
ABB Motion control products 1
www.abb.com/motion

Motion in minutes using pre-written PLCopen XML files
that can be imported into an Automation Builder AC500 v3
PLC project

Introduction
This application note details how to use Automation Builder for v3 AC500 PLCs (AB v2.2.2 onwards) to define the hardware
setup suitable for EtherCAT motion control of a single MicroFlex e190 or MotiFlex e180 and how to then write a simple AC500
v3 PLC program to perform motion on these drives. A pre-written import file is used to create an axis “class” that includes all the
basic functions any motion axis is likely to require.

Pre-requisites
You will need to have the following to work through this application note:

• Mint Workbench build 5852 or later (see www.abb.com/motion for latest downloads and support information)
• A MicroFlex e190 or MotiFlex e180 drive with build 5900 or later firmware
• A PC or laptop running Automation Builder 2.2.2 or later
• An installed (and licensed) copy of the ABB PLCopen v3 motion control library (prior to release this is distributed as a

number of license free components that are included with this document)
• One of the following AC500 PLC processors…..PM5630-2ETH, PM5650-2ETH, PM5670-2ETH, PM5675-2ETH (PLC

processors should be running firmware version 3.2 or later – use an SD card initially if the PLC has been shipped with
v3.0 firmware and then the ‘Update Firmware’ facility within Automation Builder to further update the processor as
required).

• The PLC also requires a CM579-ECAT communication module (again, once the PLC is running v3.2 or later this can
be updated through Automation Builder). Contact your local ABB PLC support team for details on how to check these
requirements and update if necessary or visit http://new.abb.com/plc/programmable-logic-controllers-plcs and select
the link for ‘Software’. For the purposes of the text in this application note we have assumed the use of a PM5670 PLC
with CM579-ETHCAT coupler

• Ethernet cable to connect the PLC EtherCAT coupler to the drive

It is assumed the reader has a basic working knowledge of Automation Builder, CoDeSys v3 and the AC500 PLC and that the
connected drive has been commissioned / fine-tuned as necessary and is ready to be controlled over EtherCAT.

Motion Control Products

Application note
Getting started with AC500 v3 motion

AN00268
Rev A

http://www.abb.com/motion
http://www.abb.com/motion
http://new.abb.com/plc/programmable-logic-controllers-plcs
http://new.abb.com/plc/programmable-logic-controllers-plcs

Application note Getting started with AC500 v3 motion AN00268

ABB Motion control products 2
www.abb.com/motion

Drive set-up
This application note assumes that you have already commissioned the drive. i.e. You have been through the Mint Workbench
commissioning wizard to define the motor and application settings and have then auto-tuned (and fine-tuned if necessary) the
control loops for the drive. Details on commissioning the drive can be found in the relevant drive installation manual or you can
make reference to application note AN00250. The initial operating control reference source
(CONTROLREFSOURCESTARTUP) for the drive can be set to Direct or Real time Ethernet, it doesn’t matter which as the PLC
will always switch the drive to Real time Ethernet when EtherCAT is started. Selecting Direct as the drive’s default source is
preferable though as this then allows direct control of the axis via Workbench whenever the PLC is switched to the “STOP’
state.

Automation Builder – Start a new PLC project
Launch Automation Builder if you have not already done so and start a new project (File>New Project…). Depending upon your
Automation Builder installation there are several templates to choose from when starting a new project – select AC500 project,
give your project a name and specify a location for the project. It’s normally a good idea to create a new folder to save your
project in as you may end up with more than one file associated with it.

Select ‘PLC – AC500 v3’ and then select your processor model from the right-hand pane. Click on ‘Add PLC’ when done.
Automation Builder will create a device tree and will give the PLC a name based on the processor type selected. If you like you
can click on the device name in the tree to overwrite this and call the device anything you like.

Next, we will add the motion library files to the project. These files are currently unlicensed (usually the library is distributed as a
setup/exe and needs a license to be transferred to the PLC) …

• ABB_MathFunctions_AC500.compliled-library
• ABB_MotionControl_AC500_506.compiled-library
• ECAT_AC500_APPL_V02.library

These files are included with this document, copy them to somewhere you can find easily.

