE DECLARATION AND	D DATA, IN COMPLIANCE WITH ISO 14025: 2006		
12-2022		5 years		
DATE OF ISSUE		VALIDITY PERIOD		
VH42		www.pep-ecopassport.org		
VERIFIER ACCREDITATION NUMBER		INFORMATION AND REFERENCE DOCUMENTS		
ABBG-00007-V01.01-EN		SUPPLEMENTED BY PSR-0005-ED2-EN-2016 03 29		
REGISTRATION NUMBER		IN COMPLIANCE WITH PCR-ED4-EN-2021 09 06		

PEP ARE COMPLIANT WITH XP C08-100-1 :2016 OR EN 50693:2019

THE ELEMENTS OF THE PRESENT PEP CANNOT BE COMPARED WITH ELEMENTS FROM ANOTHER PROGRAM.

DOCUMENT IN COMPLIANCE WITH ISO 14025: 2006 st ENVIRONMENTAL LABELS AND DECLARATIONS. TYPE III ENVIRONMENTAL DECLARATIONS st

EPD Owner	ABB S.p.A. Via Luciano Lama, 33, 20099 Sesto San Giovanni (MI) – Italy www.abb.com
Manufacturer name and address	ABB S.p.A. Via E. Fermi 40 - 03100 Frosinone (FR) - Italy
Company contacts	EPD_ELSP@in.abb.com
Reference product	Emax 2 E2.2 circuit breaker IEC type withdrawable version equipped with Ekip Touch electronic trip unit
Description of the product	Emax 2 air circuit breaker is a multifunctional platform able to manage the next generation of electrical plants such as microgrids, evolving into a true Power Manager. Emax 2 is the first air circuit breaker that matches all the new grid requirements. It enables a direct communication to the new energy management cloud-computing platform ABB Ability™. Energy and Asset Manager
	The functional unit to this study is a single circuit breaker (including its packaging and accessories), to protect during 20 years the installation against overloads and short-circuits in circuit with assigned voltage U and rated current In. This protection is ensured in accordance with the following parameters
Functional unit	IEC Type Rated voltage [V]: 690 Rated current [A]: 2500 Rated breaking capacity [kA]: 100 Number of poles: 3/4 Tripping Curve: L, S, I
Other products covered	Emax2 E2.2 Withdrawable Circuit Breakers of types [IEC] B/N/S/H and ratings 400A to 2500A / 3poles /4poles
Reference lifetime	20 years
Product category	Electrical, Electronic and HVAC-R Products
Use Scenario	The use phase has been modeled based on the sales mix data (2021), and the corresponding low voltage electricity countries mix
Geographical representativeness	Raw materials & Manufacturing: [Europe / Global] Assembly: [Italy] Distribution / Use: [Global] specific sales mix EoL: [Global]
Technological representa- tiveness	Materials and processes data are specific for the production of Emax2 E2.2 circuit breaker
LCA Study	This study is based on the LCA study described in the LCA report 1SDH002181A1001
EPD type	Products family declaration
EPD scope	"Cradle to grave"
Year of reported primary data	2021
LCA software	SimaPro 9.3.0.3 (2022)
LCI database	Ecoinvent v3.8 (2021)
LCIA methodology	EN 15804:2012+A2:2019

© Copyright 2022 ABB. All rights reserved.						
Approved	Public	ABBG-00007-V01.01-EN	1SDH002184A1001	B.002	en	2/17
STATUS	SECURITY LEVEL	PEP ECOPASSPOR REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE

Contents

ABB Purpose & Embedding Sustainability	4
General Information	4
Emax2.2 product cluster	
Constituent Materials	6
LCA background information	7
Functional unit and Reference Flow	7
System boundaries and life cycle stages	7
Temporal and geographical boundaries	8
Boundaries in the life cycle	8
Data quality	8
Environmental impact indicators	8
Allocation rules	
Limitations and simplifications	
Inventory analysis	10
Environmental impacts	13
Additional environmental information	16
References	17

Approved	Public	ABBG-00007-V01.01-EN	1SDH002184A1001	B.002	en	3/17
STATUS	SECURITY LEVEL	PEP ECOPASSPOR REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE

ABB Purpose & Embedding Sustainability

ABB is a leading global technology company that energizes the transformation of society and industry to achieve a more productive, sustainable future. By connecting software to its electrification, robotics, automation and motion portfolio, ABB pushes the boundaries of technology to drive performance to new levels. With a history of excellence stretching back more than 130 years, ABB's success is driven by about 105 thousand talented employees in over 100 countries.

