
ABB Motion control products 1
https://new.abb.com/drives/low-voltage-ac/servo-products

Servo Motion

Generic Drive Interface for AC500 V3 over Modbus
Application Note 501
Rev A (EN)





Application note Generic drive interface  AN501

ABB Motion control products 2
https://new.abb.com/drives/low-voltage-ac/servo-products

Introduction

This application note details the use of the ‘Generic drive interface’ or ‘GDI’ Mint program for MicroFlex e190 and
MotiFlex e180 drives and its use with a PLC. The ‘GDI’ is a simple program that runs on the drive to allow an external plc
control system access to Mint based control functions. This access can be via any communication interface that
provides access to the drives’ Netdata array (e.g., Modbus TCP, EtherCAT, Ethernet/IP, EPL or PROFINET). This allows
PLCs (such as the ABB AC500 or eco-PLC) to supervise and control simple motion functions on one or more axes.

This application note focuses on an ABB AC500 V3 PLC controlling the drive via Modbus TCP, but the principle is
identical for all available networks. Please refer to the motion website for additional GDI application notes specific to
other fieldbus networks (e.g. AN00222 for Ethernet/IP, AN00234 for EtherCAT, AN00251 for PROFINET). The attached
‘part 2’ example ABB AC500 V3 PLC programs and libraries are also included which utilise ‘PLCopen motion control’ style
function blocks developed by ABB Motion.

Please contact your local ABB support team if you need legacy support information regarding GDI applications on older
ABB motion products such as MicroFlex e150.

Compatibility

The drive Mint GDI code is written for maximum functionality with e190’s and e180’s running firmware 5902.6 or later.
The latest drive firmware can be downloaded from here:
https://new.abb.com/drives/low-voltage-ac/servo-products

The PLC program and libraries were written using Automation Builder v2.5 or later which can be downloaded from here:
https://new.abb.com/plc/automationbuilder

The PLC Hardware required to run this example is the ABB AC500 V3 PLC range. These come in two main types the
AC500 and AC500eco. As all CPU’s can support Modbus TCP any CPU from this range will do. All AC500 V3 CPU’s have a
type designation with 4 numbers after the PM part of the code e.g. PM5072-T-2ETH, unlike the previous generation
CPU’s which have only 3 e.g. PM564-ETH.

Warranty, Liability:
The user shall be solely responsible for the use of this products described within this file. ABB shall be under no
warranty whatsoever. ABB's liability in connection with application of the products or examples provided or the files
included within this products, irrespective of the legal ground, shall be excluded. The exclusion of liability shall not apply
in the case of intention or gross negligence. The pre-sent declaration shall be governed by and construed in accordance
with the laws of Switzerland under exclusion of its conflict of laws rules and of the Vienna Convention on the
International Sale of Goods (CISG)."



Application note Generic drive interface  AN501

ABB Motion control products 3
https://new.abb.com/drives/low-voltage-ac/servo-products

Contents

Functions available in the GDI (latest is v2.33).......................................................................................................... 4

Communication configuration.........................................................................................................................................................5

Configuring the Generic Drive Interface (GDI) Mint program .................................................................................................... 6

Mint GDI detailed description .......................................................................................................................................................... 7

Example Sequences ......................................................................................................................................................................... 15

PLC Example Program ..................................................................................................................................................................... 17

Creating/Defining Axes .................................................................................................................................................................. 17

GDI Function Blocks ......................................................................................................................................................................... 18

Using the GDI Structures ................................................................................................................................................................ 31

Importing the GDI PLC library to a project ...................................................................................................................................33



Application note Generic drive interface  AN501

ABB Motion control products 4
https://new.abb.com/drives/low-voltage-ac/servo-products

Functions available in the GDI (latest is v2.33)

The sample programs with this application note provide a mechanism for an ABB PLC to:

 Issue a home command
 Issue a find end stop command (home to a pre-set torque limit, firmware version 5868 onwards required)
 Issue a relative move
 Issue an absolute move
 Issue an incremental relative move (and optionally stop a programmed distance past a “fast-capture”

position)
 Issue an incremental absolute move (and optionally stop a programmed distance past a “fast-capture”

position)
 Setup an offset target for an incremental move (i.e. position the axis relative to a captured fast interrupt)
 Jog the axis
 Set the axis position
 Issue a speed reference
 Issue a torque reference
 Enable/disable the axis
 Enable/disable hardware limits
 Reset axis errors
 Perform a controlled stop or crash stop on the axis
 Gear the axis to a secondary encoder input
 Set speed, acceleration times, deceleration times and jerk times for all motion
 Control modulo or non-modulo axes
 Force Digital Output States

At the same time the PLC can monitor status information from the drive including:

 Enabled state
 Ready to be enabled state
 Idle state
 In Position state
 Motor brake state
 Homed state
 Forward limit state
 Reverse limit state
 Fault state
 Stop input state
 Indication of missing fast latch interrupt
 Phase search status
 Error code
 Measured position
 Measured velocity
 Following error
 Axis mode of operation
 RMS current
 Actual Torque in Nm
 IO status

This is all achieved via, what appears to the PLC as, Modbus registers. Because we have used 32 bit data for the
interface each value utilizes two 16-bit Modbus registers which in turn are mapped onto a single 32-bit NETINTEGER or
NETFLOAT location in the drive). An optional watchdog mechanism is also included, allowing the drive to take action
(crash stop and disable by default) in the event of communication loss.



Application note Generic drive interface  AN501

ABB Motion control products 5
https://new.abb.com/drives/low-voltage-ac/servo-products

Communication configuration

MotiFlex e180 and MicroFlex e190 drives include native support for Modbus TCP. Mappings are automatically made
between Modbus registers and Netdata. The Mint Workbench ‘Configuration’ section allows the user to configure the
operating parameters for all of the available communication interfaces. The “Network” section lets the user set the
drive’s IP address for example…

MicroFlex e190 and MotiFlex e180 drives have a default IP address of 192.168.0.1 (when using firmware version 59xx).
This matches the PLC nicely as the ETH1 port this has a default IP address of 192.168.0.10 (i.e. they are both on the same
subnet by default).

The “Modbus Server” section of the Configuration pages allows adjustment of the following drive communication
parameters relating to Modbus TCP:

 Enabled = TRUE
 Port number (502 is the standard port used for Modbus TCP)
 Byte Order (Big endian selected for use with AC500 PLC)
 Word Order (Big endian deselected for use with AC500 PLC)



Application note Generic drive interface  AN501

ABB Motion control products 6
https://new.abb.com/drives/low-voltage-ac/servo-products

Configuring the Generic Drive Interface (GDI) Mint program

The pre-written GDI Mint program only requires only a small amount of customisation to suit the user’s application.
At the beginning of the main program (after the program header) are a set of application related constants…

These should be edited as required to suit the application:

Constant Function

_bRemoteEnable The user can decide whether the PLC has any control of the drive’s enabled status or not

_bUseWatchdog The user can decide whether the drive uses a watchdog mechanism to detect loss of communication from the

PLC or not (if set _true then the drive will crash stop and disable in the event of loss of communication)

_nWatchdogTime The user can set an appropriate timeout value (in ms). The value set here will define the maximum toggle time

seen from the PLC before an error is triggered.

_fScale The user can set a scale factor representing the number of encoder counts produced by the motor for one user

unit of travel.

