

APPLICATION NOTE

Power Quality for Process Loads in F&B Industrial Buildings

Ensure operational continuity and reduce downtime

Power supply disturbances can lead to costly downtime since they interrupt operation and production in your F&B facility. Our Power Quality solutions protect electric power from the most threatening Power Quality events, thereby ensuring smart process continuity, efficient operation and enhanced productivity.

What is Power Quality (PQ)?

A process failure resulting from a power quality event (e.g. voltage sag) produces immediate consequences since it can spoil the work in process, damage the equipment and require a recovery period to restore the process by patching, clean-up, repair and restarting. All this downtime leads to high costs, which include direct costs for labor and indirect costs due to delayed revenue and possible fines for late deliveries.

Why you need Power Quality (PQ) solutions

Industry analysts estimate the cost of downtime in an F&B facility to be between \$100,000 and \$1million per hour, as power supply disturbances can interrupt the operations of the precision machinery used in the production of food and beverages. To ensure operational continuity and reduce downtime, ABB offers dedicated Power Quality solutions to protect electric power from the most threatening Power Quality events.

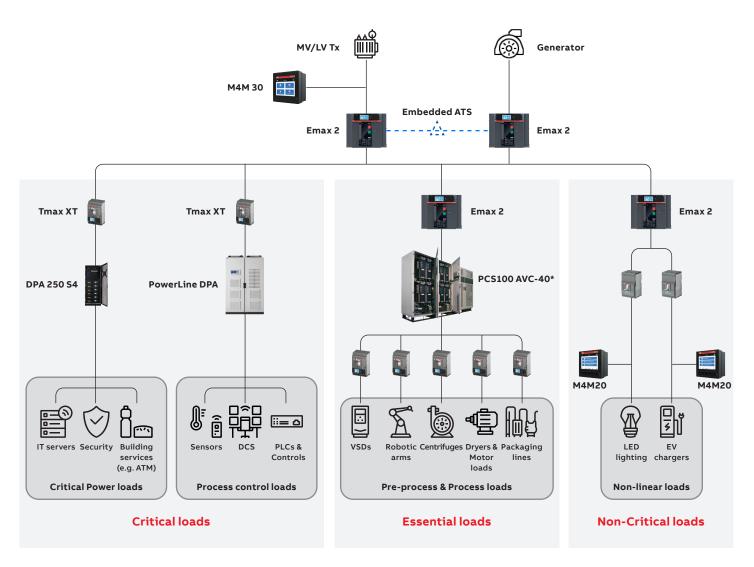
Main benefits

Maximized operational availability ABB PQ solutions ensure operational continuity by protecting loads against network events and avoiding loss of productivity and downtime.

Intuitive design

ABB PQ solutions are intuitively designed for rapid installation, easy commissioning, low maintenance requirements and guaranteed high reliability.

Quick Return On Investment


ABB PQ solutions ensure quick ROI by mitigating financial losses, prolonging equipment lifetime and reducing maintenance costs.

Maximized Sustainability

Highly efficient ABB PQ solutions optimize energy usage and reduce heat losses, thereby taking a step closer towards the 2030 global target for CO₂ reduction.

Application overview

Depending on the nature of their business, F&B industrial buildings include a mix of different processes and equipment with greatly varying power protection requirements. They have been categorized into the following classes of loads and are protected separately but in a centralized way:

1. Critical power loads

require continuous operation, protection against outages and abnormal supply conditions in order to ensure security, personnel safety and reliability.

2. Process Control loads

require continuous operation, protection against outages and Power Quality problems in order to support process automation and equipment reliability needs.

3. Pre-process & Process loads

require continuous operation, protection against outages and Power Quality problems.

4. Non-linear loads

can trip or fail but restart without impacting the performance of the system. For this reason they do not require protection against outages but can be separated.