Now we need to register these libraries with Automation Builder (this only needs to be done once, Automation Builder will know
these libraries exist for future projects). Double click ‘Library Manager’ in your project tree and in the right-hand pane click on
‘Library repository’…

When the Library repository dialog opens click on ‘Install…’

Application note Getting started with AC500 v3 motion AN00268

ABB Motion control products 3
www.abb.com/motion

Set the file type selection to ‘Compiled library files’ and navigate to wherever you stored the library files earlier. You can use the
CTRL key to select multiple files…click ‘Open’ when you’ve selected the two compiled libraries…

Repeat this process, but this time set the file type selection to ‘Library files’ and this time select the EtherCAT application
library…

When complete Automation Builder should show that the EtherCAT application library has been registered under the
‘(Miscellaneous)’ section of the repository and the MotionControl and MathFunctions libraries have been registered under ‘ABB
– AC500 > Use Cases’…

Now the libraries are in the repository we can close this dialog (remember, you don’t need to repeat this when starting new
projects).
Next, we need to add these libraries to our project, so this time in the ‘Library Manager’ window click the ‘Add library’ button…

Application note Getting started with AC500 v3 motion AN00268

ABB Motion control products 4
www.abb.com/motion

If you know the name of the library to install you can type some text to search for it (e.g. “motion” would find the MotionControl
library). Alternatively, we just saw that the MotionControl and MathFunctions libraries were registered at ‘ABB – AC500 > Use
Cases’ and the EtherCAT application library was registered at ‘(Miscellaneous)’ so we can just open these locations to find the
libraries…

Select each library in turn and click the ‘OK’ button. As each is selected, they will appear (in bold) in the top pane of the Library
Manager…

Some of our EtherCAT related function blocks we will add later will make use of the system function ‘SysMemSwap’ so we also
need to ensure the library that includes this is included in our project. Click on the ‘Add library’ button again and this time click
the ‘Advanced’ button on the resulting dialog…

Expand the System > SysLibs section and select the latest available version of ‘SysMem’ – click OK to include this in the
project…

Application note Getting started with AC500 v3 motion AN00268

ABB Motion control products 5
www.abb.com/motion

Next, we can add the EtherCAT coupler to our project tree. Right-click the Slot_1 position on the Extension Bus and select ‘Add
object’…

Select ‘CM579-ETHCAT’ from the list of available options. This module will now appear in the project tree…

Double-click the ‘CM579_ETHCAT’ entry and select ‘CM579-ETHCAT Parameters’ in the right-hand pane. Set the ‘Bus
behavior’ parameter to ‘Synchronous (start of bus cycle)’ as shown below…

It should also be possible to use ‘end of bus cycle’ but there is a bug in v3 at present that means ‘start of bus cycle’ is the only
mode that works.

Now double-click the ‘ETHCAT_Master’ entry in the project tree and on the General page in the right-hand pane set the required
EtherCAT cycle time…

We’ve set 4000us (4ms) in the screenshot above. The cycle time that’s achievable depends on the processor specification, the
number of axes and whether the application needs to use Touchprobe or any other function blocks and logic within the tasks

Application note Getting started with AC500 v3 motion AN00268

ABB Motion control products 6
www.abb.com/motion

synchronised with the EtherCAT task. Performance should be improved for 2020, for now it is sensible to use processor type:
PM5650 as a minimum level and the benchmarks for this or the higher-level processors can be summarized as…

Cycle
Time

No of axes (no
touchprobe)

No of axes (with
touchprobe)

2 8 2
4 30 6

** Note **
Operation faster than 2ms with v3 PLCs is currently not possible.

Now we’ve added the EtherCAT master and setup the bus synchronisation behaviour we can build the project – this will then
automatically create the task that will be associated with the EtherCAT data transmission. From the top ribbon select ‘Build >
Build’ from the top menu in Automation Builder.
Automation Builder will create a new task named ‘ABB_SyncTask_1’ automatically and show this under the ‘Task Configuration’
entry in the project tree…

You can rename this task if you like (e.g. Realtime). Later we will add a program call to this task (i.e. call the code that must
execute every EtherCAT cycle).

