
Positioning based on GNSS (Global Navigation 
Satellite Systems) data has revolutionized the 
localization of maritime vessels. However, the 
underlying technology is sensitive to disturbance 
and spoofing [1–4], and there is growing concern 
over industry dependence on this single technolo-
gy and its external transmitter-based approach.

To increase resilience against disturbance and 
adversarial actions, it is important to consider 
positioning solutions that do not rely on external 
technology. This requires mapping of onboard 
sensor data to a global position, either as prior 
knowledge or by building a map on the go. The 
latter is known as Simultaneous Localization And 
Mapping (SLAM), where a family of algorithms 
uses sensor data to build a map in real time and 
position the sensor within the map. Compared 
to using a Digital Elevation Model (DEM)-based 
model, SLAM could have the benefit of being 
less sensitive to the detailedness of underly-
ing data while also adapting to changes more 
quickly. SLAM has been previously applied to 
radar data in a maritime setting [5], but as there 
is no geographical reference to tie the SLAM map 
to the physical world, a SLAM algorithm would 
not be able to provide global positioning with-

out additional localization sensors. Even with 
good initialization, SLAM is prone to drift unless 
combined with known global reference points. In 
this paper, we propose the use of DEMs, for the 
reasons outlined below.

Most importantly, elevation maps can generate 
more accurate predictions of the radar image. 
For instance, steep coastlines will give a much 
more distinct and larger radar return signal than a 
shallow beach. Moreover, hills and slopes further 
away from the coastline will also reflect the radar 
signal, which can explain radar echoes that can-
not be predicted from a sea chart. Hence, a DEM 
model better predicts the multiple responses of 
each radar beam. Furthermore,
• Sea charts generally only provide a binary map 

of sea versus not sea. Hence, only one radar 
response can be modeled for each radar beam, 
representing the closest shoreline.

• Coastlines are not static objects; they 
change over time. Elevation maps generated 
by satellites can reflect these changes faster, 
and in a more accurate manner than tradi-
tional sea charts.

• Elevation maps are global, while sea charts are 
most accurate in densely trafficked waters.

Today’s vessels rely heavily on satellite-based navigation systems for 
safe operations. These systems, however, are vulnerable to interference, 
jamming and spoofing. There is another solution: providing absolute 
positioning of the vessel based on marine radar scans.

JONATAN OLOFSSON
Department of 
Automatic Control
Linköping University

GUSTAF HENDEBY
Department of 
Automatic Control
Linköping University

FREDRIK GUSTAFSSON
Department of 
Automatic Control
Linköping University

DERAN MAAS
Principal Scientist
ABB Corporate Research

STEFANO MARANÒ
Senior Research Scientist
ABB Future Labs 
Switzerland

—
GNSS-free navigation
Resilient and accurate vessel positioning 
with radar and digital elevation models



In this paper we describe a system capable of 
localization in a known – but not necessarily previ-
ously visited – environment through the matching 
of DEMs with radar scans. The matching is per-
formed using a particle filter utilizing a custom 
measurement model to model the expected radar 
response based on the DEM. This gives a method 
of localization that is resilient to interference, 
spoofing, and jamming.

The system described in this paper is developed 
with, and tested against, recorded data from 
the ABB Marine & Ports sensor suite installed on 
the Suomenlinna II ferry in Helsinki harbor [6] in 
Finland. The data includes, but is not limited to, 
radar, electro-optical (EO) cameras, GNSS, inertial 
sensors, and a digital compass.

The outline of the paper is as follows. In Section II, 
the background theory is presented along with an 
introduction of the data with which the imple-
mentation was made and tested. In Section III, the 
measurement model of the radar is derived, and 
a likelihood function is proposed based on the 
matching between modeled and measured radar 
responses. The implementation used for the eval-
uation of the proposed method is described in de-
tail in Section IV. This is then used to demonstrate 
a real tracking scenario in Section V. Section VI 
concludes the paper.

Background
In this section we review the background theory 
used in the research presented in this paper.