_nHomeType The user can define what type of home sequence the axis performs when asked to datum (refer to the HOME

keyword in the Mint help file for a full list of available home types and their associated Mint constant values)

_nHomeInput Allows the user to specify which of the drive’s local digital inputs (0,1 or 2) is to be used as the home sensor

input. If a home type is used that does not require an input (e.g., _hmPOSITIVE_INDEX) then set this value to -1

_nFwdLimit /

_nRevLimit

Allows the user to specify which of the drive’s local digital inputs (0,1 or 2) are to be used as directional limit

inputs. If the application does not require travel limits then set these constants to -1

_nLimitMode Allows the user to specify how the drive reacts to activation of one of the limit inputs. By default, the drive will

crash stop and disable (refer to the LIMITMODE keyword in the Mint help file for other options)

_nStopInput Allows the user to specify which of the drive’s local digital inputs (0, 1 or 2) is to be used as the Mint stop input

(activation of the Mint stop input results in the Mint application’s stop event being processed). If there is no

requirement for a stop input, then set this to -1

_nStopMode Allows the user to specify how the drive reacts to activation of the stop input. By default, the drive will

decelerate at the current deceleration rate (see STOPMODE keyword in the help file for other options)

_nInputLevel Allows the user to specify whether inputs are active high or active low. The default value is specified as a binary

value (input 0 is the least significant bit) setting all available input as active high. Note the use of conditional

compilation to ensure the correct number of inputs for the relevant drive platform are configured

_nEncoderWrap If the application is using a modulo axis (e.g., a turntable that requires the axis position to be wrapped in the

range 0 to 360 degrees) then this constant should be set to the number of encoders counts in one full cycle of

the axis. For non-modulo axes set this constant to zero

_fFolErrorFatal Sets the magnitude of following error (difference between demand and measured position) that will result in a

following error trip. This value is typically set after fine tuning when the user can recognise what may be

construed as a “normal” following error during motion.

_nMasterChannel If the application needs to be geared to (i.e. FOLLOW) a master encoder reference then this allows the user to

set which encoder channel is used as the master reference

_nMasterEncMode Allows the user to set the count direction for the master encoder channel (0 or 1 as required)

_nFollowMode Allows the user to set the required Mint FOLLOWMODE (e.g. _fmNO_RAMP, _fmRAMP) – see the Mint Help file

for the full range of available follow modes

_nMotorDirection Allows the user to set which way the motor rotates for a positive move command (set to 0 or 1 as required)



Application note Generic drive interface  AN501

ABB Motion control products 7
https://new.abb.com/drives/low-voltage-ac/servo-products

Mint GDI detailed description

In most applications it is unlikely that the user will need any knowledge of the Mint application (other than editing the
application related data described above). However, for completeness, the Mint GDI is described in full detail in the
following sections.

Data Interface

 Modbus Register Offset Function Drive Internal Address Drive Data Type

0/1 Command Word NETINTEGER (0) 32 bit Integer

2/3 Command Type NETINTEGER (1) 32 bit Integer

4/5 Value NETFLOAT(2) 32 bit IEEE Float

6/7 Speed NETFLOAT(3) 32 bit IEEE Float

8/9 Acceleration Rate NETFLOAT (4) 32 bit IEEE Float

10/11 Deceleration Rate NETFLOAT (5) 32 bit IEEE Float

12/13 Accel Jerk Rate NETFLOAT (6) 32 bit IEEE Float

14/15 Decel Jerk Rate NETFLOAT (7) 32 bit IEEE Float

16/17 Latch Offset NETFLOAT(8) 32 bit IEEE Float

18/19 DO Force NETINTEGER (9) 32 bit Integer

Modbus Register Offset Function Drive Internal Address Drive Data Type

200/201 Status Word NETINTEGER (100) 32 bit Integer

202/203 Measured Position NETFLOAT(101) 32 bit IEEE Float

204/205 Measured Velocity NETFLOAT(102) 32 bit IEEE Float

206/207 Following Error NETFLOAT(103) 32 bit IEEE Float

208/209 Axis Mode NETINTEGER (104) 32 bit Integer

210/211 RMS Current NETFLOAT(105) 32 bit IEEE Float

212/213 Error Code NETINTEGER (106) 32 bit Integer

214/215 DI Status NETINTEGER (107) 32 bit Integer

216/217 DO Status NETINTEGER (108) 32 bit Integer

218/219 Torque Actual (Nm) NETFLOAT(109) 32 bit IEEE Float

We’ll examine each of these functions in detail in the following sections…



Application note Generic drive interface  AN501

ABB Motion control products 8
https://new.abb.com/drives/low-voltage-ac/servo-products

Command Word: Modbus register offsets 0/1, NETINTEGER(0)

The PLC uses bits in the command word to perform specific operations on the drive. The Mint program automatically

calls Event NETDATA0 whenever the PLC writes to the command word.

Bit Function State 0 State 1

0 Remote drive enable

control

Disable drive (if Mint program constant

_nRemoteEnable is set to _true)

Enable drive (if Mint program constant

_nRemoteEnable is set to _true)

1 Enable operation* Motion inhibited Motion permitted

2 Latch control Position latch disabled Position latch enabled

3 Forward hardware

limit control

Forward hardware limit input assigned

(set by Mint constant _nFwdLimit)

Forward hardware limit input de-assigned

4 Reverse hardware limit

control

Reverse hardware limit input assigned

(set by Mint constant _nRevLimit)

Reverse hardware limit input de-assigned

5 Modulo axis Axis has no modulo position.

Absolute moves use full range of position

Axis position wraps to a defined modulo.

Absolute moves use shortest route to position

6 Fault reset control Unused Rising edge to state 1 causes drive fault to be

reset

7 Trigger command Unused Rising edge to state 1 causes the drive to action

the command loaded via PLC output word 1 *

8 Watchdog Watchdog off Watchdog on

9 Ignore following error Following error detection is enabled The drive ignores following errors

10-31 Spare Unused Unused
* Some commands don’t require motion to be performed and can be issued even if the Enable Operation bit is zero (e.g.

Set Position and Cancel commands)

Note that the trigger bit activates the command loaded in the Command Type word. All the other bits in the Command
word operate continually and do not require triggering. The Modulo axis command bit is only utilised by the MOVEA and
INCA motion commands. If using a modulo axis the Mint program should be edited to set the _nEncoderWrap constant
equal to the number of encoder counts in one axis cycle. If Watchdog monitoring is enabled on the drive, then the
Watchdog bit should be toggled frequently enough to prevent the drive’s watchdog timeout occurring (typically toggle
this bit within half of the watchdog timeout value).

Command Type: Modbus register offsets 2/3, NETINTEGER(1)

The PLC uses these registers to load specific commands on the drive. The Mint program example provides a number of
pre-defined command types. These can easily be expanded by adding to the command enumeration list in the Mint
program and including additional code in the Mint ‘ActionTrigger’ task.

The PLC should pre-load the Command Type registers with the appropriate command number (and other output words
containing parameters relating to the command described later) and then trigger this command by generating a rising
(0->1) edge of bit 7 of the Command word

Command Number Function Mint Keyword

0 Home HOME

1 Relative move MOVER

2 Absolute move MOVEA

3 Run at constant speed JOG

4 Relative incremental move INCR

5 Absolute incremental move INCA

6 Set position POS

7 Follow FOLLOW

8 Speed reference VELREF

9 Torque reference TORQUEREF

10 Cancel motion CANCEL

11 Controlled Stop STOP

12 Find End Stop Not applicable (uses a defined sequence of commands)



Application note Generic drive interface  AN501

ABB Motion control products 9
https://new.abb.com/drives/low-voltage-ac/servo-products

Value: Modbus register offsets 4/5, NETFLOAT(2)

The PLC uses these registers to load information that relates to the command to be issued on the drive. The table below
details how the value relates to each specific command:

The PLC should pre-load the Value registers with the appropriate data (and the other output registers containing
parameters relating to the command described both previously and later) and then trigger the command by generating
a rising (0->1) edge of bit 7 of the Command word.

1 The homing back off ratio sets a value for the Mint HOMEBACKOFF keyword (refer to the Mint help file for further
details). This value is just a scalar. All other values are scaled (i.e., use units’ dependant on the Mint SCALEFACTOR setup
on the drive).
2 Target positions for the incremental moves can be modified according to the value stored in the ‘Latch Offset’
registers if the latch control bit is set in the Command word (this is detailed later in the section on Latch Offset).
3 Torque limits in the drive are effectively in series with the CURRENTLIMIT setting so it usual to set a torque limit that
results in an overall current limit reduction (e.g., if CURRENTLIMIT is set to 60% of drive rated current it would be usual
to set a torque limit lower than 60% when finding the end stop)

Speed: Modbus register offsets 6/7, NETFLOAT(3)

The PLC uses these registers to load a slew speed on the drive. The table below details how the Speed value relates to
each specific command:

Speed is a scaled quantity (i.e. the units relate to the SCALEFACTOR setup on the drive). The PLC should pre-load the
Speed registers with the appropriate data (and the other output registers containing parameters relating to the
command described both previously and later) and then trigger the command by generating a rising (0->1) edge of bit 7
of the Command word.