Now we can add a drive to the project tree (either a MicroFlex e190 or a MotiFlex e180). We will use a MicroFlex e190 for this
example. Right-click the ‘ETHCAT_Master’ entry and select ‘Add object’…

Automation Builder will show a list of all EtherCAT devices that are currently in its ‘Device repository’. You should select the
device that matches the drive type and firmware you are using. These files contain lists of EtherCAT objects that the drive
supports, so as new firmware is released the device file may contain additional entries to describe new drive
parameters/features – it’s therefore important to use the correct file.

** Note **
There are devices relating to specific firmware versions of the drives (E.g. Version 5.9.00.4 = 5900.4 in Mint). If the file that
matches the firmware in use on your drive is not present, you should close this window and use ‘Tools>Device repository’ to
register the required file(s). EtherCAT ESI/XML files can be downloaded from the ABB motion website or retrieved from the
drive directly via its webpage. See AN00205 for further details if needed.

In our case we’re using a MicroFlex e190 drive running firmware version 5900.4 so we’ll select this entry and click ‘Add object’.
The drive now appears in the project tree…

Application note Getting started with AC500 v3 motion AN00268

ABB Motion control products 7
www.abb.com/motion

** Note **
EtherCAT uses the physical topology to identify each axis/drive, so the order the drives are added to the tree must match the
physical order in which the EtherCAT connections are made.

Double-click the drive entry in the tree to access the parameters for the drive. We should select ‘Enable Expert Settings’ and set
the EtherCAT shift time to 10% of the EtherCAT cycle time as shown below…

** Note **
The ‘Startup checking’ section of this pane can be useful if you need to run an application defined to use drives of a type you
don’t have. For example, imagine a project includes an e190 drive but you only have an e180 drive available for testing. Expand
‘Startup checking’ and untick the ‘Check Product ID’ option…

The PLC won’t check that the drive is of the correct type and because e180 and e190 drives operate identically you can now
use either drive type regardless of what’s set in the project tree.

After adding the drive to the tree Automation Builder will automatically add the default PDO mappings needed to control the
drive via Cyclic Synchronous Position mode of operation. We need to give “variable names” to these PDO mappings so open
the I/O mapping list in the right-hand pane and give the defined mappings sensible names as shown below…

If there are multiple axes in the application repeat these steps to add further drives to the tree and allocate unique variable
names to their PDO mappings too.
We are now ready to import our v3 motion template which will automatically create data structures and template code for our
motion application. Select the ‘Application’ icon in the project tree. Then from the top menus select ‘Project > Import > PLCopen
XML…’ and navigate to the ‘v3 motion template.xml’ file included with this document (wherever you have saved it) and click
‘Open’. Automation Builder will show you everything that can now be imported…

Application note Getting started with AC500 v3 motion AN00268

ABB Motion control products 8
www.abb.com/motion

There is no reason to deselect anything so just click ‘OK’ to import all files. Automation Builder will detect the existence of some
POUs already so select ‘Replace the existing object’ whenever you are prompted to make a choice…

Once complete the Application section of your project should look like this…

A program (written in FBD) named ‘Motion’ is included which should contain all code that needs to execute in synchronism with
the EtherCAT task (e.g. the code that processes the axis profiling). We will look at how this works later but for now we need to
configure our real time task (still named ABB_SyncTask_1 in our example) to call this program.

Double-click your real time task and add the call to the Motion POU…

Application note Getting started with AC500 v3 motion AN00268

ABB Motion control products 9
www.abb.com/motion

Now let’s look at the various elements that have been imported…

Core axis POUs
A folder is imported that contains the following…

TAxis (Struct) – this is a data structure that effectively creates a “class” for an axis (i.e. it contains key variables relating to the
axis, such as the homed status, fault status etc as well as key function blocks for functions that all axes require such as
MC_Power for enable/disable, MC_ReadActualPosition to read position and the core parameter, kernel and DS402 blocks
needed to control the axis). The template attempts to define everything every application is likely to need “as standard” in this
structure (you may add or remove items as you need)

doAxisBasics (FB) – this is a function block that is written to perform all the basic functions every axis is likely to need…

• Operation of the axis profiler and DS402 interface
• Enable / disable of the axis (the xSWEnable, xFault and xDelayedStop member variables of the Axis structure are

used in this logic – all active high)
• Reading axis position into member variable Axis[x]. Pos
• Reading axis velocity into member variable Vel
• Reading axis status via member function MC_ReadStatus
• Retrieving error details from the axis and populating member variables Axis[x].dErrCode and Axis[x].strError