A. FILTERING THEORY
The basis for modern positioning is Bayesian 
state-space based filtering, in which the state  
at time  of the studied system is inferred from 
measurements  using the recursion

 (1a)

 (1b) 

The commonly known Kalman Filter (KF) [7] solves 
this recursion analytically for the linear Gaussian 
case. The Extended Kalman Filter (EKF) [8, 9], 
which linearizes the system around the current 
estimate, has been successfully used to solve a 
more general class of problems.

The Particle Filter (PF) [10] is a sequential Monte 
Carlo method to solve the Bayesian recursion. An 
overview of the method is presented here; see 
[11] for a more thorough description in the con-
text of filtering.

The idea behind the PF is to use a number of 
random samples and weights  and  to 
represent the sought distribution. This yields 
the approximation

 (2)

where  is the number of samples, or parti-
cles, used in the approximation, all weights are 
positive  and  is the Dirac 
delta function.

The particle filter then updates the particles and 
weights over time to reflect the current informa-
tion. In its basic form, also called the Bootstrap 
filter, the filter boils down to the following steps 
all performed for :

• Initialization: Draw  samples from the initial 
distribution, all with the same weight:

 (3)

• Prediction: Based on the expected motion, draw 
 new particles to represent the state in the 

next time instance:

 (4)

• Measurement correction: Reweigh the particles 
based on how well they fit the measurements:

 (5)

such that 

• Resample: To avoid particle degeneration i.e. all 
but one particle lose all their weight and impor-
tance, new particles are drawn from the old set 
with probability , with replacement.

There are two differences between the particle 
filter and the Kalman filter that makes the particle 
filter suitable for the studied application as out-
lined below.



Whereas the Kalman filter is limited to represent 
the state with a single mean and a covariance, the 
particle representation is more flexible allowing 
for several possible hypothesis to be considered 
simultaneously. Hence, resolving ambiguities in 
the estimated location can be delayed until more 
information is made available.

The particle filter does not require an explicit 
measurement equation where the measurement 
is a function of the current state and noise, as the 
Kalman filter does. This will prove essential when 
incorporating the DEM in the measurement.

B. MARINE RADAR
Marine radar is today an indispensable tool for 
situational awareness on commercial ships, in 
particular in low-visibility environments. The ma-
rine radar instrument measures electromagnetic 
(EM) reflectivity of its surroundings by active 

illumination with EM waves. Rotating around an 
axis, it yields samples at given angles. The raw 
radar returns have to undergo significant signal 
processing to make the relevant information ac-
cessible as imagery or individual detections [12]. 
The result is the sum of all reflections from the 
illuminated areas, as well as unwanted noise and 
interference phenomena – known as speckle.

The returned signals strongly depend on the 
properties of the object causing the reflection, 
such as its reflectivity and its orientation in 
relation to the radar source. These properties are 
summarized in the Radar Cross-Section (RCS) [12], 
which is a measure of the object’s detectability. 
The return signal power is also proportional to the 
inverse fourth power of the distance to the target, 
so limiting the range of the radar.

Returns from an entire radar revolution yields a 
scan. In implementations, this is often stored as 
a matrix with rows and columns in accordance 
with angular and range resolution. However, when 
thresholded, this representation can be sparsified 
to yield individual measurements – reports – as 
2D-points  and their intensities, ,

 (6)

In this paper,  is defined in Cartesian coordi-
nates centered around the ship radar. In each scan 

 reports are detected.

The radar’s polar response is exemplified in Fig-
ure 1, with its Cartesian counterpart in Figure 2.

Measurement model
This section outlines how the radar response is 
modeled from the DEM data, as needed to use the 
PF. For simplicity, only the position of the radar 
detections is considered, not the intensity. The 
model is separated in two parts; the first part 
models what radar detections

 (7)

to expect given specific position and orientation, 
using a radar response model . The second 
part in which the likelihood  is 
derived. The former step generates potential 
radar responses, whereas the latter in essence 

—
Figure 2: When the radar 
response is converted to 
Cartesian coordinates, 
the shape of the harbor 
becomes apparent to the 
human eye

—
Figure 1: Radar response 
is sampled in polar 
coordinates centered at 
the radar



—
Figure 3: Measurement 
model pipeline
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defines a probabilistic distance between two 
sets. In the paper, the orientation of the radar 
is assumed as known, as measured by e.g. the 
digital compass. If the orientation is not known, 
the state  could easily be extended to estimate 
the orientation.