ABB's Electrification business offers a wide-ranging portfolio of products, digital solutions and services, from substation to socket, enabling safe, smart and sustainable electrification. Offerings encompass digital and connected innovations for low voltage and medium voltage, including EV infrastructure, solar inverters, modular substations, distribution automation, power protection, wiring accessories, switchgear, enclosures, cabling, sensing and control. ABB is committed to continually promoting and embedding sustainability across its operations and value chain, aspiring to become a role model for others to follow. With its ABB Purpose, ABB is focusing on reducing harmful emissions, preserving natural resources and championing ethical and humane behavior.

General Information

ABB's Frosinone factory represents a centre of excellence in ABB for the development and manufacture of low-voltage circuit breakers. The 150,000 square-meter facility with 800 employees is highly automated and produces more than three million circuit breakers every year. A Lighthouse Plant, selected by the Italian government as a model for digital transformation and Industry 4.0 strategies, Frosinone promotes smart, digitalized, and connected operations, increasing efficiency across the full value chain. Achieving zero production waste to landfill was a whole-factory program. Flexibility, lean production processes, capacity to efficiently and rapidly meet market demands, and process innovation are some of the most significant characteristics of this site

ABB IT-ELSP adopts and implements for its own activities an integrated Quality/Environmental/Health Management System in compliance with the following standards:

- UNI EN ISO 9001/2015 Quality Management Systems Requirements
- UNI EN ISO 14001/2015 Environmental management systems Specification with guidance for use
- UNI EN ISO 45001:2018 Occupational Health and Safety Assessment Series Requirements
- SA 8000:2014 Social Accountability 8000 SA 8000

ABB offers a wide range of low voltage Air Circuit Breakers for any application, also distribution. The primary scope of Low Voltage Circuit Breakers is to isolate parts of an electrical distribution system in the event of abnormal conditions. Abnormal conditions are generally caused by faults on a system which can lead to dangerous situations for both people and the system itself. In addition to providing system protection, circuit breakers enable parts of the electrical distribution to be isolated for operation and maintenance.

In the factory, the different components and subassemblies are assembled on the manufacturing line. All components and subassemblies are produced by ABB's suppliers and are only assembled in the factory.

Approved	Public	ABBG-00007-V01.01-EN	1SDH002184A1001	B.002	en	4/17
STATUS	SECURITY LEVEL	PEP ECOPASSPOR REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE

Emax2.2 product cluster

Emax 2 air circuit breaker is a multifunctional platform able to manage the next generation of electrical plants such as microgrids, evolving into a true Power Manager. Emax 2 is the first air circuit breaker that matches all the new grid requirements. It enables a direct communication to the new energy management cloud-computing platform ABB Ability™. Energy and Asset Manager

Product cluster Emax2.2 analyzed in this LCA is IEC type withdrawable circuit breaker, consisting of a fixed and moving part (which is inserted and removed via dedicated guide rails).

Emax2 E2.2 (IEC Type)

Circuit breaker	E2.2
Rated voltage [V]	690
Rated current [A]	800-2500
Rated short circuit break- ing current [kA]	100
Number of poles	3/4

Table 1: Technical characteristics of IEC circuit breakers (Refer Technical catalogue for complete details).

Packaging is common for 3p & 4p and weighs 30,6kg, with the following substance composition:

Material	Unit	Total	%
Corrugated Cardboard	g	1120	3.7%
Wooden Pallet / Plywood	g	28200	92.0%
Polyethylene	g	120	0.4%
Steel	g	1200	3.9%

Table 2: Weight of materials E2.2 - Packaging

No cut-off criteria have been applied to the analysis of the product and its packaging. Additional packaging for semifinished products along the supply chain haven't been considered.

Official declarations LB-DT 17-21D [13] and LB-DT 18-21D [14] states compliance of ABB moulded case circuit breakers and air circuit breakers respectively to RoHS II and REACH regulations; annex 1SDL000571R0 [15] provides exemptions considered for RoHS II while annex 1SDL000572R0 [16] lists REACH substances present in a concentration above 0,1% adding reference to products where involved parts are mounted.

Approved Public ABBG-00007-V01.01-EN 1SDH002184A1001 B.002 en 5/17	STATUS	SECURITY LEVEL	PEP ECOPASSPOR REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE
	Approved	Public	ABBG-00007-V01.01-EN	1SDH002184A1001	B.002	en	5/17

Constituent Materials

Emax2 E2.2 (IEC Type)

The representative product is E2.2 2500A - 3P Withdrawable Circuit Breaker (IEC Type) which weighs 120kg including its installed accessories, paper documentation and packaging.

