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Abstract—The acronym PEMS stands for Predictive Emission
Monitoring Systems and designates software analyzers able to
provide a reliable and real-time estimate of emission concen-
trations by means of a data-driven model using real process
measurements as input data. The model is built by resorting to
measured process values along with true emission values from a
portable Continuous Emission Monitoring System (CEMS) dur-
ing the data collection period. Once on-line, PEMS performance
in terms of emission prediction accuracy is strongly affected
by the quality of the sensors input data. In order to ensure
that the performance requirements imposed by the regulatory
environmental agencies are met, a so-called Sensor Evaluation
System (SES) must be included in the design of a new Robust
PEMS (R-PEMS). The main goal of this paper is to introduce
a technical solution that is capable of: i) detecting whether
the sensors input data to the PEMS is faulty; ii) identifying
which sensor is faulty; iii) whenever possible, substituting the
faulty sensor input with a reconciled value with the objective of
recovering the PEMS performance prior to the fault. Finally, we
empirically verify the performances of the proposed SES using
a real data set collected at a oil refinery.

I. INTRODUCTION

Continuous acquisition of emission data is a standard legally
enforced requirement for the process industry to monitor
and control the pollutants released into the atmosphere and
to verify that plant emissions do not exceed the thresholds
defined by the regulations [1, 2].

The traditional solution employed by the industry to comply
with the legislation is to monitor the emissions via hardware-
based continuous emission monitoring systems (CEMS); such
systems normally comprise analysers (to sample and identify
the compositions of released flue gas) and an IT infrastructure
to manage, record and store the emissions values [3, 4].

Predictive emission monitoring systems (PEMS) are an
innovative technology able to estimate emissions on the base
of the values of relevant process parameters to an accuracy
comparable with that of the CEMS at a fraction of the cost.
PEMS are widely recognized as an effective mean for emission
monitoring [3]. Depending on the local legislation, they can be
used either as a primary source of monitoring or as a backup of
traditional analyzers. PEMS are software-based technologies
developed to estimate pollutant concentrations through ad-
vanced data-driven (e.g., empirical) models built upon process
data (e.g. fuel flow, load, ambient air temperature) [5–7].
The data-driven empirical model for emission monitoring is
obtained by training a classical regression model, e.g., a neural

network, with training data consisting in measured process
data and measured emission obtained via portable CEMS.
The interval wherein both real emission and process data are
collected is referred to as data collection period. At the end of
the data collection period, an empirical model can be trained
to predict the emission from the process data as input, and the
CEMS is removed from the plant. At this point, the emission
will be predicted by feeding solely the process data to the
trained empirical model,

Clearly, process data ought to be as accurate as possible for
a reliable emission estimates [8–10] and regulation enforce
procedures for automatically check the PEMS input data. In
fact, PEMS shall contain a so-called Sensor Evaluation System
(SES) for quality assurance of incoming process data. This is
typically achieved by means of a pre-processing system that
checks whether a sensor is functioning outside its approved
operating envelope, at least daily. Upon approval, if it is
observed that a sensor might have failed, the SES might also
trigger a so-called Data Reconciliation block. Reconciled data
are soft-sensor [11] data that are generated by a SES to replace
that of a failed sensor. In this context, soft-sensor data (also
known as inferential measurement) are referred to data that
comes from an empirical (data-driven) model, instead of a
physical hardware sensor. In the literature, this process is often
called Data Validation and Reconciliation (DVR) [12, 13],
and it is briefly described in one of the ensuing sections. The
remainder of this document is as follows. In the subsections
I-A and I-B the DVR concept and the scope and goals of the
paper are highlighted, respectively. Assumptions are stated in
subsection I-C. The Robust PEMS framework advocated in
this paper is described in Section II. The algorithmic core of
the SES unit is described in Section III. Numerical tests are
presented in Section IV while concluding remarks are provided
in Sec. V.