Command Number Function Use of Value

0 Home Homing back off ratio 1

1 Relative move Relative move distance

2 Absolute move Absolute move target

3 Run at constant speed (position loop enabled) Unused

4 Relative incremental move Relative incremental move distance 2

5 Absolute incremental move Absolute incremental move target 2

6 Set position New position value

7 Follow Sets gear ratio

8 Speed reference Unused

9 Torque reference Sets torque value (%)

10 Cancel motion Unused

11 Controlled stop Unused

12 Find End Stop Torque limit (% of drive rated current) 3

Command Number Function Use of Speed

0 Home Sets Homing speed

1 Relative move Sets slew speed for move

2 Absolute move Sets slew speed for move

3 Run at constant speed Jog speed demand

4 Relative incremental move Sets slew speed for move

5 Absolute incremental move Sets slew speed for move

6 Set position Unused

7 Follow Unused

8 Speed reference Sets speed reference (in user units/s)

9 Torque reference Unused

10 Cancel Unused

11 Controlled stop Unused

12 Find End Stop Sets slew speed for seeking end stop



Application note Generic drive interface  AN501

ABB Motion control products 10
https://new.abb.com/drives/low-voltage-ac/servo-products

Acceleration Rate: Modbus register offsets 8/9, NETFLOAT(4)

The PLC uses these registers to load an acceleration rate on the drive. The table below details how the acceleration rate
value relates to each specific command:

The units for acceleration rate are user units per second2. Note that this value must be greater than 0.001. A value
outside of this range will cause the drive to enter the fault state and will report error code 3 (data out of range).

The PLC should pre-load the acceleration rate registers with the appropriate data (and the other output registers
containing parameters relating to the command described both previously and later) and then trigger the command by
generating a rising (0->1) edge of bit 7 of the Command word

Deceleration Rate: Modbus register offsets 10/11, NETFLOAT(5)

The PLC uses these registers to load a deceleration rate on the drive. The table below details how the deceleration rate
value relates to each specific command:

Command Number Function Use of Deceleration rate

0 Home Sets deceleration rate from home speed

1 Relative move Sets deceleration rate from slew speed

2 Absolute move Sets deceleration rate from slew speed

3 Run at constant speed Sets deceleration rate from jog speed

4 Relative incremental move Sets deceleration rate from slew speed

5 Absolute incremental move Sets deceleration rate from slew speed

6 Set position Unused

7 Follow Unused

8 Speed reference Sets deceleration rate from speed

9 Torque reference Unused

10 Cancel Unused

11 Controlled stop Sets deceleration rate from current speed

12 Find End Stop Sets deceleration rate from slew speed

The units for deceleration rate are user units per second2. Note that this value must be greater than 0.001. A value
outside of this range will cause the drive to enter the fault state and will report error code 3 (data out of range).

The PLC should pre-load the deceleration rate registers with the appropriate data (and the other output registers
containing parameters relating to the command described both previously and later) and then trigger the command by
generating a rising (0->1) edge of bit 7 of the Command word

Command Number Function Use of Acceleration Rate

0 Home Sets acceleration rate to home speed

1 Relative move Sets acceleration rate to slew speed

2 Absolute move Sets acceleration rate to slew speed

3 Run at constant speed Sets acceleration rate to jog speed

4 Relative incremental move Sets acceleration rate to slew speed

5 Absolute incremental move Sets acceleration rate to slew speed

6 Set position Unused

7 Follow Unused

8 Speed reference Sets acceleration rate to speed demand

9 Torque reference Unused

10 Cancel Unused

11 Controlled stop Unused

12 Find End Stop Sets acceleration rate to slew speed



Application note Generic drive interface  AN501

ABB Motion control products 11
https://new.abb.com/drives/low-voltage-ac/servo-products

Acceleration Jerk Rate: Modus register offsets 12/13, NETFLOAT(6)

The PLC uses these registers to load an acceleration jerk rate (S-ramp) on the drive. The table below details how the
acceleration jerk rate value relates to each specific command:

The units for acceleration jerk rate are user units per second3. Note that this value must be greater than 0.001. A value
outside of this range will cause the drive to enter the fault state and will report error code 3 (data out of range).

Note: Setting either acceleration jerk rate or deceleration jerk rate to zero will force the drive to use a trapezoidal
motion profile. If both these words contain valid non-zero values, the drive will use an S-ramped motion profile. The PLC
should pre-load the acceleration jerk rate registers with the appropriate data (and the other output registers containing
parameters relating to the command described both previously and later) and then trigger the command by generating
a rising (0->1) edge of bit 7 of the Command word

Deceleration Jerk Rate: Modbus register offsets 14/15, NETFLOAT(7)

The PLC uses these registers to load a deceleration jerk rate (S-ramp) on the drive. The table below details how the
deceleration jerk rate value relates to each specific command:

The units for deceleration jerk rate are user units per second3. Note that this value must be greater than 0.001. A value
outside of this range will cause the drive to enter the fault state and will report error code 3 (data out of range).
Setting either acceleration jerk rate or deceleration jerk rate to zero will force the drive to use a trapezoidal motion
profile. If both these words contain valid non-zero values, the drive will use an S-ramped motion profile.

The PLC should pre-load the deceleration jerk rate registers with the appropriate data (and the other output registers
containing parameters relating to the command described both previously and later) and then trigger the command by
generating a rising (0->1) edge of bit 7 of the Command word.

Command Number Function Use of Acceleration Jerk Rate
0 Home Sets acceleration jerk rate to home acceleration rate
1 Relative move Sets acceleration jerk rate to acceleration rate
2 Absolute move Sets acceleration jerk rate to acceleration rate
3 Run at constant speed Sets acceleration jerk rate to acceleration rate
4 Relative incremental move Sets acceleration jerk rate to acceleration rate
5 Absolute incremental move Sets acceleration jerk rate to acceleration rate
6 Set position Unused
7 Follow Unused
8 Speed reference Sets acceleration jerk rate to acceleration rate
9 Torque reference Unused

10 Cancel Unused
11 Controlled stop Unused
12 Find End Stop Sets acceleration jerk rate to acceleration rate

Command Number Function Use of Deceleration Jerk Rate

0 Home Sets deceleration jerk rate to home deceleration rate

1 Relative move Sets deceleration jerk rate to deceleration rate

2 Absolute move Sets deceleration jerk rate to deceleration rate

3 Run at constant speed Sets deceleration jerk rate to deceleration rate

4 Relative incremental move Sets deceleration jerk rate to deceleration rate

5 Absolute incremental move Sets deceleration jerk rate to deceleration rate

6 Set position Unused

7 Follow Unused

8 Speed reference Sets deceleration jerk rate to deceleration rate

9 Torque reference Unused

10 Cancel Unused

11 Controlled stop Sets deceleration jerk rate to deceleration rate

12 Find End Stop Sets deceleration jerk rate to deceleration rate



Application note Generic drive interface  AN501

ABB Motion control products 12
https://new.abb.com/drives/low-voltage-ac/servo-products

Latch Offset: Modbus register offsets 16/17, NETFLOAT(8)

The PLC uses these registers to load an offset distance from a captured fast interrupt position that is subsequently
used as a new target position for the drive (this function is typically used on Indexing Conveyors where the axis must
always stop at a fixed distance past a reference sensor). The table below details how the Latch Offset value relates to
each specific command:

If the PLC has set bit 2 of the Command word (to enable ‘fast’ position latching) and the drive receives a latch event
during either a relative incremental move or an absolute incremental move, then the drive will use the data contained in
the Latch Offset word to set a new target position for the move. The move target becomes the captured (fast) position
plus the defined offset distance.

The Latch Offset is a scaled quantity (i.e., the units relate to the SCALEFACTOR setup on the drive). The PLC should pre-
load the Latch Offset registers with the appropriate data (and the other output registers containing parameters
relating to the command described previously) and then trigger one of the incremental move commands by generating
a rising (0->1) edge of bit 7 of the Command word.