Materials	Name	IEC 62474 MC	[g]	Weight %
	Steel	M-119	41845	34.9%
	Cu and CU alloys	M-121	26635	22.2%
Metals	Stainless Steel	M-100	1995	1.7%
	Aluminum	M-120	684	0.6%
	Precious metals	M-159	94	<0.1%
	Unsaturated Polyester	M-301	13296	11.1%
	Polyamide (PA)	M-258	2735	2.3%
	Polycarbonate (PC)	M-254	1465	1.2%
Plastics	Polypropylene (PP)	M-252	351	0.3%
Plastics	Polyethylene Terephthalate (PET)	M-259	290	0.2%
	Polyethylene (PE)	M-251	256	0.2%
	Acrylonitrile Butadiene Styrene (ABS)	M-256	146	0.1%
	Other Polymers	N/A	98	<0.1%
	Wood	M-340	28200	23.5%
Others	Paper	M-341	1613	1.3%
	Others	N/A	269	0.2%
Total			119972	100%

Table 3: Weight of materials E2.2 2500A 3P IEC

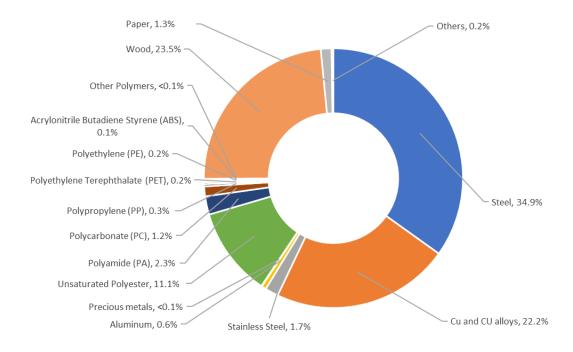


Figure 1: Composition of E2.2 – 3P IEC

© Copyright 2022 ABB. All rights reserved.						
Approved	Public	ABBG-00007-V01.01-EN	1SDH002184A1001	B.002	en	6/17
STATUS	SECURITY LEVEL	PEP ECOPASSPOR REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE

LCA background information

Functional unit and Reference Flow

The functional unit is the reference unit used to quantify the performance of the service delivered by a product to the user. The main purpose of the functional unit is to provide a reference to which inputs and outputs are related in the LCA.

The functional unit to this study is a single circuit breaker (including its packaging and accessories), to protect during 20 years the installation against overloads and short-circuits in circuit with assigned voltage U and rated current In (see tables 1, p.5). This protection is ensured in accordance with the following parameters

Number of poles	3/4
Rated breaking capacity [kA]	100
Tripping Curve	L, S, I

The Reference Flow of the study is a single circuit breaker (including its packaging and accessories) with mass described in page 6 table 3.

System boundaries and life cycle stages

The life cycle of the Low Voltage Circuit Breaker, an EEPS (Electronic and Electrical Products and Systems), is a "from cradle to grave" analysis and covers the following main life cycle stages: manufacturing, including the relevant acquisition of raw material, preparation of semi-finished goods, etc. and processing steps; distribution; installation, including the relevant steps for the preparation of the product for use; use including the required maintenance steps within the RSL (reference service life of the product) associated to the reference product; end-of-life stage, including the necessary steps until final disposal or recovery of the product system.

The following table shows the stages of the product life cycle and the information stages according to EN 50693:2019 [3] for the evaluation of electronic and electrical products and systems.

Manufacturing	Distribution	Installation	Use	End-of-Life (EoL)
Acquisition of raw materials				
Transport to manufacturing site Components/parts manufacturing Assembly Packaging	Transport to distribu- tor/logistic center Transport to place of use	Installation EoL treatment of generated waste (packaging)	Usage Maintenance	Deinstallation Collection and transport EoL treat- ment
EoL treatment of generated waste				

Table 4: Phases for the evaluation of construction products according to EN50693:2019 [3].

STATUS	SECURITY LEVEL	PEP ECOPASSPOR REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE	
Approved	Public	ABBG-00007-V01.01-EN	1SDH002184A1001	B.002	en	7/17	
© Conviget 2022 APP All rights recoved							

Temporal and geographical boundaries

The ABB component suppliers are sourced all over the world. All primary data collected are from 2021, which is a representative production year. Secondary data are also representative for this year, as provided by ecoinvent [6].

The selected ecoinvent [6] processes in the LCA model have a global representativeness, due to the unclear origin of each component. In this way, a conservative approach has been adopted.

Boundaries in the life cycle

As indicated in the PCR capital goods such as buildings, machinery, tools and infrastructure, the packaging for internal transport which cannot be allocated directly to the production of the reference product, may be excluded from the system boundary.

Infrastructures, when present, such as processes deriving from the ecoinvent [6] database have not been excluded.