Notation. Throughout this report, vectors are expressed
in bold face letters, while matrices are expressed in capital
bold face letter. The symbol R represents the set of real
numbers while N+ represents the positive natural numbers.
The symbol ≼ and ≽ represent the element-wise ordering
symbols. The input of a PEMS is the process sensor vector
x := [x1, . . . ,xN ]

⊤ ∈ RN , where ⊤ represents the transposition
symbol. Clearly, a certain PEMS project will have several
PEMS models, one for each variable to predict and monitor
(e.g., O2, CO, CO2, NOx, etc...). When not confusion arises,



we will use x as the general PEMS input, i.e., the process
variable sensor data fed into the PEMS model. If x ∈RN , for
each i ∈ [1, . . . ,N], x(−i) := [x1, . . . ,xi−1,xi+1, . . . ,xN ] ∈ RN−1

represents the N−1 vector of all process measurements except
the ith. Here we denote with N the number of sensors inputs
to the PEMS model. We denote with xt the tth member of the
training set, while with xxxt the tth member of the test set. The
symbols ∥·∥ and ∥·∥1 denote the L2 and L1 norm of a vector,
respectively, while L0 denotes the number of non-zero entries
of a vector.

A. Data validation and reconciliation

In its classical definition, DVR is a technology that uses
process information and mathematical methods in order to
automatically correct measurements in industrial processes
[12, 13]. Hereinafter, DVR is described in its steady-state
formulation. Extensions of DVR to dynamical process have
also been considered but PEMS are typically considered static
applications [12]. Let us define xxx := [x1, . . . ,xN ] ∈ RN the
N-dimensional vector containing the measurements from N
sensors deployed in the plant at a certain (unspecified) time.
This vector contains process data such as temperatures, flows,
pressures, etc. Conservation laws (mass, heat, etc, ...) can be
typically captured via a vectorial function F : RN →RC, such
that F (xxx) = 0C, where C is the number of constraints imposed
by the conservation laws. Assuming that for n = 1, ...,N there
exist bounds (xn,min;xn,max) such that xn,min ≤ xn ≤ xn,max, and
denoting σn for n = 1, . . . ,N the standard deviation of each
sensor random measurement, DVR amounts of solving the
following problem [12]:

x̂xx := arg min
xxxmin≼x̃xx≼xxxmax

N

∑
n=1

(
x̃n − xn

σn

)2

s.t. F(x̃xx) = 0 (1)

where x̂xx := [x̂1, . . . , x̂N ] ∈ RN is the reconciled variable and
x̃xx := [x̃1, . . . , x̃N ] ∈ RN is the optimization variable. The prob-
lem in (1) is a constrained least-squares. Depending on the
constraints imposed by the conservation laws, the problem
can be convex or non-convex. When the problem is convex, a
global minimum can be found via convex optimization. When
the problem is non-convex a local minimum can be found
via non-linear programming. The basic assumption of (1) is
that the conservation equations are available. For our PEMS
problems, this is not the case, and in Sec. III, we will address
the problem of finding a form of F from training process
data.

B. Scope and Problem Statement

The scope of this paper is to introduce the concept of
Robust PEMS (R-PEMS) with the SES unit consisting of a
set of algorithms for Sensor Fault Detection (SFD), Sensor
Fault Isolation (SFI), and Reconciliation that can make PEMS
robust to sensor errors. Typically errors can be classified in
two categories: a) instantaneous errors, which are errors that
occur sporadically; b) persistent errors, which are caused by

sensor faults and are most likely to persist in consecutive
measurements. Instantaneous errors are not in the scope of
this work. In fact, PEMS is not strongly affected by isolated
errors since the prediction performance is typically averaged
over a long time [14]. Furthermore, instantaneous gross data
can be detected resorting to classical outlier detection [15].
Our approach is designed with three main goals in mind:

1) Detect: assess whether a new test process vector xxxt at
time t is a good or bad point, that is, a bad point is
a point that resembles the points in the training set
whereas a bad point is one that does not resemble any
point in the training set; In case, it is a good point, the
point is fed to the current PEMS empirical model;

2) Isolate: in case the point is bad, we want to identify
which sensor is faulty;

3) Reconcile: in case the faulty sensor is isolated, we want
to reconstruct the bad data from the faulty sensor with
data which are calculated from the rest of the other good
(i.e., fault free) sensors data.