** Note **
“member variables are accessed in the form: Axis[x].[member] where ‘x’ is the axis number (you have designated) and ‘member’
is the data you want to interact with.

xFault is latched in the event of a drive error. User application code (e.g. in a background cyclic task) can be used to unlatch this
variable as needed (a global variable xResetFault0 is provided as the input mechanism which in turn can unlatch the fault
variable).
Similarly, a global variable xEnableAxis0 is provided which can be used to control member variable xSWEnable. This is
illustrated by the code that is imported by default into the PLC_PRG program which is called cyclically by the default task…

The remaining function blocks within this folder are those that are invoked by doAxisBasics.

FBs and FUNs
This folder contains a collection of useful function blocks and functions, not all of which will be required by every application but
may be very useful. The SDO Core FBs sub-folder contains function blocks to perform SDO read/write operations (e.g. drive
parameter/object access) and some of these are inherently called by other elements of the project (e.g. the getFirstDriveError
function block needs to use SDO access to retrieve error information).
The function of each entry in the folder is briefly described below…

Application note Getting started with AC500 v3 motion AN00268

ABB Motion control products 10
www.abb.com/motion

• doCamBox – a function block that turns on an output of the block when an input value is within a specified range
• doDetectTrigger – a function block that turns on an output when a value passes a particular value (can be used to

replicate “trigger on position” type functionality from Mint based controllers)
• doInitialise – this is used on every application. This function must be called by the ‘Prepare to start’ system event and

contains code to parameterise each axis in the application (e.g. sets scaling, determines if the axis is non-modulo or
modulo). We will detail how to call and edit this routine later

• doSaveDriveParameters – function block used to permanently store drive parameters
• doWrap – function block used to ensure a value remains within a specific range or can be used to detect the distance

remaining or shortest path between two values (similar in operation to the Mint WRAP keyword)
• setImmediateApply – function block to control the drive’s immediate apply object (which needs to be turned on in order

for EtherCAT object values to be passed across to their Mint side equivalents – e.g. when setting Sentinel values from
the PLC)

• setLatchInhibitValue – function block used to configure latch inhibit values on the drive itself so the drive can
automatically filter latch events

Constants
A list of constants most applications are likely to use, including definition of the EtherCAT cycle time. This MUST be edited to
suit the value set earlier on the EtherCAT master (e.g. we set 4000us earlier [4ms] so we must edit our constant file to set 4.0
for the cycle time) …

GVL
A global variable list that by default defines an Axis of type Taxis as well as the fault reset, and software enable variables we
mentioned earlier…

Motion (PRG)
This is our real time program that we’ve configured to execute whenever the EtherCAT coupler starts a cycle. All the core
processing for an axis has been encapsulated into a single doAxisBasics function block call, so for our example this program
just contains a call relating to our only axis (Axis0 as defined by our Global Variable List) …

The doAxisBasics FB takes the Axis (of type TAxis) and the PLC input PDO variables as input parameters. It uses the PLC
output PDO variables as FB outputs. If further axes are required add further rungs calling doAxisBasics for each.

PLC_PRG (PRG)
This is our non-time-critical (cyclic) program, called by the cyclic task ‘Cyclic_Task’. In our template we have included an
instance of a MC_MoveRelative function block in this program to illustrate that, depending on the application, it’s not strictly
necessary to place all motion blocks inside the real time program(s). Only the profiler, Touchprobe and drive based homing
function blocks must be within a real time program. Other motion blocks can be placed according to factors such as reaction
time, application throughput etc…

Application note Getting started with AC500 v3 motion AN00268

ABB Motion control products 11
www.abb.com/motion

** Note **
Motion blocks take an ‘Axis reference’ as an input parameter. Confusingly these are labelled ‘Axis’ by the blocks themselves so
don’t be confused by this and use the Axis (structure) as the input parameter – be sure to use the AxisRef member variable of
the relevant axis structure (Axis[x].AxisRef). To demonstrate motion a visualization can be added to the project and the built-in
MC_MoveRelative visu can be linked to MC_MoveRelative_0.

Task Configuration
We’ve already described how the real time task calls Motion (our real time program) and the cyclic task calls PLC_PRG (our
background processing task). If we double-click ‘Task Configuration’ we can see how to configure the application to setup the
axis operating parameters…

Select the ‘System Events’ tab and then click the ‘Add Event Handler’ button.