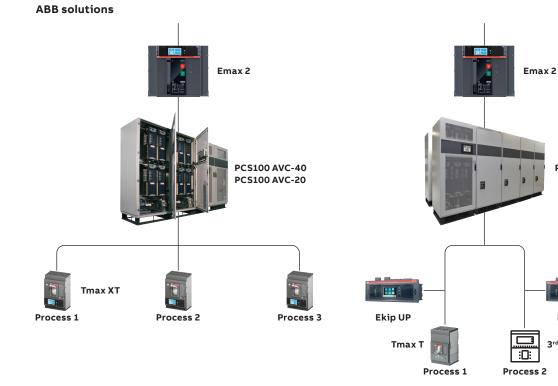
Power Quality solutions for Process load applications

To prevent tripping and failure of critical processes, ABB offers a complete solution able to provide clean power free from PQ events such as voltage sags, under/over-voltage and outages.

 • PQ equipm • Individual p 	PQ con • Volta • Volta	
Product	Rated current	
Product Tmax XT	Rated current Up to 1600 A	Product

Metering & Monitoring

- PQ monitoring
- Process energy metering


Tmax XT •	-
Ekip UP -	Ð

PQ conditioning & protection

- Voltage protection (AVC)
- Voltage protection + backup time (UPS-I)

Product	Sags/ swells	Undervoltage/ overvoltage	Deep sags (<50%) ⁽¹⁾ + Backup time for outages
PCS100 AVC-40	•	-	-
PCS100 AVC-20	-	•	-
PCS100 UPS-I	-	-	•

(1) Based on AVC-40 performance during three phase events. In single phase sag events, AVC-40 can start correction from 30% remaining voltage.

Useful links:

- <u>Emax 2</u>
- Emax2 catalog

• <u>PCS</u>

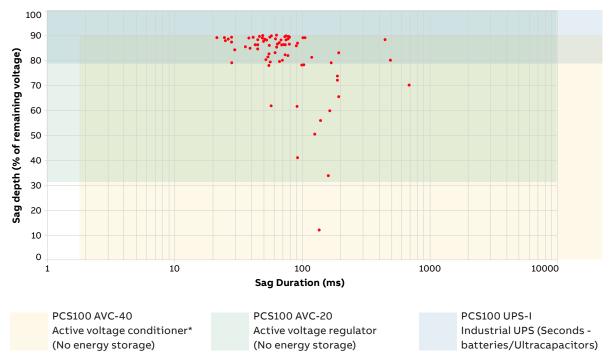
- PCS100 AVC-40 catalog
- PCS100 AVC-20 catalog
- PCS100 UPS-I catalog
- <u>Tmax XT</u>
- <u>Tmax XT catalog</u>
- <u>Ekip UP</u>
- Ekip UP catalog

PCS100 UPS-I

Ekip UP

3rd party CB

Choice of PQ conditioning & protection equipment

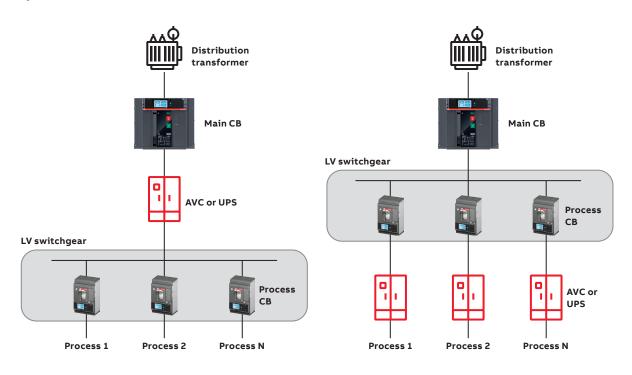

Choice of the right solution varies from site to site since it depends on utility network reliability, process criticality and financial losses with respect to investment size.

Let's take sag events as an example since, according to the EPRI⁽¹⁾, voltage sags account for over 92% of the financial losses sustained by industry due to PQ events.

The easiest way to interpret a voltage sag event is by plotting it as a single point on the depth duration curve, where the X-axis represents total event duration and the Y-axis represents the remaining voltage during the voltage sag.