C. Assumptions

A fundamental assumption throughout this paper is that of
single sensor fault. That is, we are assuming that persistent
sensor failure are so sporadic that the probability that two
sensors fails contemporaneously or in a short time difference
is negligible. Therefore, our approach relies upon the fact that
we can detect, isolate and reconcile a sensor before another
one fails. Clearly, the operator will get the recovery report to
signal that a sensor has failed, and he will be asked to replace
the failed sensor in the next planned service.

In principle, the assumption of single sensor fault could be
removed but the proposed algorithms (in particular the SFI)
require significant modifications 1.

In designing the SES, we do not assume any knowledge
of the process. But we are assuming that we can observe the
process via the sensors that are deployed into the system. In
particular, we are assuming the existence of a training set,
X := [x1, . . . ,xT ] ∈ RN×T where xt represents the measured
point at time t and T is the length of the training set. In a
static application such as PEMS, the points do not need to be
equispaced. The data X are observed during the data collection
period (that can last weeks or months) and it can be the same
adopted for training the PEMS empirical model (for the latter
also the measurements of the real emission through the CEMS
will be required).

We assume that the training set X captures a wide variety of
operating points of the process. Clearly, if an operating point
is not observed during the measurement campaign, certain
algorithms might detect faulty sensors even if the process
is simple working at an operating point different from those
examined during the data collection period. We also assume

1In the subsection III-C we sketch a possible solution for the multiple sensor
faults.



that in the acquisition of the training set X, no persistent
sensor failure is present, while instantaneous fault can be
present and removed via visual inspection and automatic
outlier detection methods. In the ensuing sections the concept
of Sensor Fault Detection (SFD), Sensor Fault Isolation (SFI),
and Reconciliation (RECON) is introduced.

II. TOWARD A ROBUST PEMS: SENSOR FAULT
DETECTION, SENSOR FAULT ISOLATION, RECONCILIATION

The concept of Robust PEMS (R-PEMS) is depicted in Fig.
1.

Fig. 1: The concept of R-PEMS: SFD, SFI, Reconciliation.

The existing PEMS implementation is depicted in the cyan
block. This block gets as input a set of process variable data
and give as output the predicted emission value. We retain this
block from the current industry best practise and we do not
attempt at optimizing it.

It is envisioned that the R-PEMS application acts as a pre-
processing layer according to three different steps:
SFD: The input of the SFD algorithm is the process vector xxxt
at time t and the output of the SFD is a binary variable SFDt
which states whether the point xxxt is faulty (SFDt = 1) or not
faulty (SFDt = 0). In case the point xxxt is not faulty, xxxt is fed to
the existing PEMS and the emission at time t corresponding
to the process vector xxxt is evaluated. If SFDt = 1, we keep
observing the evolution of SFDτ for t < τ ≤ t + tSFD, where
tSFD ∈ N+ is an SFD activation length. If SFDτ = 1 for
t < τ ≤ t + tSFD, we declare that the process vector has one or
more persistent faults, and we activate the SFI block. Clearly,
large SFDτ will help in keeping low false alarm rate but will
end up in a fault detection activation delay. It is worth point
out here that SFDτ needs to be selected by the PEMS designer
to strike a balance between avoiding false alarm and managing
small detection delay.
SFI: Once the fault has been declared, the SFI aims at isolating
the faulty sensor. Let us recall that we are enforcing the
single sensor fault hypothesis. The input of the SFI is a set
of consecutive process vectors. Let us denote with t∗ the SFI
activation time. The input of the SFI could be the set of process
vectors {xxxt}t∗+tSFI−1

t=t∗ , where tSFI is the SFI length, and the
additional delay for SFI is tSFI. Clearly, our rationale is to

feed the SFI with points with a sensor fault. Therefore, we
want to make sure that only point after t∗ are fed to the SFI
block. Nevertheless, if isolation delay is of utmost importance,
one could think to feed also some point before t∗. For instance,
the input of the SFI could also be the set of process vectors
{xt}t∗+⌊tSFI/2⌋

t=t∗−⌊tSFI/2⌋. In this case, the additional delay for SFI is
⌊tSFI/2⌋. The output of the SFI is an index îSFI ∈ [1, . . . ,N] of
the fault sensor.
RECON: Once the faulty sensor index îSFI has been identi-
fied, the last step of the R-PEMS pre-processing is the data
reconciliation, i.e., the substitution of the measurement of the
faulty sensor with a reconciled value which is calculated from
the non-faulty sensors. The cores of the reconciliation step are
N recovery functions ℓn : RN−1 → R such that the nth sensor
can be estimated as a function of the other N −1 sensors, i.e.