Data quality

In this LCA, both primary and secondary data are used. Site specific foreground data have been provided by ABB. Main data sources are the bill of materials & drawings which are available on the ERP (SAP) & Windchill. For all processes for which primary are not available, generic data originating from the ecoinvent database [6], allocation cut-off by classification, are used. The ecoinvent database available in the SimaPro software [7] is used for the calculations.

The data quality characterized by quantitative and qualitative aspects, is presented in Appendix 1. Each data quality parameter has been rated according to DQR tables from Chapter 7.19.2.2 of the Product Environmental Footprint Guide v.6.3 to give an indication of geography, technology and temporal representativeness.

Environmental impact indicators

The information obtained from the inventory analysis is aggregated according to the effects related to the various environmental issues. According to "PCR-ed4-EN-2021 09 06" and EN 50693 [3] the environmental impact indicators must be determined using the characterization factors and impact assessment methods specified in EN 15804:2012+A2:2019 [8].

PCR-ed4-EN-2021 09 06 and the EN 50693:2019 [3] standard establish four indicators for climate change: Climate change (total) which includes all greenhouse gases; Climate change (fossil fuels); Climate change (biogenic) which includes the emissions and absorption of biogenic carbon dioxide and biogenic carbon stored in the product; Climate change (land use) - land use and land use transformation. Other indicators as per the PCR[1].

Approved	Public	ABBG-00007-V01.01-EN	1SDH002184A1001	B.002	en	8/17	
STATUS	SECURITY LEVEL	PEP ECOPASSPOR REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE	

Allocation rules

Allocation coefficients are based on the Emax2 line's occupancy area for electricity and methane consumption as well as the total amount of waste generated by the production line.

The total number of operators was considered for water consumption. All these flows have been allocated and divided by the total number of Emax2 E2.2 circuit breakers produced in 2021.

Limitations and simplifications

Raw materials life cycle stage includes the extraction of raw materials as well as the transport distances to the manufacturing suppliers. These distances are assumed to be 1000 km as per the PCR. This distance has been added to the one already included in the market processes used for the model, as a result of a conservative choice made by the LCA operators.

Application of grease lubricant on the circuit breakers operating mechanism has been excluded since it is negligible. Surface treatments like galvanizing, tin and silver plating as well as their related transport processes (back and forth from the finishing suppliers) have been considered in the LCA model. Specific phosphate surface treatment, Stearate coating have been excluded by operational choice (mass of the components involved < 0.9% of the final product, thus negligible). Scraps for metal working and plastic processes are included when already defined in ecoinvent[6].

Printed circuit boards (PCB) have been modelled with a representative cluster dataset including: every single component, the unpopulated board as well as the surface mounting technology (SMD) process. For some components with no equivalent on ecoinvent database[6], the dataset "Electronic component, passive, unspecified {GLO}| market for | Cut-off, S" was used.

Energy Models

LCA Stage	EN 15804:2012 +A2:2019 module	Energy model	Notes
Raw material extraction and processing	A1-A2	Electricity, {RER} market group for Cut-off Electricity, {GLO} market group for Cut-off	Based on materials and suppliers locations
Manufacturing	А3	Electricity, {IT} market for Cutoff	Specific Energy model for ABB Frosinone manufactur- ing plant, 100% renewable
Installation (Packaging EoL)	A5	Electricity, {GLO} market group for Cut-off	
Use Stage	B1	Electricity, [country]x market for Cut-off, S **	Low voltage, based on 2021 country sales mix
EoL	C1-C4	Electricity, {GLO} market group for Cut-off	

Table 5: Energy models used in each LCA stage

^{**} Please refer the use phase page 14 for further description

© Copyright 2022 ABB. All rights reserved.								
Approved	Public	ABBG-00007-V01.01-EN	1SDH002184A1001	B.002	en	9/17		
STATUS	SECURITY LEVEL	PEP ECOPASSPOR REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE		

Inventory analysis

In this LCA, both primary and secondary data are used. Site specific foreground data have been provided by ABB. For data collection, Bills of Material (BOM) extracted from ABB's internal SAP software were used. They are a list of all the components and assemblies that constitute the finished product, organized by level. Each item is matched with its code, quantity, weight and supplier. The BOMs were then processed, adding material, surface area and other weight data, taken from technical drawings. Finally, the manufacturing process and surface treatment were assigned, according to information provided by R&D personnel. Road distances between the suppliers and ABB were calculated using Google Maps, and marine distances using Distances & Time (Searates).