The event we need to add is the ‘PrepareStart’ event so select this from the list of available events.
The function we need to call is named ‘doInitialise’ so type this name into the ‘Function to call’ box (this function is written in
Structured Text so ensure the ‘Implementation language’ is set to ‘Structured Text (ST)’ also. The Scope must be set to POUs.

The resulting dialog should look like this…

Click OK to add this system event.

** Note **
Automation Builder has been seen to delete the existing doInitialise function and create a new blank POU at the application
level – if this happens you will need to recreate the contents of the doInitialise POU.

Double-click the doInitialise function block inside the ‘FBs and FUNs’ folder…

Application note Getting started with AC500 v3 motion AN00268

ABB Motion control products 12
www.abb.com/motion

This section should be edited to suit the application…

Axis Structure member Explanation What value to use?

bySlot EtherCAT coupler Slot (slot 1 is the slot
nearest the processor)

Set to suit whichever slot the EtherCAT coupler is fitted
to.

dwNode

Physical Axis node address for this
axis (1001 = 1st drive, 1002 = 2nd
drive etc…)

Set according to the physical position on the EtherCAT
network

MaxSpeed Maximum Axis Speed

Set to match the ‘Application Max Speed’ configured
on the drive

Modulo * Does the axis value “wrap” at a value?

Set to true for a cyclic axis or an axis that runs
continually in one direction

MotorResolution Defines the scaling of the axis “user
units”.

Set to match the effective resolution of the axis
(including pre-scaling). E.g. If its set to encoder
resolution the scale will be revolutions.

UPRNumerator
These two values together determine
how many user units there are in one
revolution of the motor. Overall value =
numerator / denominator.

Example sets a user unit of motor revs (i.e. there is 1
/1 unit in one motor rev). Imagine that one motor rev
moves the axis 10 and 1/3rd mm. It’s possible to set
the numerator to 10.3333333 (because it’s a LREAL)
and the denominator to 1 (because is a DINT) but the
PLC application would be more accurate (and avoid
position drift over time) by setting the numerator to
31.0 and the denominator to 3

UPRDenominator

ModuloVal *
If Modulo = TRUE then this value is set
to the number of encoder counts in one
axis cycle

E.g. if the axis was a turntable set to modulo at 360
degrees this value would equate to the number of
encoders counts in 360 degrees of travel).

Virtual Do you have a physical axis to be
controlled or will you use a virtual axis?

Set to FALSE for a real EtherCAT axis (the
doAxisBasics function block and related functions
would need small modifications to suit virtual axes as
there are no PDO mappings associated with a virtual
axis – in this case it’s best to copy doAxisBasics and
create a virtual version)

*. For axes that continuously run in one direction (that are also treated as modulo axes because they eventually reach a position
wrap) this value is often set to the maximum possible modulo value as shown in the template

At this stage try building the project again (Build > Build) …. if you’ve followed everything correctly the project should build with
no errors (there will be some warnings, mainly because of implicit data type conversion within the motion libraries). If you
download and run this program and force xEnableAxis0 true/false you should find that the drive enables/disables (providing it is
ready to be enabled – e.g. AC power is applied, there are no drive errors and STO is inactive).

The Automation Builder project included with this document includes a sample visualization that provides the following
functions…

(1) Ready to Enable status
(2) Enable / disable of the axis
(3) Fault reset (button appears when axis is in fault)

Application note Getting started with AC500 v3 motion AN00268

ABB Motion control products 13
www.abb.com/motion

(4) MC_MoveRelative visu (enter parameters and set Execute to TRUE to trigger move (linked to MC_MoveRelative_0 in
PLC_PRG)

(5) PLCopen state diagram
(6) DS402 axis state diagram
(7) Position and velocity readouts
(8) Display of last error code and description (only visible when axis is in fault state)

Contact Us
For more information please contact your
local ABB representative or one of the following:

www.abb.com/motion
www.abb.com/drives
www.abb.com/drivespartners
www.abb.com/PLC

EtherCAT® is a registered trademark and
patented technology, licenced by Beckhoff
Automation GmbH, Germany

© Copyright 2019 ABB. All rights reserved.
Specifications subject to change without notice.