x̄n := ℓn(xxx(−n)), for n = 1, . . . ,N, (2)

where x̄n is the nth reconciled value. Let us define the vectorial
function L : RN → RN , such that

L(xxx) := [ℓ1(xxx(−1)), . . . , ℓN(xxx(−N))]
⊤. (3)

It is worth point out here that the whole reconciled process
vector can be obtained as

xxx = L(xxx) (4)

where xxx := [x̄1, . . . , x̄N ]
⊤. If the SFD and SFI blocks have iden-

tified that the ith sensor is faulty, then, the reconciliation pro-
cess substituted the original test set point xxx= [x1, . . . ,xN ]

⊤ with
the point RECON(xxx) = [x1, . . . ,xi−1, ℓi(xxx(−i)),xi+1, . . . ,xN ]

⊤.
Clearly, RECON(xxx) does not depend on the faulty data xi.
The form of the vectorial function L(xxx) is not specified at the
moment. It is worth pointing out here that L(xxx) is not known a
priori and it captures the dependencies among differen sensors.
We will assume that we can learn L(xxx) from the training set X
and several methods will be advocated in this report to perform
such a task, including Locally-Weighted Regressions (LWR)
[16, 17] and Feedforward Neural Networks (FFNN) [18], to
name a few.

III. SENSOR-CENTRIC BALANCE EQUATION FOR SFD,
SFI, AND RECON

As described in Sec. I-A, the idea of sensor DVR is to detect
sensor failures based on multiple (redundant) sensor measure-
ments and the constraint relations among them [19, 20]. Its
principle is generally based on consistency checking between
the observed behavior of the process provided by the sensors
and the expected behavior given by a mathematical represen-
tation of the process. Such a mathematical representation, that
intrinsically contains the analytical redundancy of the system,
can be derived from first principle equations, i.e., mass/energy
conservation laws, Ohm/Kirchoff laws in electric networks,
etc. However, in many situations, physics-based equations may
be difficult to obtain due to the complexity of the process and
high process dimensionality [20]. As an alternative to physical-
model techniques, methods based on Principal Component



Analysis (PCA) are also used to detect sensor faults [21].
However PCA has its sore point in being a linear technique and
most engineering problems are highly nonlinear. To overcome
the nonlinear problem, Auto Encoders (AEs) can be used
[22, 23]. This approach can be very general provided that the
AEs capture the interdependencies among the data. This might
require very complex network and a complex mechanism of
training, and, therefore, large training data.

In this section, instead, we advocate a method for learning
an approximate form of balance equations. It is worth pointing
out here that we do not assume any process knowledge for
performing this task. Any prior knowledge can be embedded
in this formalism to improve the learning process. To be
specific, given the training set X we aim at discovering the
vectorial function F (x) = 0C of Sec. I-A. To make the above
challenging problem tractable, we enforce two assumptions:

Assumption 1: The process we want to analyze is static. 2

The lack of knowledge on the process, forces us to make
general assumptions on the form of F . In particular, we
assume the following.

Assumption 2: The vectorial function F has the following
”Sensor-Centric Balance Equation” (SCBE) structure:

x = F(x)→ x−F(x) = 0N (5)

with
F(x) := [ f1(x(−1)), . . . , fN(x(−N))]

⊤. (6)

In other words, we cannot enforce mass/energy balance equa-
tions but we assume that each of the N sensors can be
reconstructed from the rest of the sensors (therefore the name
sensor-centric balance equation). That is, the function fi(x(−i))
act as a soft-sensor for the ith sensor and is fed from the data
of the other N −1 sensors.