(1) 1st International Conference on Energy, Systems and Information Processing (ICESIP) - Assessment of Financial Loss Due to Voltage Sag in an Industrial Distribution System (<u>link</u>) In the example below, 132 voltage sag events were extracted from the event log of a PCS100 AVC-40 installed in an industrial customer site in Turkey. As shown, all the sag events were in the operational region of PCS100 AVC-40 and below the 1 second limit except for one deep sag in the range of 10% remaining voltage.

From the economic viewpoint, PCS100 AVC-40 was the correct solution for this customer since it meant that they would only experience one process shutdown annually instead of all the process shut-downs that would have happened if voltage events between 30-80% remaining voltage had occurred.


* Based on PCS100 AVC-40 performance during a single-phase sag event

If most of the events had been deep voltage sags or if power outages had taken place more often and ride-through backup time had been needed until a generator started and took over the load, PCS100 UPS-I⁽²⁾ would have been the best solution due to the availability of energy storage. On the other hand, if the voltage events had been sustained under/over-voltage lasting for long duration in the +/- 20% range, the PCS100 AVC-20, which is able to provide continuous voltage regulation, would have been the correct solution.

(2) Battery energy storage autonomy for UPS-I is typically 30 seconds at rated kVA and 0.8 PF, which is typically the required bridging time for the generator to start and run during outage events. This can also be extended to 300 seconds by derating the system (please contact ABB if the required autonomy is >300 seconds).

Installation location for PQ equipment

AVC or UPS equipment could be installed to protect factory processes in their entirety between the main incoming breaker and the factory LV distribution system. PQ equipment could also be installed within the LV distribution system to protect a specific process or load. i.e., dedicated feeder protection.

Application tables

The tables below provide the most relevant electrical data required for site planning and an upstream protection device able to ensure the PQ equipment functions correctly, thereby guaranteeing a highly reliable solution in addition to suitable protection for the equipment and, consequently, the process load.

PCS100 AVC-40 (400V Model)

Rated Power (kVA)							Upstream protection			
400V, 415V	380V	Rated input Current (A)	Rated output Current (A)	Fault capacity (kA)	AVC Type code	Device	Туре	Rated current		
150	142	253			PCS100-07-400-0B5-40-x	МССВ	Tmax XT5 N	400		
225	213	377	325	15	PCS100-07-400-0B75-40-x	мссв	Tmax XT5 N	400		
300	285	498	431	15	PCS100-07-400-01B-40-x	мссв	Tmax XT5 N	630		
450	427	742	650	31.5	PCS100-07-400-01B5-40-x	мссв	Tmax XT7 S	800		
600	570	985	867	31.5	PCS100-07-400-02B-40-x	мссв	Tmax XT7 S	1000		
750	712	1232	1083	31.5	PCS100-07-400-02B5-40-x	мссв	Tmax XT7 S	1250		
900	855	1474	1300	31.5	PCS100-07-400-03B-40-x	мссв	Tmax XT7 S	1600		
1200	1140	1962	1733	40	PCS100-07-400-04B-40-x	ACB	Emax 2.2 B	2000		
1500	1425	2448	2166	50	PCS100-07-400-05B-40-x	ACB	Emax 2.2 N	2500		
1800	1710	2932	2599	63	PCS100-07-400-06B-40-x	ACB	Emax 4.2 N	3200		
2400	2280	3938	3465	65	PCS100-07-400-08B-40-x	АСВ	Emax 4.2 S	4000		
3000	2850	4922	4331	65	PCS100-07-400-10B-40-x	ACB	Emax 6.2 H	5000		
3600	3420	5906	5197	65	PCS100-07-400-12B-40-x	ACB	Emax 6.2 H	6300		

PCS100 AVC-20 (380V & 400V Model)