All primary data collected from ABB are from 2021, which was a representative production year. The ecoinvent cut-off by classification system processes [6] are used to represent the LCA model

Due to the large amounts of components in the Circuit Breaker, raw material inputs have been modelled with data from ecoinvent[6] representing either a European [RER] or Global [RoW] market coverage based on the supplier's location. These datasets are assumed to be representative.

Manufacturing stage

The Circuit Breakers are composed of a multitude of components, all of which are made from of numerous materials. Most of the inputs to the products' manufacturing stage are already produced component parts.

All the circuit breaker's components have been modelled according to their specific raw materials and manufacturing processes.

The single use packaging as well as paper documentation are also included in the analysis in the manufacturing stage. ABB receives packaging components from outside suppliers and packages the circuit breakers before shipping them.

Most of the inputs to the products' manufacturing stage are already produced component parts from the supply chain. In the ABB manufacturing plant, the different components and subassemblies are assembled into the circuit breaker. All the semi-finished and ancillary products are produced by ABB's suppliers

The entire supplier's network has been modelled with the calculation of each transportation stage, from the first manufacturing supplier to the next.

All the distances from the last subassembly suppliers' factories to the ABB manufacturing facility have been calculated.

In the ABB factory, the different components and subassemblies are assembled into the circuit breaker. All the semi-finished and ancillary products are produced by ABB's suppliers.

The energy mix used for the production phase is representative for ABB Frosinone production site and includes renewable energy only (Hydroelectric + Wind + Solar).

The complete energy mix has been modeled considering the GSE report on energy origins provided to ABB for the year 2021.

Approved Public ABBG-00007-V01.01-EN 1SDH00218	L84A1001 B.002	en	10/17

Distribution

The transport distances from ABB manufacturing plant to the distribution centers (regional distribution centers / local sales organizations) have been calculated considering the specific reference products sales mix data from 2021 (SAP ERP sales data as a source).

Reference product distribution is representative of the entire size and equivalent to distribution of other products listed in the extrapolation tables

The other parameter affecting the environmental impact for this LCA stage is the total mass of the product (including its packaging). Different mass values for each specific configuration covered by this study have been considered in the model.

An additional 10% distance by road has been considered to cover the last distribution stage to the end customer (usage location).

Figure 2: Distribution methodology.

Installation

The installation phase only implies manual activities, and no energy is consumed. This phase also includes the disposal of the packaging of the Low Voltage Circuit Breaker.

All the components needed to install the product (e.g. IP30 flange, lifting plates, etc.) have been included in the analysis.

For the disposal of the packaging after installation of the circuit breaker at the end of its life, a transport distance of 1000 km (according to PCR [1]) was assumed.

The actual disposal site is unknown and is managed by the customer. The disposal scenario of the packaging was calculated based on the latest Eurostat data (EU-27) available.

Approved	Public	ABBG-00007-V01.01-EN	1SDH002184A1001	B.002	en	11/17	
STATUS	SECURITY LEVEL	PEP ECOPASSPOR REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE	

Use

During the use phase, circuit breakers dissipate some electricity due to power losses. The respective energy for each specific configuration of the entire product family has been calculated according to the data provided in the catalogue of the circuit breaker and following the PCR [1] & PSR [2] rules:

The Energy model used for this phase was built based on the 2021 actual sales mix data for the entire product range (SAP ERP sales data as a source). This approach has been taken since this list of countries will be the most representative also for the other products listed in the extrapolation tables.

From Ecoinvent [6] database, the low voltage electricity country mix for each country(x) has been selected with its respective percentage on the total sales mix (Electricity, low voltage [country]x | market for | Cut-off, S).

Parameters		
lu	[A]	2500
lu	[%]	50
h/year	[h]	8760
RSL	[years]	20
Time operating coefficient	[%]	30

Table 6: Use phase parameters

The formula for the calculation of the electricity consumed is shown below and it is described as follows, where P_{use} is the power consumed by the switch at a given value of current:

$$E_{use} [kWh] = \frac{P_{use} * 8760 * RSL * \alpha}{1000}$$

The above calculations have been performed according to the number of poles (3) on which relevant current flows during use phase.

Since no maintenance happens during the use phase, the environmental impacts linked to this procedure have been considered as null in the analysis.

End of life

The end-of-life stage is modelled according to PCR [1] and IEC/TR 62635 [9]. The percentages for end-of-life treatments of materials are taken from IEC/TR 62635 [9].

Since no specific data is available, the transport distances from the place of use to the place of disposal are assumed to be 1000 km (local/domestic transport by lorry, according to PCR [1]). Disassembly manuals can be provided to the customer to support product disposal.

All circuit moving and fixed parts are labelled with WEEE logo.

