

SMART MOBILITY

Optimized energy management for electric vehicle chargers EVSS Control 100

Optimized charging EVSS Control 100

Reduces cost

 \oplus

- Highest charger utilization
- Future-proof

Pioneering the future of e-mobility

Delivering end-to-end electrification solutions for the transport of tomorrow, today.

Long standing experience

More than a decade in launching innovative EV charging technology, complimented by a century of experience in power distribution and energy management.

Trusted problem solver

From highway to home, from EV Fleets to retail, we are the partner of choice for the world's biggest brands of electric vehicle OEMs to nation-wide EV network operators.

Table of contents

04	EVSS Control 100 Enabling seamless integration of ABB EV Chargers (DC)
05	Why energy management is important?
06	How can EV chargers be prioritized? First in, first out (FIFO)
07	How can EV chargers be prioritized? Equal share
08	Architecture
09	User Interface
10 -11	EVSS Control 100 Technical specifications

EVSS Control 100 Smart optimization of EV charging performance

Why EVSS Control 100?

Reduces costs

- Reduce or eliminate necessary grid upgrades when installing more charging capacity (CAPEX savings).
- · Avoid penalty costs for energy demand peaks (OPEX savings).

Highest charger utilization

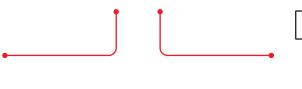
- · Prevents site power outages as a result of total charging power exceeding the site's grid connection limit.
- Increase the number of charge points on site and optimize the energy usage among outlets.

Future proof

- Scalable by design. Can be upgraded in the future to support additional chargers of EVSS that can be used on a site.
- Over-the-air software updates enable new optimization features and services as they are developed.

Where is it used?

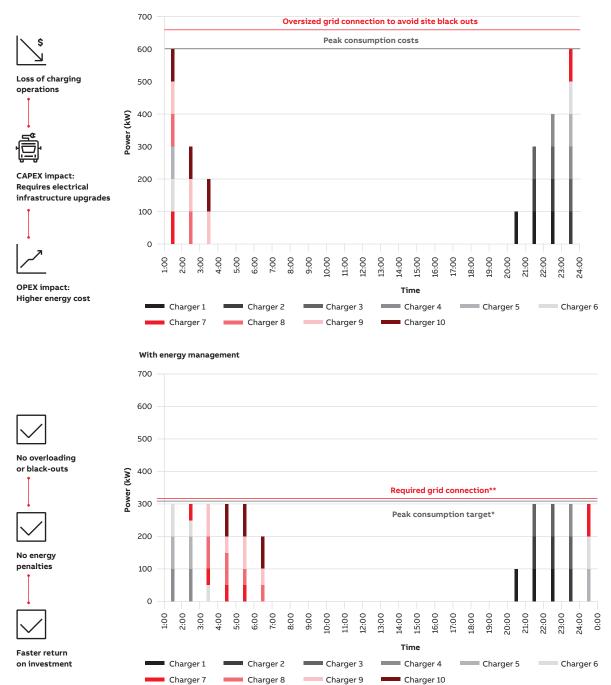
Bus Depot: Safe and reliable charging of your business critical operation, with clear insight in charging behavior and optimizing costs.



Roadside fast charging

station: The refuel station of the future for connecting cities and providing the fastest charge possible in the shortest amount of time

DC chargers



Fleet Depot: As more companies seek to reduce their carbon footprint, significant progress is achieved by converting their vehicle fleets to electric and upgrading their depots with

Public parking: As commercial businesses seek to attract a growing population of EV drivers, accessible charging infrastructure is needed within public parking areas.

Why energy management is important?

Bus Depot Example: 10 Buses, 300kWh Battery each, 10 x 100 kW chargers

** No need to increase grid connection = CapEx savings

* Peak reduction = OpEx savings

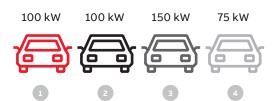
Without energy management

How can EV chargers be prioritized? First in, first out (FIFO)

Example: Charging station with 4 x 150 kW EV chargers with maximum available grid capacity of 300 kW.

— At 07:00 a.m.