DO Force: Modbus register offsets 18/19, NETFLOAT(9)

The PLC uses these registers to force digital outputs on or off. :

Note: This will only work as long as there are no assigned functions within the Mint program – such as

motorbrakeoutput(0)

Command Number Function Use of Latch Offset

0 Home Unused

1 Relative move Unused

2 Absolute move Unused

3 Run at constant speed Unused

4 Relative incremental move Sets offset from latch position

5 Absolute incremental move Sets offset from latch position

6 Set position Unused

7 Follow Unused

8 Speed reference Unused

9 Torque reference Unused

10 Cancel Unused

11 Controlled stop Unused

12 Find End Stop Unused

Command Number Function Use of Latch Offset

0 Force Digital Output 0 Unused

1 Force Digital Output 1 Unused

2 Force Digital Output 2 Unused

3 Force Digital Output 3 (e180 + e190 only with SIO-01) Unused

4 Force Digital Output 4 (e180+ e190 only with SIO-01) Unused

5 Force Digital Output 5 (e190 only with SIO-01) Unused

6 Force Digital Output 6 (e190 only with SIO-01) Unused



Application note Generic drive interface  AN501

ABB Motion control products 13
https://new.abb.com/drives/low-voltage-ac/servo-products

Status Word: Modbus register offsets 200/201, NETINTEGER(100)

The PLC uses bits in the status word to determine specific conditions on the drive. The PLC can use these bits to
determine when previously issued commands have completed. The Mint program automatically populates the bits in
this word.

Bit Function State 0 State 1

0 Enable status Drive is disabled Drive is enabled

1 Idle status Drive is not IDLE1 Drive is IDLE1

2 In Position Drive is not within IDLEPOS2 value of

last target position

Drive is within IDLEPOS2 value if last target

position

3 Motor brake status3 Motor brake is released Motor brake is applied

4 Homed status Drive has not completed a successful

home sequence

Drive has completed a successful home

sequence

5 Forward limit status Forward limit input is inactive Forward limit input is active

6 Reverse limit status Reverse limit input is inactive Reverse limit input is active

7 Fault status No fault Fault present on drive (refer to Error code word

for additional information)

8 Stop input state Stop input inactive Stop input active

9 Ready to enable state Drive is not ready to be enabled Drive is ready to be enabled

10-11 Control mode These two bits combined report the active control mode of the drive

(Current/Speed/Position control) – refer to CONTROLMODE in the Mint help file

12 Trigger state Command word bit 7 is clear Command word bit 7 is set

13 Enable operation state Command word bit 1 is clear Command word bit 1 is set

14 Missed Latch state Latch (if used) has been detected Latch (if used) has been missed

15 Fault Reset state Command word bit 6 is clear Command word bit 6 is set

16 Phase search status Phase search not complete Phase search completed

17-31 Spare

1 Refer to Mint help file topic on IDLE for details of what constitutes the idle condition (see also IDLEMODE, IDLEVEL,
IDLEPOS and IDLETIME)
2 Refer to Mint help file topic on IDLEPOS
3 Motor brake control is only active if Mint Workbench has been used to set the various MOTORBRAKExxxxxxx
parameters associated with this function. Refer to all Mint help file topics starting with MOTORBRAKE

Measured Position: Modbus register offsets 202/203, NETFLOAT(101)

The PLC uses these registers to read the current position of the drive. This value is a scaled quantity (i.e. it uses units
dependant on the Mint SCALEFACTOR setup on the drive). To allow the GDI to control modulo axes as well as non-
modulo axes this register actually reflects the scaled value of ENCODER(0). This allows the apparent position of the axis
to be wrapped according to the setting of ENCODERWRAP(0). Refer to the Mint help file topics on ENCODER and
ENCODERWRAP for further details.

Measured Velocity: Modbus register offsets 204/205, NETFLOAT(102)

The PLC uses these registers to read the current velocity of the drive. This value is a scaled quantity (i.e. it uses units
dependant on the Mint SCALEFACTOR setup on the drive). Refer to the Mint help file topic on VEL for further details.

Following Error: Modbus register offsets 206/207, NETFLOAT(103)

The PLC uses these registers to read the current positional error of the drive. This value is a scaled quantity (i.e. it uses
units dependant on the Mint SCALEFACTOR setup on the drive). Refer to the Mint help file topic on FOLERROR for
further details.

Axis Mode: Modbus register offsets 208/209, NETINTEGER(104)

The PLC uses these registers to read the current mode of operation on the drive. Refer to the Mint help file topic on
AXISMODE for further details.



Application note Generic drive interface  AN501

ABB Motion control products 14
https://new.abb.com/drives/low-voltage-ac/servo-products

Measured RMS Current: Modbus register offsets 210/21, NETFLOAT(105)

The PLC uses these registers to read the measured RMS current being produced by the drive (in amps).  Refer to the

Mint help file topic on CURRENTMEAS for further details.

Error Code: Modbus register offsets 212/213, NETINTEGER(106)

The PLC uses these registers to read the current fault/error code from the drive. A zero value indicates no fault is active
(also bit 7 of the Status word indicates whether a fault is present or not). Refer to Mint help file topic on ERRCODE for
further details.

DI Status: Modbus register offsets 214/215, NETINTEGER(107)

The PLC uses these registers to read the status of the drive’s digital inputs. This will look at the current state of the
digital inputs. A bit will be set if the input is active. For edge triggered inputs, the bit will be set if an edge has been
latched.

DO Status: Modbus register offsets 216/217, NETINTEGER(108)

The PLC uses these registers to read the status of the drive’s digital Outputs.

Torque Actual (Nm): Modbus register offsets 218/219, NETINTEGER(109)

The PLC uses these registers to read the actual torque of the motor as calculated by the drive. This value is expressed in
Nm.



Application note Generic drive interface  AN501

ABB Motion control products 15
https://new.abb.com/drives/low-voltage-ac/servo-products

Example Sequences

The IEC 61131 PLC function blocks within the example programs included with this application note automate the
sequences described below making use of the GDI extremely simple for all applications. These sequences are only
included for information should the user wish to design/implement their own sequence control functions.

Enabling the drive

The Mint constant _bRemoteEnable is set to _True in the downloaded Mint program (so the PLC ultimately controls the
enable state). Ensure the local interlocks (e.g., stop input, drive enable input, AC supply) are all present on the drive.
If the drive is ready to be enabled the status word will indicate this via the ‘Ready to Enable’ bit
If so then Enable bit can be set in the Command word
The drive should enable and bit 0 of the Status word should be set to indicate this

Issuing a Home

Ensure the drive is enabled (see above)
Load a value for the home back off ratio into the Value word
Load a value for the homing speed into the Speed word
Load a value for the homing acceleration rate into the Accel word
Load a value for the homing deceleration rate into the Decel word
If required, load values for acceleration and deceleration jerk rates
Write 0 to the Command type word to set Homing as the command type
Write a 1 to bit 1 of the Command word to allow motion to be performed
Trigger the move by writing a 1 to bit 7 of the Command word
The programmed move should take place. Use the status bits (Idle, InPos, Homed and Fault) to examine this.
Write a 0 to bit 7 of the Command word ready for the next command.

Issuing a relative move

Ensure the drive is enabled (see above)
Load a value for the move distance into the Value word
Load a value for the slew speed for the move into the Speed word
Load a value for the acceleration time into the Accel word
Load a value for the deceleration time into the Decel word
If required, load values for acceleration and deceleration jerk rates
Write 1 to the Command type word to select relative move
Write a 1 to bit 1 of the Command word to allow motion to be performed
Trigger the move by writing a 1 to bit 7 of the Command word
The programmed move should take place. Use the status bits (Idle, InPos and Fault) to examine this.
Write a 0 to bit 7 of the Command word ready for the next command.

Note: There is no need to re-issue values for all or any of the parameters that don’t need to change if further moves are
required – the drive will retain the current values.