Approved	Public	ABBG-00007-V01.01-EN	1SDH002184A1001	B.002	en	12/17	
STATUS	SECURITY LEVEL	PEP ECOPASSPOR REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE	

Environmental impacts

The following table show the environmental impact indicators of the life cycle of a single E2.2 Withdrawable circuit breaker (IEC type) N-S-H 2500A, as indicated by PCR [1] and EN 50693:2019 [3]. The indicators are divided into the contribution of the processes to the different stages (manufacturing, distribution, installation, use and end-of-life).

Impact category	Unit	Total	Manuf	Distr	Install	Use	EoL
GWP-total	kg CO2 eq	4.85E+03	5.87E+02	1.96E+02	3.28E+01	4.00E+03	3.21E+01
GWP-fossil	kg CO2 eq	4.75E+03	6.16E+02	1.96E+02	3.16E+00	3.90E+03	3.16E+01
GWP-biogenic	kg CO2 eq	8.62E+01	-2.96E+01	7.38E-02	2.96E+01	8.57E+01	4.39E-01
GWP-luluc	kg CO2 eq	1.07E+01	8.75E-01	1.60E-02	1.18E-03	9.75E+00	2.33E-02
ODP	kg CFC11 eq	3.17E-04	5.12E-05	4.48E-05	7.09E-07	2.18E-04	2.53E-06
AP	mol H+ eq	3.61E+01	1.60E+01	1.04E+00	1.66E-02	1.89E+01	1.75E-01
EP-freshwater	kg P eq	3.76E+00	1.33E+00	3.23E-03	2.62E-04	2.42E+00	7.94E-03
EP-marine	kg N eq	4.94E+00	1.25E+00	3.74E-01	9.75E-03	3.24E+00	6.33E-02
EP-terrestrial	mol N eq	5.08E+01	1.51E+01	4.10E+00	6.42E-02	3.12E+01	3.73E-01
POCP	kg NMVOC eq	1.42E+01	4.34E+00	1.07E+00	1.90E-02	8.64E+00	1.07E-01
ADP-m&m	kg Sb eq	4.40E-01	4.14E-01	7.96E-05	7.12E-06	2.56E-02	2.83E-05
ADP-fossil	MJ	6.84E+04	8.43E+03	2.77E+03	4.73E+01	5.68E+04	3.42E+02
WDP	m3	1.30E+03	3.99E+02	2.69E+00	1.70E-01	8.97E+02	2.66E+00
PENRE	MJ	6.79E+04	8.03E+03	2.77E+03	4.73E+01	5.67E+04	3.42E+02
PENRM	МЈ	4.00E+02	4.00E+02	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PENRT	МЈ	6.83E+04	8.43E+03	2.77E+03	4.73E+01	5.67E+04	3.42E+02
PERE	МЈ	1.20E+04	1.57E+03	1.09E+01	6.38E-01	1.04E+04	2.91E+01
PERM	MJ	5.10E+02	5.10E+02	0.00E+00	0.00E+00	0.00E+00	0.00E+00
PERT	МЈ	1.25E+04	2.08E+03	1.09E+01	6.38E-01	1.04E+04	2.91E+01
SM	kg	3.77E+01	3.77E+01	0.00E+00	0.00E+00	0.00E+00	0.00E+00
RSF	МЈ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
NRSF	МЈ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00
FW	m3	4.67E+01	1.09E+01	1.00E-01	6.28E-03	3.57E+01	1.13E-01
HWD	kg	1.28E-01	6.73E-02	7.32E-03	1.12E-04	5.25E-02	3.80E-04
N-HWD	kg	4.54E+02	1.75E+02	2.16E+01	1.50E+01	2.13E+02	2.96E+01
RWD	kg	2.13E-01	2.86E-02	1.96E-02	3.12E-04	1.63E-01	1.41E-03
MfR	kg	9.98E+01	1.77E+01	0.00E+00	1.07E+01	0.00E+00	7.15E+01
MfER	kg	1.01E+01	0.00E+00	0.00E+00	9.17E+00	0.00E+00	8.90E-01
Efp	disease inc.	1.47E-04	5.86E-05	3.46E-06	3.69E-07	8.19E-05	2.89E-06
IrHH	kBq U-235 eq	6.34E+02	7.43E+01	1.25E+01	2.35E-01	5.45E+02	2.23E+00
ETX FW	CTUe	1.79E+05	1.32E+05	1.53E+03	3.94E+01	4.48E+04	6.63E+02
HTX CE	CTUh	4.98E-06	3.76E-06	2.17E-08	1.43E-09	1.16E-06	3.92E-08
HTX N-CE	CTUh	2.35E-04	1.93E-04	2.43E-06	5.95E-08	3.71E-05	2.43E-06
IrLS	Pt	2.20E+04	1.14E+04	5.68E+02	5.63E+01	9.66E+03	2.46E+02