The full pipeline of the resulting algorithm is 
illustrated in Figure 3 for a single particle po-
sition. The left column of the pipeline and the 
matching is then repeated for each particle in the 
particle filter.

A. RADAR RESPONSE MODEL
The radar response model  proposed in this 
paper bases its reports on the elevation sur-

rounding the vessel, as given by a DEM. As radar 
measurements are taken in a radial fashion, we 
start by discussing how reports can be extracted 
for each individual angle, based on the elevation 
along a virtual beam radiating at an angle  from 
the radar, . Based on this elevation, we model 
the RCS at a given range. This single-beam model 
is then applied in parallel to all angles reported by 
the radar.

The RCS in a given direction  and range  is 
approximated to be proportional to the area of 
the reflecting surface projected onto the plane 
perpendicular to the radar beam. This approxima-
tion makes it straightforward to compute . Let 

 be the vector originating in the radar ending 
in the reflecting point on the surface, and  
the surface normal in the reflecting point. Then, 
as illustrated in Figure 4, the RCS follows from 
linear algebra as

 (8)

where  represents the scalar product and  
the two-norm.
 
To further model the radar’s received response, 
the shadowing effect of the landscape is con-
sidered. To simplify the line-of-sight computa-
tions, all points along the direction of the ray are 
assumed to be visible if they are located higher 
than any preceding point, otherwise not. Hence, 
the final
 
RCS becomes

 (9)

This process is illustrated in Figure 5.

In the final step all points with sufficiently large 
RCS are identified as part of the report set. A 
threshold  is applied to  to obtain the set 
of modeled polar reports,

 (10)

where  is the maximum range of the radar. This 
polar representation is then, through inverse po-
lar transform, converted to Cartesian coordinates 
to give  i.e. .

—
Figure 5: The model of 
the radar response in a 
single given direction 
is primarily a function 
of the incidence angle 
between the radar and 
the ground at range r. 
Here,  =0

—
Figure 4: Here, the 
relevant quantities of the 
radar reflection model 
are illustrated, with 

 being the vector 
originating in the radar 
ending in the reflecting 
point on the surface, and 

 the surface normal 
in the reflecting point



B. POINT CLOUD MATCHING
With the measured and modeled radar response 
available,  and , respectively, a measure of 
their correspondence can be created to provide 
the measurement likelihood needed in the PF 
measurement update (5).

Defining the difference between two point clouds 
is nontrivial. From the literature of point-cloud 
registration, there are a number of error meas-
ures as summarized in e.g. [13]. One of the most 
basic measures is the mean (sometimes squared) 
distance between associated points. With un-
known point-to-point association, a hypothetical 
association needs to be established to calcu-
late the measure. An intuitive and, importantly, 
computationally efficient method of associ-
ation is the selection of the nearest neighbor 
of each point, from the other point set. Below, 

 is the nearest neighbor of  in , 
by Euclidean norm.

Based on the mean error, the following likelihood 
function is proposed:

 (11)

 (12)

i.e. the mean distance of measured points to their 
nearest modeled point is considered Gaussian, 
with zero mean and covariance .

Note that when comparing two point-cloud sets, 
the association generally associates points from 
one set to points in the other, potentially leaving 
points in the second set without corresponding 
points. The question is hence whether to com-
pare the measurements to the predicted points, 
vice versa or both. We found that due to the 
dominating cardinality of the modeled response, 
the one-sided matching of sensor data to the 
modelled points yielded a more stable tracking 
performance in this particular application – the 
map is in a sense more complete than the incom-
ing radar scans.

C. ADDITIONAL MODELS
Further to modeling the radar response from the 
DEM, there are several other useful sources of 
data available on a ship, and more information to 
be gained from a DEM.