Issuing a Jog

Ensure the drive is enabled (see above) and Ensure bit 1 of the command word is set to allow motion
Load a value for the Jog Speed into the Speed word
Set acceleration/deceleration and Jerk rates as required (see previous example)
Write 3 to the Command type word to select Jog
Set bit 7 of the Command word to 1 to start the axis jogging

Jog can be stopped by either writing a value of zero, clearing the Enable Operation bit, issuing a new command,
activating the local stop input on the drive (if assigned) or disabling the drive



Application note Generic drive interface  AN501

ABB Motion control products 16
https://new.abb.com/drives/low-voltage-ac/servo-products

Issuing a Follow

Ensure the drive is enabled (see above)
Ensure bit 1 of the command word is set to allow motion
Load a value for the follow ratio into the Value word
Ensure the axis is either IDLE (Bit 1 of Status word , NETINTEGER(100) is set) or already following (Axismode /
NETINTEGER(104) returns a value of 128)
Write 7 to the Command type word to select Following
Set bit 7 of the Command word to 1 to start the axis following the master reference (or to issue a new follow ratio if the
axis is already following)

Follow can be stopped by either writing a value of zero and triggering another follow, clearing the Enable Operation bit,
issuing a new command, activating the local stop input on the drive (if assigned) or disabling the drive.

Issuing a Speed Reference

Ensure the drive is enabled (see above)
Ensure bit 1 of the command word is set to allow motion
Load a value for the speed reference (in user units/sec) into the Speed word
Load values for accel/decel/acceljerk/deceljerk as described previously under ‘Issuing a Jog’
Write 8 to the Command type word to select Speed reference mode
Set bit 7 of the Command word to 1 to start the axis running at the programmed speed reference

Speed reference can be stopped by writing a speed reference of zero, clearing the Enable Operation bit, issuing a new
command, activating the local stop input on the drive (if assigned) or disabling the drive. Note that until a new
command is sent requiring a different mode of operation the drive will remain in speed reference mode. Should the user
require the drive to return to position control mode holding its current position with full torque available the PLC should
issue a relative move of zero units (Command type 1 with Value of 0).

Issuing a Torque Reference

Ensure the drive is enabled (see above)
Ensure bit 1 of the command word is set to allow motion
Load a value for the torque reference (as a percentage) into the value word
Write 9 to the Command type word to select torque reference mode
Set bit 7 of the Command word to 1 to start the axis running at the programmed torque reference

Torque reference can be stopped by clearing the Enable Operation bit, issuing a new command, activating the local stop
input on the drive (if assigned) or disabling the drive. Note that until a new command is sent requiring a different mode
of operation the drive will remain in torque reference mode. Should the user require the drive to return to position
control mode holding its current position with full torque available the PLC should issue a relative move of zero units
(Command type 1 with Value of 0)

Finding an end stop (home to torque limit)

Ensure the drive is enabled (see above)
Ensure bit 1 of the command word is set to allow motion
Load a value for the torque limit (as a percentage of the drive’s rated current) into the value word
Load a value for the velocity reference used to find the end stop (in user units/sec) into the speed word (the sign of this
value determines the direction of travel)
Load values for accel/decel/acceljerk/deceljerk as described previously under ‘Issuing a Jog’
Write 12 to the Command type word to select find end stop mode
Set bit 7 of the Command word to 1 to start the axis running at the programmed velocity reference

Find end stop can be stopped by clearing the Enable Operation bit, issuing a new command, activating the local stop
input on the drive (if assigned) or disabling the drive. Note that until a new command is sent requiring a different mode
of operation the drive will remain position control mode (holding position at the determined end stop).



Application note Generic drive interface  AN501

ABB Motion control products 17
https://new.abb.com/drives/low-voltage-ac/servo-products

PLC Example Program

An example program to control drives is included with the accompanying zip file with application note (written for
control via Modbus TCP) which comprises three main elements:

1. Function blocks for each motion command type included in the Mint Generic Drive Interface (GDI). The function
blocks are very similar in operation to the PLCopen function blocks for motion control

2. A data interface function block. This code is responsible for routing the application-level data (e.g. from the
function block usage) to the Modbus communication level

3. Function block to read/write Modbus data

To illustrate the use of the PLC code and the Mint GDI, two visualisations are included with each PLC example program.

1. A visualisation to operate each of the available GDI function blocks and monitor drive status information. This
visualisation is comprised of several smaller pre-written visualisations (also included). These can be re-used for
additional axes very easily, just by assigning placeholders to the corresponding function blocks associated with
each new axes

2. A visualisation to monitor the operation of the Modbus data transfer and monitor the status of Modbus
communication

Creating/Defining Axes

The example PLC program is written to allow one drive to be controlled (via the GDI) over Modbus TCP. However, it is
very simple to add additional axes.

For Modbus TCP the procedure to add additional axes is as follows:

1. From the “Resources” tab of the CoDeSys application double-click the “GDI_Global_Variables” icon…

2. For every additional axis required add an additional declaration for an axis structure of type TGDIAxisRef. The
example below shows two additional axes…

(* Add axis data types as required *)
tAxis1 ; TGDIAxisRef;
tAxis2 ; TGDIAxisRef;

              tAxis3 : TGDIAxisRef;

3. Edit the declarations for WatchdogTime as required. This is the time base at which the drive is expecting the
‘watchdog bit’ to toggle on and off.

(*  Watchdog time....needs to be half the drive's watchdog time (or less) *)
 WatchdogTime : TIME := T#500MS;

4. Now either double-click the PLC_PRG_1 POU icon or create a new POU.…

To allow the PLC to exchange control and status data with an additional drive include a call to a new instance of
the GDI_DATAINTERFACE_TCP function block (passing the relevant Axis structure and IP address as a
parameter to this block).

5. Add application code, as required, to the PLC program for control of the additional axis (e.g. include new
instances of calls to the required GDI function blocks)

The number of axes that can be controlled by the PLC is a function of the PLC’s available memory. The example
programs have been written for a PM5072-T-2ETH eco-PLC which is provided with 1024kB of memory for application
code.
For reference, the dual axis example programs use approximately 126kB (12%) of the PM5072’s available program code
and data storage. Each additional axis uses a further 13kb of this storage and (1.1%) of total storage space.



Application note Generic drive interface  AN501

ABB Motion control products 18
https://new.abb.com/drives/low-voltage-ac/servo-products

GDI Function Blocks

The following sections detail the use of the PLC GDI function blocks:

GDI_POWER

This function block is used to enable / disable an axis. The enable input enables the power stage in the drive and not the
function block itself.

Type Description

VAR_IN_OUT

Axis TGDIAxisRef Reference to the axis structure

VAR_INPUT

Enable BOOL Whilst True the PLC will request the axis to be enabled

EnablePosNeg BOOL Whist True motion in both directions is permitted. If False motion is prevented (or a stop

is performed if motion is already in progress)

VAR_OUTPUT

Status BOOL Indicates whether the axis is enabled (True) or not (False)

Error BOOL Set True if the axis is in error

ErrorID DINT Indicates the Mint error code reported by the axis

GDI_HOME

This function block is used to datum an axis to a dedicated home switch/sensor. The details of the datum sequence are
dependent on the Home type set in the Mint GDI program. The Position input is used to set the axis position at the end
of a successful datum sequence.

Type Description

VAR_IN_OUT

Axis TGDIAxisRef Reference to the axis structure

VAR_INPUT

Execute BOOL Start the datum sequence on a rising edge

Position REAL Absolute position to be set at the end of a successful datum sequence

HomeSpeed REAL Homing speed in user units/sec

HomeAccel REAL Homing accel rate in user units/sec2

HomeDecel REAL Homing decel rate in user units/sec2

HomeAccelJerk REAL Homing accel jerk rate in user units/sec3 (set to 0 for trapezoidal motion)

HomeDecelJerk REAL Homing decel jerk rate in user units/sec3 (set to 0 for trapezoidal motion)

HomeBackOff REAL Ratio of Home speed to backoff speed

VAR_OUTPUT

Done BOOL Indicates that the axis has homed successfully. If the Execute input is removed during homing
and the axis completes the home sequence the Done output will be set for one PLC scan. If
home is successful and the Execute input remains True then the Done output will remain set

Busy BOOL Set True whilst the homing sequence is in progress

Error BOOL Set True if the axis is in error

ErrorID DINT Indicates the Mint error code reported by the axis



Application note Generic drive interface  AN501

ABB Motion control products 19
https://new.abb.com/drives/low-voltage-ac/servo-products

GDI_FIND_END_STOP

This function block can be used as an alternative to GDI_HOME to datum an axis to an end of travel physical limit in the
absence of a dedicated home switch/sensor. The Position input is used to set the axis position at the end of a
successful datum sequence. Here the torque limit used to determine the end stop position is in % of drive nominal
current