Table 7: Impact indicators for E2.2 2500A - 3P Withdrawable Circuit Breaker (IEC Type)

STATUS	SECURITY LEVEL	PEP ECOPASSPOR REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	ABBG-00007-V01.01-EN	1SDH002184A1001	B.002	en	13/17
© Copyright 2022 ABB All rights reserved						

Impact category	Unit	Total
Biogenic Carbon content of the product	kg	1.92E-01
Biogenic Carbon content of the associated packaging	kg	2.3E+01

Table 8: Inventory flow other indicators

Environmental impact indicators

GWP-total	Global Warming Potential total (Climate change)					
GWP-fossil	Global Warming Potential fossil					
GWP-biogenic	Global Warming Potential biogenic					
GWP-luluc	Global Warming Potential land use and land use change					
ODP	Depletion potential of the stratospheric ozone layer					
AP	Acidification potential					
EP-freshwater	Eutrophication potential - freshwater compartment					
EP-marine	Eutrophication potential - fraction of nutrients reaching marine end compartment					
EP-terrestrial	Eutrophication potential -Accumulated Exceedance					
POCP	Formation potential of tropospheric ozone					
ADP-m&m	Abiotic Depletion for non-fossil resources potential					
ADP-fossil	Abiotic Depletion for fossil resources potential, WDP					
WDP	Water deprivation potential.					

Resource use indicators

PENRE	Use of non-renewable primary energy excluding renewable primary energy resources used as raw material
PENRM	Use of non-renewable primary energy resources used as raw material
PENRT	Total use of non-renewable primary energy resources (primary energy and primary energy resources used as raw materials)
PERE	Use of renewable primary energy excluding non-renewable primary energy resources used as raw material
PERM	Use of renewable primary energy resources used as raw material
PERT	Total use of renewable primary energy resources (primary energy and primary energy resources used as raw materials)

Secondary materials, water and energy resources

SM	Use of secondary materials
RSF	Use of renewable secondary fuels
NRSF	Use of non-renewable secondary fuels
FW	FW: Net use of fresh water

Waste category indicators

HWD	Hazardous waste disposed
N-HWD	Non-hazardous waste disposed
RWD	Radioactive waste disposed

Output flow indicators

MfR	Materials for recycling
MfER	Materials for energy recovery

STATUS	SECURITY LEVEL	PEP ECOPASSPOR REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	ABBG-00007-V01.01-EN	1SDH002184A1001	B.002	en	14/17
© Converight 2022 ARR All rights reserved						

Other indicators

Efp	Emissions of Fine particles
IrHH	Ionizing radiation, human health
ETX FW	Ecotoxicity, freshwater
HTX CE	Human toxicity, carcinogenic effects
HTX N-CE	Human toxicity, non-carcinogenic effects
IrLS	Impact related to Land use / soil quality

Extrapolation for Homogeneous environmental family

This LCA covers different build configurations than the representative product. All the analyzed configurations have the same main functionality, product standards and manufacturing technology

The different life cycle stages can be extrapolated to other products of the same homogeneous environmental family by applying a rule of proportionality to the parameters in the following tables, divided by different life cycle stages

Circuit Breaker	LCA Phase	GWP-total	GWP-fossil	GWP-biogenic	GWP-Iuluc	ODP	AP	EP-freshwater	EP-marine	EP-terrestrial	POCP	ADP-m&m	ADP-fossil	WDP
IEC-3p-	Manuf	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
2500A N/S/H	EoL	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
IEC- 4p -	Manuf	1.22	1.21	0.92	1.21	1.21	1.30	1.29	1.24	1.26	1.25	1.30	1.21	1.24
2500A N/S/H	EoL	1.29	1.29	1.21	1.31	1.23	1.29	1.32	1.29	1.27	1.27	1.24	1.28	1.30
IEC-3p-800A-	Manuf	0.86	0.87	1.06	0.84	0.90	0.68	0.69	0.78	0.76	0.77	0.68	0.88	0.80
2000A B/N/S	EoL	0.74	0.74	0.75	0.66	0.84	0.69	0.64	0.87	0.75	0.76	0.81	0.73	0.71
IEC- 4p - 800A-	Manuf	1.04	1.04	0.99	0.99	1.07	0.87	0.88	0.96	0.94	0.94	0.88	1.05	0.97
2000A B/N/S	EoL	0.94	0.94	0.89	0.86	1.02	0.89	0.84	1.12	0.94	0.94	0.99	0.92	0.91
IEC-3p-800A-	Manuf	0.87	0.88	1.05	0.85	0.91	0.70	0.72	0.80	0.78	0.78	0.71	0.89	0.81
2000A H	EoL	0.76	0.76	0.77	0.69	0.85	0.71	0.67	0.88	0.77	0.77	0.82	0.75	0.73
IEC- 4p - 800A-	Manuf	1.05	1.05	0.99	1.01	1.09	0.90	0.91	0.98	0.96	0.97	0.91	1.06	0.98
2000A H	EoL	0.96	0.96	0.91	0.89	1.03	0.91	0.87	1.13	0.96	0.96	1.01	0.94	0.94