For example, radar returns not only come from 
natural sources – as modeled by the DEM – but 
also from other vessels in the vicinity. Common-
ly, nearby vessels report both position and size 
through the standardized Automatic Identifica-
tion System (AIS) protocol. There are primarily 
two ways that ships can be included in the match 
between sensor data and the single-beam 
return model; either the returns can be exclud-
ed from the sensor data, or the returns can be 
included in the measurement model. For this, 
each ship could, for example, be modeled as an 
ellipsoid described by the reported AIS param-
eters, with an added approximate height. By 
adding this to the DEM prior to Algorithm 2, it 
would automatically be included in the beam 
model and detection matching. It should be 
noted, however, that AIS data is not fully reliable 
and could potentially be subject to spoofing 
and jamming.

Furthermore, from the DEM it is trivial to 
extract a virtual measurement of “being on 
water” contra being on land. Being a maritime 
vessel, it is natural to assume that it is on water 
i.e. not being on an elevation above water level 
as calibrated for tidal movements. Thus, given 
a tidal model, it is trivial to extract this data 
from a DEM and to implement this as a parti-
cle-filter measurement step, or as part of the 
prediction model.

—
Figure 6: Elevation 
maps provide further 
information compared to 
sea-charts – information 
which can be exploited to 
model the response from 
a radar sensor



Implementation
In this section, we further describe the algorithm 
and discuss practical aspects of the implemen-
tation that was made for this paper. The imple-
mentation of the particle filter and the likelihood 
function presented in Section III was made in the 
PYTHON programming language along with nec-
essary supporting functions. For example, in the 
implementation the tracking was performed with 
latitude–longitude state variables, but for each 
time-update all particles were transformed into a 
local Cartesian north–east system, updated, then 
transformed back to latitude–longitude.

A. RADAR RESPONSE MODEL
The DEM is given as a discrete map, expressed 
in this paper as the matrix . The measurement 
model is most efficiently computed in the natural 
frame of the radar, using polar coordinates. 
Hence, this data is transformed to polar coordi-
nates to form the polar elevation matrix , with 

one row per radar angle. The Cartesian map is 
illustrated in Figure 6.

The elevation for each angle  can then be de-
fined as a lookup function of the distance (range 

) from the radar,

 (13)

Here,  and  is the angular and range resolu-
tion, respectively.

Pseudocode for the single-beam model from 
Section III-A is given in Algorithm 1. Note that the 
projection of (8) is performed with the trigono-
metric identity of .

Algorithm 1 – Single beam model pseudocode
Input: Matrix row i, RCS threshold, .
  
  
  for  do
   
   
   
   

   
   
   if  then
    
    if  then
     
    end if
   end if
  end for
Output: 

The result from the algorithm applied to all an-
gles yields the polar model of Figure 7, which is 
subsequently converted to Cartesian coordinates 
as in Figure 9a to match the format reported from 
the sensor.

In the figures, the model is overlaid with the 
measured radar response to reveal that the mod-
el, based on the available elevation data, signifi-
cantly overmodels the amount of responses. This 
overmodeling, however, is counteracted in the 
choice of error measure in the point-cloud match-
ing between the sensed and modeled points.

—
Figure 7: Measurement 
model with the 
corresponding polar 
radar response overlaid 
in red

—
Figure 8: The likelihood 
function from (11) 
evaluated around 
the reference GNSS 
position, in a 5m 
resolution grid In the 
plot, the GNSS reference 
position (white) as 
well as a local maxima 
(green) are marked



B. POINT CLOUD MATCHING
The likelihood function of (11) is illustrated in 
Figure 8 for the example scan in Figure 9a over an 
±100m north/east area with a gridded 5m reso-
lution. It is clear that in this particular scan and 
DEM, a more or less nearby position provides an 
even better match for the received radar data. The 
corresponding match is illustrated in Figure 9b. A 
likely reason for this is the fact that the available 
elevation data does not include the houses along 
the shore that dominate the radar response with-
in this particular harbor. This illustrates a weak-
ness of the DEM approach compared to SLAM 
solutions, which are inherently more robust to 
discrepancies by not relying on external maps.
 

The pseudocode implementation of the point-
cloud measure used in this paper is presented in 
Algorithm 2, where the measurement likelihood of 
(11) is applied to the joint set of expected meas-
urements.

Algorithm 2 – Measurement model pseudocode
Input: Latitude (lat), longitude (lon), , heading .
  