It can be easily seen that the equation (5) refers to a
particular form of F , that is, F (x) = x−F(x), therefore the
number of constraints equals the number of sensors.

The problem of learning the sensor-centric balance equa-
tion is converted to learning N scalar functions with N − 1
arguments. Several approaches for learning fi(x(−i)) could be
adopted. In the ensuing section, we advocate a non-parametric
method method, that is, Locally Weighted Regressions (LWR)
and, successively, we will clarify the usage of SCBE for SFD,
SFI and RECON. We have also attempted to learn fi(x(−i))
via classical parametric algorithms, i.e., Feedforward Neural
Network (FFNN) [25], but for space limits we decided not to
include it in this paper.

A. Locally-weighted Regressions

With LWR we do not aim at giving an explicit functional
form of fi(x(−i)) and, therefore, of F(x). On the other hand, we

2The problem of discovering nonlinear dynamics of the process [24] is out
of the scope of this work. We plan to tackle this problem in future works.

aim at providing a tool for evaluating the functions fi(x(−i))
and, therefore, of F(x) for any x given the training set X.

The crux of LWR is to evaluate F(x) as a local regression
of the points in X that are close (in some sense) to the point x.
LWRs have been introduced in [16, 17] and, hereinafter, they
will be only quickly reviewed.

Let x be the point around which we want to evaluate
F(x) and let xt the tth point in the training set, that is,
X := [x1, . . . ,xT ]. Let us consider the evaluation of the ith
function fi(x(−i)), that is, we want to find the functions
that reconstruct the ith sensor given the other N − 1 sen-
sors. Let X(−i) := [x1(−i), . . . ,xT (−i)] ∈ RN−1×T the original
training set without the ith row of the ith sensor data. Let
x(+i) := [x1,i, . . . ,xT,i]

⊤ ∈ RT be the column vector with the
entries of the ith row of X.

The core of the LWR is a distance function d which defines
how distant are two vectors. Without loss of generality, for
the sake of clarity, we can consider d to be the Euclidean
distance, i.e., d(x,y) := ∥x−y∥. In LWR, the function fi(x(−i))
is evaluated as a local linear regression, that is

fi(x(−i)) = θ0 +θθθ⊤x(−i) (7)

where θ0 and θθθ ∈ RN−1 are, respectively, the intercept and
the regression coefficients, and are obtained for every point x
via weighted least-squares, that is, by solving the following
problem:

(θ0,θθθ) = argmin
θ̃0,θ̃θθ

T

∑
t=1

d(x,xt (−i))(xt,i − θ̃0 − θ̃θθ
⊤

xt (−i))
2 (8)

The above problem amounts to a linear regression and it can
be solved in closed form with simple algebraic operations.
However, the above problem needs to be solved for each
fi(x(−i)), therefore, N times. Furthermore, as the regression
coefficients depends on the evaluation point x, the problems
in (8) need to be solved for every new point x.

B. SCBE-based SFD

Once the SCBE has been learnt (via LWR, FFNN, or any
other method), SFD can be performed. In fact, abnormal
situations that occur due to sensor faults induce changes in
sensor measurements.

Let us consider a test process sensor data vector xxx. In the
fault-free case, we will have:

xxx = F(xxx)+ xxxe (9)

where xxxe denotes the error vector due to both measurement
noise and model mismatch. From the training data set X of
fault-free process sensor data, we can estimate the expected
size of the error xxxe, and we expect its norm to be small, that
is

∥x−F(x)∥< γ, (10)



for every point x in the training set. γ is the size of the error
that one should expect when the process sensor training data
x are approximated with the process soft-sensor data F(x) in
the fault-free case. The crux of the SCBE-based SFD is to
monitor the size of the error between the process sensor test
data xxx and the process soft-sensor data F(xxx), i.e., ∥xxx−F(xxx)∥.
In particular, a fault is declared in case this error exceeds γ ,
i.e.,

DSSCBE(xxx) := ∥xxx−F(xxx)∥> γ (11)

where DSSCBE(xxx) is the decision statistic for the sensor-centric
balance equation SFD.

The γ threshold in (11) is set to guarantee a certain fixed
false alarm from the training and validation set. If the false
alarm is to be minimized, an effective strategy is set γ as the
maximum of the decision statistics over the training set plus
a correction factor.