Type Description

VAR_IN_OUT

Axis TGDIAxisRef Reference to the axis structure

VAR_INPUT

Execute BOOL Start the datum sequence on a rising edge

Position REAL Absolute position to be set at the end of a successful datum sequence

FindSpeed REAL Speed in user units/sec (+ve value results in +ve direction, -ve value results in –ve direction)

FindAccel REAL Homing accel rate in user units/sec2

FindDecel REAL Homing decel rate in user units/sec2

FindAccelJerk REAL Homing accel jerk rate in user units/sec3 (set to 0 for trapezoidal motion)

FindDecelJerk REAL Homing decel jerk rate in user units/sec3 (set to 0 for trapezoidal motion)

Torque Limit REAL Torque (current) limit expressed as a percentage of drive rated current

VAR_OUTPUT

Done BOOL Indicates that the axis has found the end stop successfully. If the Execute input is removed

during homing and the axis completes the find end stop sequence the Done output will be set

for one PLC scan. If the Execute input remains True then the Done output will also remain set

(providing the find end stop sequence was successful)

Busy BOOL Set True whilst the find end stop sequence is in progress

Error BOOL Set True if the axis is in error

ErrorID DINT Indicates the Mint error code reported by the axis



Application note Generic drive interface  AN501

ABB Motion control products 20
https://new.abb.com/drives/low-voltage-ac/servo-products

GDI_FIND_END_STOP_Nm

This function block can be used as an alternative to GDI_HOME to datum an axis to an end of travel physical limit in the
absence of a dedicated home switch/sensor. The Position input is used to set the axis position at the end of a
successful datum sequence. This is an alternative to GDI_FIND_END_STOP here the torque limit used to determine the
end stop position is in Newton Meters (Nm) as calculated at the motor drive shaft.

Type Description

VAR_IN_OUT

Axis TGDIAxisRef Reference to the axis structure

VAR_INPUT

Execute BOOL Start the datum sequence on a rising edge

Position REAL Absolute position to be set at the end of a successful datum sequence

FindSpeed REAL Speed in user units/sec (+ve value results in +ve direction, -ve value results in –ve direction)

FindAccel REAL Homing accel rate in user units/sec2

FindDecel REAL Homing decel rate in user units/sec2

FindAccelJerk REAL Homing accel jerk rate in user units/sec3 (set to 0 for trapezoidal motion)

FindDecelJerk REAL Homing decel jerk rate in user units/sec3 (set to 0 for trapezoidal motion)

Torque Limit REAL Torque limit expressed in Nm at the motor drive shaft

VAR_OUTPUT

Done BOOL Indicates that the axis has found the end stop successfully. If the Execute input is removed

during homing and the axis completes the find end stop sequence the Done output will be set

for one PLC scan. If the Execute input remains True then the Done output will also remain set

(providing the find end stop sequence was successful)

Busy BOOL Set True whilst the find end stop sequence is in progress

Error BOOL Set True if the axis is in error

ErrorID DINT Indicates the Mint error code reported by the axis



Application note Generic drive interface  AN501

ABB Motion control products 21
https://new.abb.com/drives/low-voltage-ac/servo-products

GDI_MOVERELATIVE

This function block is used to command a controlled motion of a specified distance relative to the set position at the
time of the execution.

Type Description

VAR_IN_OUT

Axis TGDIAxisRef Reference to the axis structure

VAR_INPUT

Execute BOOL Start the motion on a rising edge

Distance REAL Relative distance for the move (in user units)

Velocity REAL Value for the maximum speed (not necessarily reached) in user units/sec

Accel REAL Accel rate in user units/sec2

Decel REAL Decel rate in user units/sec2

AccelJerk REAL Accel jerk rate in user units/sec3 (set to 0 for trapezoidal motion)

DecelJerk REAL Decel jerk rate in user units/sec3 (set to 0 for trapezoidal motion)

VAR_OUTPUT

Done BOOL Indicates that the axis has reached the target position successfully. If the Execute input
is removed during motion and the relative move completes the Done output will be set
True for one PLC scan. If the Execute input remains True then the Done output will also
remain set (providing the target position was successfully achieved)

Busy BOOL Set True whilst the relative move is in progress

Error BOOL Set True if the axis is in error

ErrorID DINT Indicates the Mint error code reported by the axis



Application note Generic drive interface  AN501

ABB Motion control products 22
https://new.abb.com/drives/low-voltage-ac/servo-products

GDI_MOVEABSOLUTE

This function block is used to command a controlled motion to a specified absolute position. This function can be used
with Modulo axes (in which case the shortest route to the specified position will be taken).

Type Description

VAR_IN_OUT

Axis TGDIAxisRef Reference to the axis structure

VAR_INPUT

Execute BOOL Start the motion on a rising edge

Position REAL Target position for the move (in user units)

Velocity REAL Value for the maximum speed (not necessarily reached) in user units/sec

Accel REAL Accel rate in user units/sec2

Decel REAL Decel rate in user units/sec2

AccelJerk REAL Accel jerk rate in user units/sec3 (set to 0 for trapezoidal motion)

DecelJerk REAL Decel jerk rate in user units/sec3 (set to 0 for trapezoidal motion)

ModuloAxis BOOL Defines whether the axis is a modulo axis (i.e. using an ENCODERWRAP to define travel within
one cycle). Absolute moves when using modulo axes are always implemented via the shortest
path (e.g. an absolute move to 20 degrees from 350 degrees on a 0-360 degree modulo axis will
result in forward travel of 30 degrees)

VAR_OUTPUT

Done BOOL Indicates that the axis has reached the target position successfully. If the Execute input is
removed during motion and the absolute move completes the Done output will be set True for
one PLC scan. If the Execute input remains True then the Done output will also remain set
(providing the target position was successfully achieved)

Busy BOOL Set True whilst the absolute move is in progress

Error BOOL Set True if the axis is in error

ErrorID DINT Indicates the Mint error code reported by the axis



Application note Generic drive interface  AN501

ABB Motion control products 23
https://new.abb.com/drives/low-voltage-ac/servo-products

GDI_INCR

This function block is used to command a controlled motion of a specified distance relative to the target position at the
time of the execution. The target position resulting from a call to this function block can be modified whilst motion is
still in progress by any of the following methods:

a. By issuing another GDI_INCR or GDI_INCA function (providing input parameter BufferMode is True)
b. By setting the input parameter Latchmode to True and specifying a value for the input parameter LatchOffset.

Mint code on the drive will then automatically modify the axis target position such that it stops the
‘LatchOffset distance’ past the axis position captured by the defined fast interrupt. A bit within the Axis status
word (btLatchMissed) is available to indicate failure to detect this fast interrupt (the example programs show
how missing 3 latches in a row can be detected – this condition may then be used to alert the operator to a
system failure for example).

GDI_INCR is also useful if the application needs to modify SPEED/ACCEL/DECEL of a relative move already in progress.
Moves loaded using GDI_MOVERELATIVE are profiled using the SPEED/ACCEL/DECEL loaded at the time, and these
cannot be changed once the move has started. By using GDI_INCR with the input parameter BufferMode set True then it
is possible to modify the profile parameters by loading another GDI_INCR (with new SPEED/ACCEL/DECEL) with input
parameter Distance set to zero.