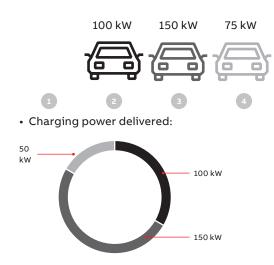
Charging power needs:



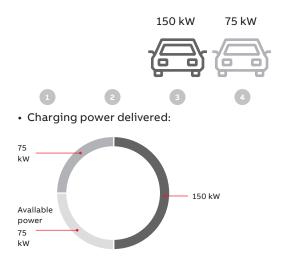
First in, first out principle: The priority of charging power is assigned based on the order of arrival of each car.

— At 07:05 a.m.

• Charging power needs:



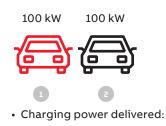
Charging power delivered:


At 07:10 a.m.

• Charging power needs:

At 07:15 a.m.

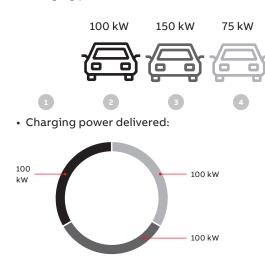
• Charging power needs:



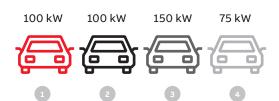
How can EV chargers be prioritized? Equal share

Example: Charging station with 4 x 150 kW EV chargers with maximum available grid capacity of 300 kW.

— At 07:00 a.m.


Charging power needs:

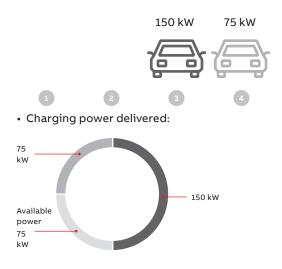
At 07:10 a.m.

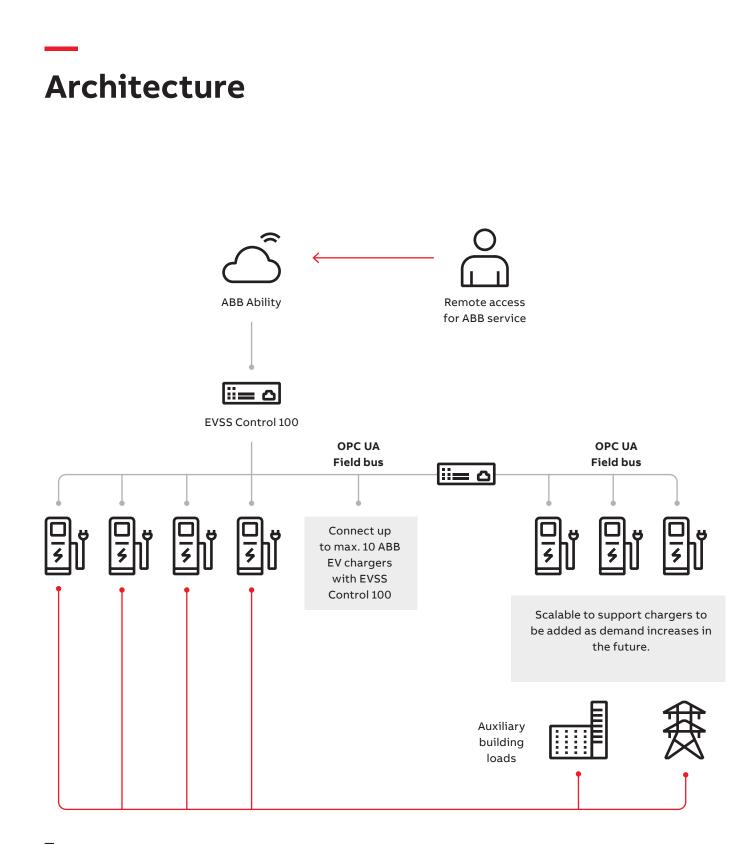

• Charging power needs:

Equal share principle: The available charging power is shared evenly across all connected vehicles.

— At 07:05 a.m.

• Charging power needs:

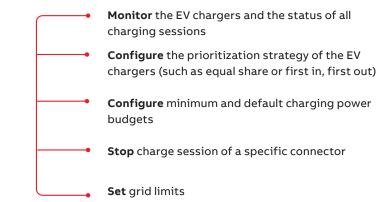


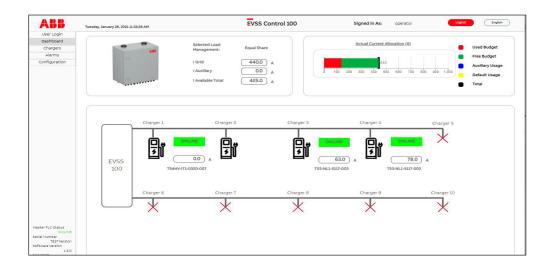

Charging power delivered:

At 07:15 a.m.