Remark 1: It is important to note that that SCBE might
suffer from the fact that for some sensors it is not possible
to find a relationship of the form xi = fi(x(−i)) or, better, this
relationship is uninformative and entails a large residual error,
that is the SFD unit will generate false positives. In the test
cases encountered in this study the hypothesis of the existence
of a high quality sensor balance equation holded. If this is not
the case, the form of F can be modified using some domain
knowledge about the process, i.e., certain rows corresponding
to the sensors for which the sensor-centric balance equation
has to be removed.

C. SCBE-based SFI

The goal of SFI is to identify which sensor out of N has
failed. Without loss of generality, if a fault is declared and the
SFI is activated, then it turns out that the process sensor data
vector is affected by an unknown signature vector.

We envision that the test process sensor data vector xxx is of
the form

xxx = xxx∗+ xxxe + eee (12)

where xxx∗ is the fault-free process sensor vector (that we would
get in case of no fault) and, in case of fault of the ith sensor,
eee is of the form eee = e1i with i ∈ [1, . . . ,N] and 1i being the N-
dimensional Cartesian basis vector with all zero entries except
in the position i where the entries is equal to 1 (this reflects our
assumption of single sensor failure only) and e ∈R indicating
the magnitude of the fault signature.

We now attempt at estimating the size of the error eee to
identify the faulty sensor as originally done in [26]. If the
error was in the ith sensor, the most likely error vector eee =
e1i would be the one minimizing the mismatch between the
process sensor data and the process soft-sensor reconstructed
data, i.e.,

Ei = min
e∈R

∥xxx+ e1i −F(xxx+ e1i)∥. (13)

Then, the most likely faulty sensor is the one providing the
smallest index Ei for i = 1, . . . ,N. Mathematically, we have
that îSFI is given by:

îSFI = arg min
i∈[1,...,N]

Ei. (14)

Finally, the SFI can be achieved solving the following prob-
lem:

îSFI = arg min
i∈[1,...,N]

[
min
e∈R

∥xxx+ e1i −F(xxx+ e1i)∥
]

(15)

With the minimization in (13), we are basically seeking the
error vector eee to compensate for the sensor-centric imbalance
situation created by the sensor fault. We can find it by
minimizing the imbalance residual with the goal to obtain the
new balance equation:

xxx+ eee = F(xxx+ eee) (16)

It turns out that, if the index îSFI is indeed the index to
correct, then

EîSFI
< γ (17)

This constitutes a sanity check on whether the SFI was correct
or not.

Remark 2: Inspired by the works in [26, 27], the formulation
as in (15) can be extended to the case of multiple faults as
follows:

êees = argmin
eees

∥xxx+ eees −F(xxx+ eees)∥+λ∥eees∥1 (18)

where the regularization parameter λ governs the trade-off
between satisfying the SCBE and minimizing the number of
faulty sensors. Here eees ∈ RN is the vector of sensors fault
signatures and it is assumed to be sparse (the number of faulty
sensors is small compared to the total number of sensors).
This assumption is integrated in the optimization problem
by introducing an ℓ1 regularization term into the objective
function (18). It is straightforward to note that the problem
in (18) resembles that in (15) when ∥eees∥0 = 1, that is eees = eee.
We plan to include the analysis of the multiple faulty sensors
in a future work.

D. SCBE-based RECON

Once we have detected and isolated the faulty sensor, the
reconciliation of the fault data is performed, again, adopting
the SCBE. We have highlighted in (5) the recovery process.
However, in Sec. II we did not specified a form of the recovery
function L(xxx). At this point, it is natural that our preferred way
to select the recovery function L(xxx) is via the learnt SCBE,
therefore, hereinafter we use the following recovery function
for data reconciliation:

L(xxx) = F(xxx) (19)

where F(xxx) is defined in Sec. III and can be estimated, among
other methods, via those highlighted in Section III-A.