Table 9a: Extrapolation factors for IEC E2.2 Circuit Breaker

Reference product: IEC- 3p - 2500A N/S/H -Manufacturing / End of Life

STATUS	SECURITY LEVEL	PEP ECOPASSPOR REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE
Approved	Public	ABBG-00007-V01.01-EN	1SDH002184A1001	B.002	en	15/17
o Constitutional ADD All Salar and						

Circuit Breaker	LCA Phase	₹
IEC- 3p - 2500A N/S/H		1.00
IEC- 4p - 2500A N/S/H		1.16
IEC-3p - 800A-2000A B/N/S	Diete	0.91
IEC- 4p - 800A-2000A B/N/S	Distr	1.04
IEC- 3p - 800A-2000A H		0.91
IEC- 4p - 800A-2000A H		1.04

Table 9b: Extrapolation factors for IEC E2.2 Circuit Breaker

Reference product: IEC- 3p - 2500A N/S/H -Distribution

Circuit Breaker	LCA Phase	₹
IEC 3/4p N-S-H 2500A		1.00
IEC 3/4p B-N-S-H 2000A	Use	0.82
IEC 3/4p B-N-S-H 1600A		0.52
IEC 3/4p N-S-H 1250A		0.32
IEC 3/4p N-S-H 1000A		0.20
IEC 3/4p N-S-H 800A		0.13

Table 9c: Extrapolation factors for IEC E2.2 Circuit Breaker. Reference product: IEC- 3p - 2500A N/S/H -Use Phase

Additional environmental information

According to the waste treatment scenario calculation in Simapro [7], based on the recycling rate in the technical report IEC/TR 62635 Edition 1.0 [9] Table D.6, the following recyclability potentials were calculated. The recyclability potential is calculated based on the product weight (excluding packaging).

	E2.2 2500A IEC
Recyclability potential	79.9%

Table 10: Recyclability potential of E2.2 - 3P

Approved	Public	ABBG-00007-V01.01-EN	1SDH002184A1001	B.002	en	16/17				
STATUS	SECURITY LEVEL	PEP ECOPASSPOR REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE				

References

- [1] PCR "PEP-PCR-ed4-EN-2021_09_06" Product Category Rules for Electrical, Electronic and HVAC-R Products (published: 6th September 2021)
- [2] PSR "PSR-0005-ed2-EN-2016 03 29" SPECIFIC RULES FOR Electrical switchgear and control gear Solutions (Circuit breakers)
- [3] EN 50693:2019 Product category rules for life cycle assessments of electronic and electrical products and systems
- [4] ISO 14040:2006 Environmental management -Life cycle assessment Principles and framework
- [5] ISO 14044:2006 Environmental management Life cycle assessment Requirements and guidelines
- [6] ecoinvent v3.8 (2021). ecoinvent database version 3.8 (https://ecoinvent.org/)
- [7] SimaPro Software version 9.3.0.3 PRé Sustainability
- [8] UNI EN 15804:2012+A2:2019: Sustainability of constructions Environmental product declarations (September 2019)
- [9] IEC/TR 62635 Guidelines for end-of-life information provided by manufacturers and recyclers and for recyclability rate calculation of electrical and electronic equipment Edition 1.0 2012-10
- [10] https://www.ecosystemspa.com/
- [11] LB-DT 17-21D RoHS II (MCCBs and ACBs)
- [12] LB-DT 18-21D REACH (MCCBs and ACBs)
- [13] 1SDL000571R0 Ver 01 RoHS Exemptions (MCCBs and ACBs)
- [14] 1SDL000572R0 Ver 01 SVHC present in excess of 0.1% (MCCBs and ACBs)

Approved	Public	ABBG-00007-V01.01-EN	1SDH002184A1001	B.002		17/17			
STATUS	SECURITY LEVEL	PEP ECOPASSPOR REG. NUMBER	DOCUMENT ID.	REV.	LANG.	PAGE			