- Charging power needs:

Ordering details


	Product	Features	Order code	Weight (Pkg/1 pce/ kg)
2 A8	EVSS Control 100	Connect up to 10 chargers Integrated 4G connection	6AGC083930	26,2


User Interface

Local access for operator interaction with the EVSS Control 100 is possible via a web-based application. The application is accessible by connecting an external laptop.

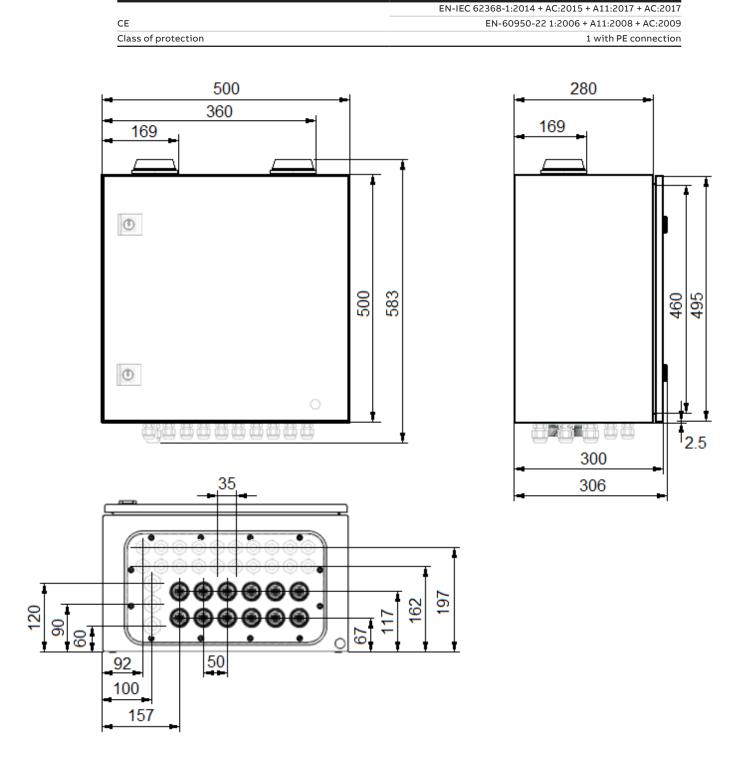
Once connected, the user is able to:

EVSS Control 100 Technical specifications

Electrical specification

Input	
Supply voltage	1-phase: PE, L, N
Input voltage range	230 V AC ± 10%
Input frequency range	47 - 63 Hz
Typical input current	1.55 A at 230 V AC
Typical power consumption	270 W
Power factor correction	0.75
Inrush current limiting	60 A (max. 5 ms) at 230 V AC
Internal input circuit breaker	10 A, Tripping Characteristic D
Rated Short-Circuit Capacity (Icn)	6 kA
Rated Ultimate Short-Circuit Breaking Capacity (I _{cu})	20 kA at 230 V AC

Mechanical specification


Dimensions (H x W x D)	583.0 x 500.0 x 306.0 mm	
Weight	26.2 kg	
Volume	0.084 m³	
Dimensions including packaging (H x W x D)		
Weight including packing		
Mechanical impact protection	IK08	
Housing Lacquered sheet steel		

Environment

Ingression protection	IP54
Temperature range – Operation	-25 ºC to +40 °C
Temperature range – Storage	-40 ºC to +60 °C
Humidity	5 % to 95 %, RH – non-condensing
Air pressure	2000 m (795 hPa)
Storage conditions	Indoors, dry

Certifications

ABB Heertjeslaan 6, 2629 JG Delft, Netherlands

abb.com/ev-charging

Additional information

We reserve the right to make technical changes or modify the contents of this document without prior notice. With regard to purchase orders, the agreed particulars shall prevail. ABB AG does not accept any responsibility whatsoever for potential errors or possible lack of information in this document.

We reserve all rights in this document and in the subject matter and illustrations contained therein. Any reproduction, disclosure to third parties or utilization of its contents – in whole or in parts – is forbidden without prior written consent of ABB AG.

© Copyright 2020 ABB. All rights reserved. Specifications subject to change without notice.