Rated Power (kVA)		Rated Real power (kW)						Upstream protection		
	Utility Voltage 400V, 415V	±15% regulation	±20% regulation	Rated input current	Fault capacity	Type code	device	Туре	Rated current	
	250	250	187	361	15	PCS100-28-400-0B5-20	мссв	Tmax XT5 N	400	
	500	500	375	722	15	PCS100-28-400-01B-20	мссв	Tmax XT7 S	800	
	1000	1000	750	1444	31.5	PCS100-28-400-02B-20-x	мссв	Tmax XT7 S	1600	
100V	1500	1500	1125	2166	31.5	PCS100-28-400-03B-20-x	ACB	Emax 2.2 N	2500	
	2000	2000	1500	2887	40	PCS100-28-400-04B-20-x	ACB	Emax 4.2 N	3200	
	2500	2500	1875	3609	50	PCS100-28-400-05B-20-x	ACB	Emax 4.2 N	4000	
	3000	3000	2250	4331	63	PCS100-28-400-06B-20-x	ACB	Emax 6.2 H	5000	

Rated Power (kVA)		Rated Real power (kW)						Upstream protection		
	Utility Voltage 380V	±15% regulation	±20% regulation	Rated input current	Fault capacity	Type code	device	Туре	Rated current	
	237	237	177	343	15	PCS100-28-400-0B5-20	МССВ	Tmax XT5 N	400	
	475	475	356	686	15	PCS100-28-400-01B-20	МССВ	Tmax XT7 S	800	
	950	950	712	1372	31.5	PCS100-28-400-02B-20-x	МССВ	Tmax XT7 S	1600	
880V	1425	1425	1068	2057	31.5	PCS100-28-400-03B-20-x	ACB	Emax 2.2 N	2500	
	1900	1900	1425	2743	40	PCS100-28-400-04B-20-x	ACB	Emax 4.2 N	3200	
	2375	2375	1781	3429	50	PCS100-28-400-05B-20-x	ACB	Emax 4.2 N	4000	
	2850	2850	2137	4114	63	PCS100-28-400-06B-20-x	ACB	Emax 6.2 H	5000	

For PCS100 AVC-40 & PCS100 AVC-20

- Please contact ABB if other voltage models are required.
- Choice of the downstream CB depends on the number of parallel branches and the size of each branch
- To complete the Type Code: put R for right termination side or L for left termination side instead of x

PCS100 UPS-I (400V Model)

- To provide discrimination time for downstream protection, AVC- 40 can withstand rated fault capacity for 200ms.
- AVC maximum overload capacity in bypass - 125% for 10 minutes / 150% for 1 minute / 500%

for 1 s / 2000% for 200 ms

PCS100 UPS-I (400V model) Upstream protection Fault current Inverter Utility (kA) disconnect / Withstand Rated rated Num. of Power current rated capacity Rated (kVA) Modules device (A) current (ms) Type code Туре current 150 217 1 900 25/10 PCS100-12-400/50-01-L мссв XT4 N 250 300 433 2 900 25/10 PCS100-12-400/50-02-L мссв XT5 N 630 450 650 3 900 25/10 PCS100-12-400/50-03-L мссв XT7 S 800 600 866 4 900 25/10 PCS100-12-400/50-04-L мссв XT7 S 1000 750 1083 5 2200 50/120 PCS100-12-400/50-05-R мссв XT7 H 1250 900 1299 6 2200 50/120 PCS100-12-400/50-06-R мссв XT7 H 1600 1200 1732 8 2200 50/120 PCS100-12-400/50-08-R ACB Emax 2.2 N 2000 1500 2165 10 2200 50/120 PCS100-12-400/50-10-R ACB Emax 2.2 N 2500 1800 2598 12 4200 65 / 120 PCS100-12-400/50-12-R Emax 4.2 N 3200 ACB 2100 3031 14 4200 65/120 PCS100-12-400/50-14-R ACB Emax 4.2 N 3200 2400 PCS100-12-400/50-16-R 4000 3464 16 4200 65/120 ACB Emax 4.2 N 2900 4186 20 4200 65 / 120 PCS100-12-400/50-20-R ACB Emax 6.2 H 5000

• Overload ratings (Inverter) 110% of rated current for 30 seconds

- Overload ratings (UD)
- 120% of rated current for 60s every 10 minutes,
- 150% of rated current for 30 s every 10 minutes,
- 200% of rated current for 10 s every 10 minutes,
- 300% of rated current for 5 s every 10 minutes.