Type Description

VAR_IN_OUT

Axis TGDIAxisRef Reference to the axis structure

VAR_INPUT

Execute BOOL Start the motion on a rising edge

Distance REAL Relative distance for the move (in user units)

Velocity REAL Value for the maximum speed (not necessarily reached) in user units/sec

Accel REAL Accel rate in user units/sec2

Decel REAL Decel rate in user units/sec2

AccelJerk REAL Accel jerk rate in user units/sec3 (set to 0 for trapezoidal motion)

DecelJerk REAL Decel jerk rate in user units/sec3 (set to 0 for trapezoidal motion)

LatchMode BOOL Sets whether the axis should utilise the configured fast latch interrupt and set a new target
position ‘LatchOffset’ user units past the captured position

LatchOffset REAL Defines the distance past the captured fast position (in user units) the target for GDI_INCR
should be modified by (when input parameter LatchMode is set True)

BufferMode BOOL Defines whether the function block should set the Done output and complete as soon as
the move has been loaded. Setting BufferMode True allows the application to trigger
further incremental moves whilst existing moves are in progress

VAR_OUTPUT

Done BOOL When BufferMode is set False this indicates that the axis has reached the target position
successfully. If the Execute input is removed during motion and the relative move
completes the Done output will be set True for one PLC scan. If the Execute input remains
True then the Done output will also remain set (providing the target position was
successfully achieved). When BufferMode is set True the Done output is set for one PLC
scan to indicate successful loading of the move

Busy BOOL Set True whilst the function block is in progress

Error BOOL Set True if the axis is in error

ErrorID DINT Indicates the Mint error code reported by the axis



Application note Generic drive interface  AN501

ABB Motion control products 24
https://new.abb.com/drives/low-voltage-ac/servo-products

GDI_INCA

This function block is used to command a controlled motion to a specified absolute position. This function differs from
GDI_MOVEABSOLUTE in that the target position can be modified whilst motion is in progress by any of the following
methods:

a. By issuing another GDI_INCR or GDI_INCA function (providing input parameter BufferMode is True)
b. By setting the input parameter Latchmode to True and specifying a value for the input parameter LatchOffset.

Mint code on the drive will then automatically modify the axis target position such that it stops the LatchOffset
distance past the axis position captured by the defined fast interrupt. A bit within the Axis status word
(btLatchMissed) is available to indicate failure to detect this fast interrupt (the example programs show how
missing 3 latches in a row can be detected – this condition may then be used to alert the operator to a system
failure for example).

Like GDI_INCR GDI_INCA is also useful if the application needs to modify SPEED/ACCEL/DECEL of an absolute move
already in progress.

Type Description

VAR_IN_OUT

Axis TGDIAxisRef Reference to the axis structure

VAR_INPUT

Execute BOOL Start the motion on a rising edge

Position REAL Absolute position target for the move (in user units)

Velocity REAL Value for the maximum speed (not necessarily reached) in user units/sec

Accel REAL Accel rate in user units/sec2

Decel REAL Decel rate in user units/sec2

AccelJerk REAL Accel jerk rate in user units/sec3 (set to 0 for trapezoidal motion)

DecelJerk REAL Decel jerk rate in user units/sec3 (set to 0 for trapezoidal motion)

LatchMode BOOL Sets whether the axis should utilise the configured fast latch interrupt and set a new

target position ‘LatchOffset’ user units past the captured position

ModuloAxis BOOL Defines whether the axis is a modulo axis (i.e. using an ENCODERWRAP to define travel
within one cycle). Absolute moves when using modulo axes are always implemented via
the shortest path (e.g. an absolute move to 20 degrees from 350 degrees on a 0-360
degree modulo axis will result in forward travel of 30 degrees)

LatchOffset REAL Defines the distance past the captured fast position (in user units) the target for
GDI_INCA should be modified by (when input parameter LatchMode is set True)

BufferMode BOOL Defines whether the function block should set the Done output and complete as soon as
the move has been loaded. Setting BufferMode True allows the application to trigger
further incremental moves whilst existing moves are in progress

VAR_OUTPUT

Done BOOL When BufferMode is set False this indicates that the axis has reached the target position
successfully. If the Execute input is removed during motion and the relative move
completes the Done output will be set True for one PLC scan. If the Execute input
remains True then the Done output will also remain set (providing the target position
was successfully achieved). When BufferMode is set True the Done output is set for one
PLC scan to indicate successful loading of the move

Busy BOOL Set True whilst the function block is in progress

Error BOOL Set True if the axis is in error

ErrorID DINT Indicates the Mint error code reported by the axis



Application note Generic drive interface  AN501

ABB Motion control products 25
https://new.abb.com/drives/low-voltage-ac/servo-products

GDI_JOG

This function block is used to command a constant speed move on the axis (using the position loop controller in the
drive). Motion is performed as long as the Execute input remains True.

Type Description

VAR_IN_OUT

Axis TGDIAxisRef Reference to the axis structure

VAR_INPUT

Execute BOOL Start the motion on a rising edge and maintain motion as long as the input remains True.

Motion ramps to zero speed at the configured Decel rate when Execute becomes False

JogSpeed REAL Value for the speed the axis will reach in user units/sec

Accel REAL Accel rate in user units/sec2

Decel REAL Decel rate in user units/sec2

AccelJerk REAL Accel jerk rate in user units/sec3 (set to 0 for trapezoidal motion)

DecelJerk REAL Decel jerk rate in user units/sec3 (set to 0 for trapezoidal motion)

VAR_OUTPUT

Done BOOL Set True as soon as the Jog command has been successfully issued and remains set until

Execute becomes False or an axis error occurs

Busy BOOL Set True whilst the function block is in progress

Error BOOL Set True if the axis is in error

ErrorID DINT Indicates the Mint error code reported by the axis



Application note Generic drive interface  AN501

ABB Motion control products 26
https://new.abb.com/drives/low-voltage-ac/servo-products

GDI_SETPOSITION

This function block is used to set the axis position (encoder and position values on the drive) to a programmed value.
The axis must be idle when this function is called, otherwise the axis will return an “action not possible - motion in
progress” error (Error code 10). If the axis is using an absolute encoder this will set/teach a new absolute position (GDI
Mint program v2.17 onwards).

Type Description

VAR_IN_OUT

Axis TGDIAxisRef Reference to the axis structure

VAR_INPUT

Execute BOOL Set the new position on a rising edge

Position REAL Value for the axis position to be set (in user units)

VAR_OUTPUT

Done BOOL Set True as soon as the command has been issued (regardless of whether it was

successful or not – use the Error output to determine whether the command was

successful). Remains True until the Execute input is removed. If the Execute input is

removed before the Done bit is set then the Done bit will be set for a single PLC cycle.

Busy BOOL Set True whilst the function block is in progress (cleared once the Done bit is set)

Error BOOL Set True if the axis is in error

ErrorID DINT Indicates the Mint error code reported by the axis

GDI_STOP

This function block is used to perform a controlled stop on the axis at the programmed deceleration rate.

Type Description

VAR_IN_OUT

Axis TGDIAxisRef Reference to the axis structure

VAR_INPUT

Execute BOOL Start the controlled stop on a rising edge

Decel REAL Decel rate in user units/sec2

DecelJerk REAL Decel jerk rate in user units/sec3 (set to 0 for trapezoidal motion)

VAR_OUTPUT

Done BOOL Set True when the axis becomes idle after completing the controlled stop or if an error
occurs when the stop command is issued. Remains True until the Execute input is
removed. If the Execute input is removed before the Done bit is set then the Done bit
will be set for a single PLC cycle.

Busy BOOL Set True whilst the stop is in progress – cleared once the Done bit is set

Error BOOL Set True if the axis is in error

ErrorID DINT Indicates the Mint error code reported by the axis



Application note Generic drive interface  AN501

ABB Motion control products 27
https://new.abb.com/drives/low-voltage-ac/servo-products

GDI_CLEAR

This function block is used to crash stop the axis and interrupt any motion that is in progress. The axis will remain
enabled (providing GDI_POWER is requesting the enabled state and the axis is not in error).

Type Description

VAR_IN_OUT

Axis TGDIAxisRef Reference to the axis structure

VAR_INPUT

Execute BOOL Start the crash stop on a rising edge

VAR_OUTPUT

Done BOOL Set True when the axis becomes idle after completing the crash stop or if an error
occurs when the crash stop command is issued. Remains True until the Execute
input is removed. If the Execute input is removed before the Done bit is set then the
Done bit will be set for a single PLC cycle.

Busy BOOL Set True whilst the stop is in progress – cleared once the Done bit is set

Error BOOL Set True if the axis is in error

ErrorID DINT Indicates the Mint error code reported by the axis

GDI_RESET

This function block is used to reset any axis error that is present.