  
  
  
  
  
 
  
  
  for  do
   
  end for
  

  
  
Output: 

Experiments
The Suomenlinna II is a ferry that runs between 
Helsinki harbor and the Suomenlinna fortress in 
the Helsinki archipelago. The ferry is equipped 
with Double Acting Technology, meaning its 
forward/aft direction can be fully reversed, which 
leads to some additional considerations in algo-
rithm implementations.

The ship has also been retrofitted with a sen-
sor suite including radars, lidars, cameras, and 
GNSS. These are connected through a backbone 
network to an onboard server for algorithm 
development. For the development presented in 
this paper, multiple passes were recorded and 
post-processed using a real-time communication 
framework. This framework enables the same 
implementation that is developed offline to be 
used online without modification. Online tests are 
planned in the future. The marine radar in use per-
forms pre-processing of the radar response. The 
radar data is sparsified by extracting individual 
points from a thresholded radar response, with a 
threshold set at approximately 25 percent of the 
radar decibel range.

—
Figure 9a: Match at 
GNSS reference. In the 
likelihood plot in Figure 
8, the marked positions 
correspond to the 
matches illustrated to 
the right. The modeled 
response is plotted in 
black and the measured 
radar response in red

—
Figure 9b: GNSS, −35m 
north, +40m east



DEMs were obtained from the National Land Sur-
vey of Finland [14] who provide DEM data under a 
Creative Commons Attribution 4.0 International 
(CC BY 4.0) Licence [15].
 
The particle filter was run with 100 particles initi-
ated at first around a known GNSS  position, with 
an added Gaussian noise having a standard devi-
ation of 10 m in the north                     time 
lapsed since the last measurement update. The 
RCS threshold was set at               .

Figure 10 shows an example run of the proposed 
algorithm. We considered 120 s of navigation, 
with the ferry cruising in a south-southeast direc-
tion. In the figure, the reference GNSS track and 
the estimated position are shown on the map in 
red and yellow, respectively. The estimation error 
and the particles’ standard deviation of spread 
are shown in the lower plots. The estimation error, 
post measurement updates, is kept below ap-
proximately 10m to 15m throughout the majority 
of the evaluation.

In this case, the tracking was performed on 
every 20th 3Hz radar measurement, resulting in a 
runtime of approximately real time on a consumer 

computer. The runtime is dominated by the point-
cloud matching, indicating where future optimiza-
tions could be focused.

Conclusion
In this work, we propose a method for maritime 
navigation independent of GNSS that is able to 
provide absolute positioning of a vessel based 
on marine radar scans. We describe the method 
and demonstrate the feasibility of using Digital 
Elevation Model (DEM) to model the response of 
a ship-mounted marine radar. Tracking of a vessel 
is demonstrated using real-world data from a 
ferry transiting Helsinki harbor. The quality of 
the tracking is, without surprise, observed to 
be dependent on the detailedness of the DEM. 
In particular, the exclusion of man-made struc-
tures in the DEM – in this case buildings along the 
harbor front – sometimes skews the results by not 
providing a major source of detections present 
in the sensor data, instead comparing it to the 
more subtle coastline. Nevertheless, the model is 
capable of tracking the vessel in the harbor with a 
tracking error comparable to that of GNSS, main-
taining an error in the harbor of less than around 
10m to 15m throughout the majority of the test-
case using only 100 particles.

At this point, the model does not factor in ground 
properties such as varying reflectivity, as only the 
position of expected returns are considered.

The implemented particle filter using the pro-
posed likelihood was shown to be capable 
of real-time tracking of the vessel. Real-time 
tracking enables robust localization. This pro-
vides a redundant system to complement GNSS 
navigation. It can also be used to detect GNSS 
malfunctions or attacks, providing immunity to 
interference, jamming, and spoofing. The track-
ing performance could, with optimizations and in-
crease in computing power, further be increased 
by including more of the radar scans at a higher 
rate or increasing the number of particles in the 
particle filter.
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—
Figure 10: Track and 
error of the particle filter 
tracker, as compared 
with the GNSS reference. 
The reference GNSS 
track and the estimated 
position are shown 
on the map in red and 
yellow, respectively
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