E. Implementation Issues

In this subsection, we aim at highlighting some key imple-
mentation issues that were overlooked during the description
of the methods to keep it lean, but are key to the successfulness
of the methods.
Normalization. The data are centered around zero and normal-
ized to have unit variance before any processing;
Filtering. In a real application, measurement points will arrive
consecutively over time. Since we are focusing on persistent
errors, filtering (that is, integrating) the decision statistic in
(11) over a certain interval, is beneficial to come up with a
more reliable detection. The length of the filter will end up in
a decision delay however that has to be contrasted with the
performance gain in detection reliability.

IV. TESTS

In this section, we empirically verify the performances of
the proposed SES unit that has been introduced in the previous
sections. We are considering a data set collected during a real
PEMS project. The original dataset consists of data produced
by more than 100 sensors. Out of these sensors (also known
as tags in the industrial plant parlance), only 29 are used for
the PEMS of several gases, that is x ∈ R29. In this paper, we
are focusing only one particular gas for the sake of brevity,
O2, and we will be dealing only with the 8 sensors as input
to the prediction model of O2, that is, x ∈ R8. The dataset
collected during the collection period consists of 4160 time
ordered observations from 8 different sensors. The dataset is
split into a training set, validation set and testing set. Random
splitting which is typically used in machine learning, cannot
be used with time series data that by definition occur in a
temporal sequence. This is the reason why we adopted a
splitting strategy with the objective of preserving the temporal
structure of the series as untouched as possible [28]. We use a
systematic sampling method (which we call 4−1−1 splitting
method) that splits the dataset in discrete blocks. Specifically
we build the training set by combining non-overlapping blocks
of 4 consecutive data points that are down-sampled from the
original dataset every 6 data points. The validation set and
the testing set consist of the subsequences obtained by down-
sampling the original data set every 5 data points starting from
the 5th entry and the 6th entry of the data set, respectively.
The training, validation and testing datasets will have the size
of 2774, 693 and 693, respectively.

A. Simulation parameters

In this study we focus our attention on the persistent faults
characterized by continuity of the fault signature occurrence
leading to an observable pattern that we can learn over time
[29]. These criteria draw from experience and are applicable
to a wide types of faulty sensor readings including sensor
drifts and biases. Within the class of persistent faults, we
have experimentally observed that, among all possible faults,
the sensor freeze fault (at time t f reeze the sensor output gets

stuck at a fixed value) was the hardest to detect with general
purpose fault detector. Clearly, such a fault can be detected
with a dedicated test on the derivative or variance. Such a
rule would nevertheless not detect other type of persistent
fault such as offset and bias. In this section, we want to
analyze how our SFD/SFI methods would perform on sensor
freeze. Results on the performance of the algorithms for
sensor drifts and offsets are omitted due to space limits and
they will be provided in future works. We have simulated
a sensor freeze fault in each of the 8 sensors. From the
original test set, we have created 8 test sets wherein the
ith sensor is frozen at its value at time t = 300 (we have
performed test for various freezing times but for brevity they
are not be reported in this paper). Figures 2-9 show the frozen
and the original data values for sensors 1-8, respectively.

Fig. 2: Sensor 1: original vs frozen. Fig. 3: Sensor 2: original vs frozen.

Fig. 4: Sensor 3: original vs frozen. Fig. 5: Sensor 4: original vs frozen.

Fig. 6: Sensor 5: original vs frozen. Fig. 7: Sensor 6: original vs frozen.

Fig. 8: Sensor 7: original vs frozen. Fig. 9: Sensor 8: original vs frozen.



B. Results

The performances of the SCBE-based SFD with a filter
length of 50 of the decision statistics along with the decision
threshold for the SFD are shown in Figs. 10-17. The method
is effective in identifying faults for all sensors. In fact, the
decision statistics start increasing at the point of the fault (i.e.,
t = 300) and right after the decision threshold is exceeded. It
is still to be noticed that the margin in the SFD of sensor 1 is
small.

Fig. 10: SCBL-LWR SFD for Sensor
1 freeze.

Fig. 11: SCBL-LWR SFD for Sensor
2 freeze.

Fig. 12: SCBL-LWR SFD for Sensor
3 freeze.

Fig. 13: SCBL-LWR SFD for Sensor
4 freeze.