Type Description

VAR_IN_OUT

Axis TGDIAxisRef Reference to the axis structure

VAR_INPUT

Execute BOOL Start the fault reset on a rising edge

VAR_OUTPUT

Done BOOL Set True when the axis no longer has an error present. Remains True until the
Execute input is removed. If the Execute input is removed before the Done bit is set
then the Done bit will be set for a single PLC cycle. The Done bit will not be set if the
error could not be cleared (use the Busy output to detect when the fault reset has
been attempted)

Busy BOOL Set True whilst the function block is attempting to clear any axis error

Error BOOL Set True if the axis is in error

ErrorID DINT Indicates the Mint error code reported by the axis



Application note Generic drive interface  AN501

ABB Motion control products 28
https://new.abb.com/drives/low-voltage-ac/servo-products

GDI_SPEEDREF

This function block is used to command a speed/velocity reference on the axis. In this mode of operation the position
loop is not used on the drive (so no following error is recorded or acted upon). The axis will remain in Speed control
mode until motion of another control mode type is issued. To switch from zero speed operation (in speed control
mode) to holding position (in position control mode) a GDI_MOVERELATIVE could be issued, for example, with a relative
move distance of zero user units.

Type Description

VAR_IN_OUT

Axis TGDIAxisRef Reference to the axis structure

VAR_INPUT

Execute BOOL Start the axis on a rising edge and maintain motion as long as the input remains True. Motion
ramps to zero speed at the configured Decel rate when Execute becomes False

Speed REAL Value for the speed the axis will reach in user units/sec. Can be modified whilst Execute is True to
change the axis speed

Accel REAL Accel rate in user units/sec2

Decel REAL Decel rate in user units/sec2

AccelJerk REAL Accel jerk rate in user units/sec3 (set to 0 for trapezoidal motion)

DecelJerk REAL Decel jerk rate in user units/sec3 (set to 0 for trapezoidal motion)

VAR_OUTPUT

Done BOOL Set True as soon as the speed reference has been issued (regardless of whether it was successful
or not). The Done output remains set until Execute becomes False

Busy BOOL Set True whilst the function block is in progress (i.e. whilst Execute is True)

Error BOOL Set True if the axis is in error

ErrorID DINT Indicates the Mint error code reported by the axis



Application note Generic drive interface  AN501

ABB Motion control products 29
https://new.abb.com/drives/low-voltage-ac/servo-products

GDI_TORQUEREF

This function block is used to command a torque (current) reference on the axis. In this mode of operation, the position
loop is not used on the drive (so no following error is recorded or acted upon). The axis will remain in torque control
mode until motion of another control mode type is issued. To switch from zero torque operation (torque control mode)
to holding position (in position control mode) a GDI_MOVERELATIVE could be issued, for example, with a relative move
distance of zero user units.

Type Description

VAR_IN_OUT

Axis TGDIAxisRef Reference to the axis structure

VAR_INPUT

Execute BOOL Start the torque reference on a rising edge and maintain torque as long as the input remains True.
Torque ramps to zero at the configured FallTime rate when Execute becomes False

Torque REAL Value for the torque reference the axis will use (in % of DRIVERATEDCURRENT – see Mint Help file). Can
be modified whilst Execute is True to change the torque produced

SpeedLimit Value of the maximum speed (in units/sec) the axis can run at given the current torque ref value.

RiseTime REAL Sets the time taken (in ms) for current to rise from zero to DRIVEPEAKCURRENT (see Mint Help file)

FallTime REAL Sets the time taken (in ms) for current to fall from DRIVEPEAKCURRENT to zero (see Mint Help file)

VAR_OUTPUT

Done BOOL Set True as soon as the torque reference has been issued (regardless of whether it was successful or
not). The Done output remains set until Execute becomes False

Busy BOOL Set True whilst the function block is in progress (i.e. whilst Execute is True)

Error BOOL Set True if the axis is in error

ErrorID DINT Indicates the Mint error code reported by the axis

GDI_FOLLOW

This function block is used to command the axis to start following the configured master encoder reference at the
programmed follow ratio.

Type Description

VAR_IN_OUT

Axis TGDIAxisRef Reference to the axis structure

VAR_INPUT

Execute BOOL Start the follow condition on a rising edge. The axis will remain in follow mode
when the Execute input becomes False (to stop the follow issue another motion
command or clear motion using GDI_CLEAR)

Ratio REAL Value for the follow (gear) ratio between the axis and the master encoder reference
(the value will affected by the scaling of the axis and the scaling of the master
encoder – see the Mint Help file topic for FOLLOW). To set a new ratio whilst
following it is necessary to issue a new GDI_FOLLOW command

VAR_OUTPUT

Done BOOL Set True as soon as the follow has been issued (regardless of whether it was
successful or not). The Done output remains set until Execute becomes False

Busy BOOL Set True whilst the function block is in progress (i.e. whilst Execute is True)

Error BOOL Set True if the axis is in error

ErrorID DINT Indicates the Mint error code reported by the axis



Application note Generic drive interface  AN501

ABB Motion control products 30
https://new.abb.com/drives/low-voltage-ac/servo-products

GDI_DATAINTERFACE_TCP

These function blocks are used to transfer command/status data between the application layer and the communication
layer of the PLC programs. An instance of the relevant function block must exist for each axis in the application.

Type Description

VAR_IN

DriveIPAddress STRING(80) IP address of the drive attached to this axis

VAR_IN_OUT

Axis TGDIAxisRef Reference to the axis structure

VAR_OUTPUT

InterfaceOK BOOL True if Modbus communication is operating without error



Application note Generic drive interface  AN501

ABB Motion control products 31
https://new.abb.com/drives/low-voltage-ac/servo-products

Using the GDI Structures

For ease of use the GDI library includes Structures to sort the data that is defined within axis reference and also make
sense of the status and control word data structures predefined in the mint program (called Bitfields in mint) .

Here you can see the 3 structures that are stored in the ‘Data Types’ Folder

The TGDIAxisRef data type deceleration is shown below:

This data structure in turn contains two further data structures (TCommandWord and TStatusWord). The declarations
for these are shown below:



Application note Generic drive interface  AN501

ABB Motion control products 32
https://new.abb.com/drives/low-voltage-ac/servo-products

Most of the functionality of the GDI is encapsulated by the various GDI functions provided with the example PLC
programs. However, in some cases the application logic may find access to the axis structure data useful (e.g. as shown
in the example programs where the logic accesses the idle status and latch missed status to determine if 3 latches in a
row are missed).

The PLC code can therefore access any of this data via these structures.

Example 1:
Reading the status of the Forward Limit Input…..

Example 2:
Reading a digital input bit

Example 3:
Forcing a digital output bit

Example 4:
Reading the actual torque into the program



Application note Generic drive interface  AN501

ABB Motion control products 33
https://new.abb.com/drives/low-voltage-ac/servo-products

Importing the GDI PLC library to a project

A library file is also included with this project, it’s called ‘AC500 V3 (TCP) GDI Library Rev A.xml’. This contains all relevant

Variables, Function Blocks, and visualisations to use the GDI within another PLC program. To import into your project

first select application in the navigation tree.

Note: If you miss this step, you will see nothing in the import window when you reach that step.

Then Project > Import > PLCopen XML… from the menu. Then navigate to the file location, where you extracted it on to

your PC. A navigation screen will then open to show the contents of the xml and allow you to only select certain parts.

Note: It is suggested you don’t deselect anything here, if any aren’t needed, they can be deleted after import.

Expected Errors: Some missing PLC Libraries

After the xml file has been imported there will be a few errors which are because the GDI blocks use a few standard

Function block elements which are not available in the default libraries. To add these missing libraries first go to the

library manager, then select ‘Add Library’.

You can then type in the two missing blocks titles in the ‘fulltext search’ bar one by one and then select and click OK to

add then. The names of the blocks are as below:

 ‘BLINK’ (Util lib)

 ETHx_MOD_MAST’ (ModbusTCP lib)

After these are added, the users project should now build with no errors and the libraries can be used in the program.



Application note Generic drive interface  AN501

ABB Motion control products 34
https://new.abb.com/drives/low-voltage-ac/servo-products

What it contains

The library will of course contain all the above library blocks previously mentioned and in addition, it also contains a

library of visualisations to go along with them. To use these, you will need to add them one by one to a user visualisation

then associate them with the GDI Library element instances you want them to control or display.

Please see the attached example program for instruction on how to do this. Please see the below screens list

Contact us

For more information, please contact your
local ABB representative or one of the following:

new.abb.com/drives/low-voltage-ac/servo-productsnew.abb.com/drives
new.abb.com/drivespartners
new.abb.com/PLC

© Copyright 2022 ABB. All rights reserved.
Specifications subject to change without
notice.