Process PQ metering & monitoring

Power Quality monitoring

The Network Analyzer function continuously monitors energy quality and presents the results on a display or via a communication module.

To upgrade the trip units and achieve the required functionality, three different software packages are available for the breakers:

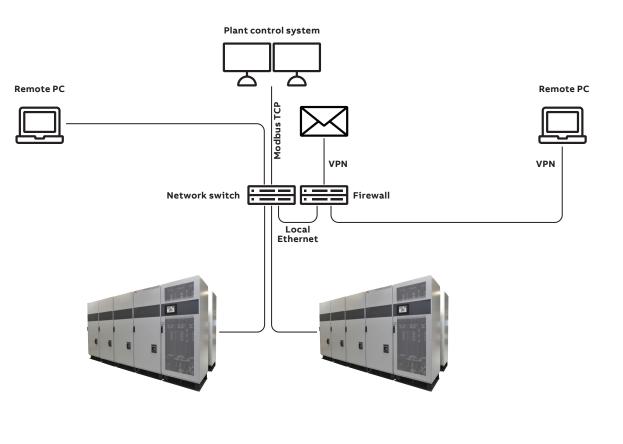
- Measuring package for voltage, power and energy measurement
- Datalogger for data recording

• Network Analyzer for evaluating power quality. The information could be monitored through a laptop using Ekip Link

PQ functionality					
Harmonic analysis	Harmonic content of voltages, currents (measured to the 50th harmonic) and the total harmonic distortion value (THD) are available in real time.				
Hourly average voltage values	Positive sequence voltage is compared with the limits. If the limits are exceeded, the networ analyzer generates a signaling event. The number of these events is stored in a suitable counter. The counter values are available for each of the last 7 days, as well as the total.				
Voltage sags & swells	When the voltage strays beyond a range of acceptable limit values for longer than the set time, the network analyzer generates an event that is counted. Three values can be configured for voltage sags and two for voltage swells, each associated with a time limit. This allows the voltage to be monitored to find out whether it remains within a curve of values that are acceptable to equipment such as computers.				
Voltage unbalance	The unbalance that occurs when the voltage values are not equal or when the phase displacements between them are not exactly 120°, is manifested by a negative sequence voltage value. If this limit exceeds the set threshold value, an event is stored and counted				

Datalogger - UPControl+

Datalogger 1 channel, sampling frequency 9600 Hz, memory type not volatile


Monitoring (AVC-20, AVC-40, UPS-I)

PCS products provide remote access for monitoring purposes

- Integrated Web server. The same information displayed on the HMI is available on any networked PC connected
- Modbus TCP. For connection to plant-wide SCADA or monitoring systems.
- Email Connectivity. An email notification service can be set up to send notifications about power quality and system events.

Remote monitoring provides information such as

- Product status
- Input/output measurement readings
- Detailed information about PQ events

To discover more

tailored to your needs and speed up your project thanks to our new Application Finder Tool!

 \mathcal{L}

CT US

you searching for the right

Application configuration?

Do you have a similar project and are

Contact us and talk to our experts!

습습습

Your opinion matters! Let us know if you found the document useful and how can we improve!

ABB SACE S.p.A. Via Pescaria 5, 24123 Bergamo Italy

We reserve the right to make technical changes and modify the contents of this document without prior notice. With regard to purchase orders, the agreed particulars shall prevail. ABB AG declines all and every liability for potential errors or possible lack of information in this document. We reserve all rights to this document and to the subject matter and illustrations contained therein. All reproduction, disclosure to third parties or utilization of these contents – in whole or in part – is forbidden without the prior written consent of ABB AG. Copyright© 2023 ABB All rights reserved