Fig. 14: SCBL-LWR SFD for Sensor
5 freeze.

Fig. 15: SCBL-LWR SFD for Sensor
6 freeze.

Fig. 16: SCBL-LWR SFD for Sensor
7 freeze.

Fig. 17: SCBL-LWR SFD for Sensor
8 freeze.

Due to the positive results of the SFD, we have performed
the SFI algorithm. The SFI rule in (15) is tested. In particular,
the evolution of the statistics Ei vs the integration time
is plotted in Figs. 18-25. We have considered a maximum
integration time of 50 samples starting from the SFD trigger

time. In Figs. 18-25 we have highlighted with solid black
thick lines the sensor corresponding to the minimum error
as advocated in (15). From 18-25 it is apparent that the rule
in (15) effectively isolates the faulty sensor, as the cumulative
sum of Ei of the faulty sensor is always the lowest.

So far we have assessed the effectiveness of the SFD and
SFI algorithms. We aim now at assessing the performance
of the whole R-PEMS, that is, we want to see which is
the performance degradation of the Classical PEMS and the
Robust PEMS in the presence of a sensor freeze. We have
observed that the PEMS is very sensible to fault in sensor 1,
in the sense that small error in sensor 1 reflects in large error
in the emission prediction. Such error can easily exceed the
10% acceptance limit imposed by regulations [8]. The original
Classical PEMS performance with no fault, along with the
performance of the Classical PEMS and R-PEMS with sensor
1 freeze at time 300, are shown in Fig. 26, wherein the relative
accuracy over the test set is calculated. The x axis represents
the block index. Indeed, we have split the 693 test set points
into 9 block of T = 70 points and the last of T = 63 points
and we have calculated the relative accuracy (RA), that is
RA :=

1
T ∑T

t=1 |pt−vt |
1
T ∑T

t=1 |vt |
, where pt are the predicted (via the PEMS)

and the ground truth measures (via the CEMS) emission values
at time t. From Fig. 26 it is clear that, until the fault occurs,
the Classical PEMS and the R-PEMS perform identically.
After the fault, which occurs in blocks 5 and successive, the
Classical PEMS and R-PEMS have a performance impairment
with respect to the fault free case and the performance of both
Classical and R-PEMS exceed the 10% limit. After some time,
that is, at block 7 and successive, the fault has been detected,
isolated and reconciled as per subsections III-B-III-D. At this
point, the Classical PEMS is fed with the frozen sensor value
while the R-PEMS is fed with the reconciled values of sensor
1. After the fault has been detected, the R-PEMS has a slight
degradation with its RA exceeding the 10% limit. However,
after this transient period, the R-PEMS is able to recover
and bring back its RA below the critical 10% limit while
the Classical PEMS will still perform above the 10% limit.

Fig. 18: SCBL-LWR SFI for Sensor 1
freeze.

Fig. 19: SCBL-LWR SFI for Sensor 2
freeze.



Fig. 20: SCBL-LWR SFI for Sensor 3
freeze.

Fig. 21: SCBL-LWR SFI for Sensor 4
freeze.

Fig. 22: SCBL-LWR SFI for Sensor 5
freeze.

Fig. 23: SCBL-LWR SFI for Sensor 6
freeze.

Fig. 24: SCBL-LWR SFI for Sensor 7
freeze.

Fig. 25: SCBL-LWR SFI for Sensor 8
freeze.

Fig. 26: PEMS performance in presence of freeze in sensor 1:
Classical PEMS vs Robust PEMS.

V. CONCLUSIONS

In this paper, we introduce the concept of Robust PEMS
for making conventional PEMS resilient to sensor faults. We
have proposed a novel formalism based on the estimation of
the sensor-centric balance equation, wherein a special form
of balance equations are learnt using classical LWR methods.
This approach is the core technology enabling effective SFD,
SFI and RECON. Finally, preliminary tests, performed using

real data sets, have shown how the Robust PEMS is able to
comply with the regulations by recovering its performance
below the tight limits on pollutant emissions. In future, we plan
to address the case of multiple sensor faults and corroborate
our ongoing studies with additional numerical tests on new
data sets.
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