
ABB Motion control products 1
new.abb.com/motion

Access MicroFlex e190 and MotiFlex e180 drive error
description and error code at run-time via EtherCAT and
ready-made function block for Automation Builder

Introduction
AC500 PLCs (PM585 and PM59x) can be used to perform real-time motion control of ABBs EtherCAT enabled servo drives. In
most applications it will be necessary to retrieve error information from one or more axes when an axis fault occurs. Instead of
consuming Process Data Object (PDO) mappings to achieve this, which would unnecessarily consume available EtherCAT cycle
time, this data can be read from the drives using Service Data Object (SDO) access instead.

This application note details the available error objects and includes an export file for a simple to use function block that can be re-
used in EtherCAT motion applications using the PS552-MC motion control libraries. A sample Automation Builder project is
included to further illustrate the use of this function block.

Pre-requisites

You will need to have the following to work through this application note:

· Mint Workbench build 5812 or later (see new.abb.com/motion for latest downloads and support information)
· A MicroFlex e190 or MotiFlex e180 drive with build 5863 or later firmware
· A PC or laptop running Automation Builder 1.2 or later
· An installed copy of the ABB PLCopen motion control library (PS552-MC-E v3.2.0 or later)
· The SDO access export file from application note AN00242 (included with this application note too)
· Servo drive package for Automation Builder (try to use the latest version from the website)
· One of the following AC500 PLC processors…..PM585, PM590, PM591, PM592 or PM595 (PLC processors should be

running firmware version 2.5.1 or later). The PM595 is provided with an integrated EtherCAT coupler (this should be
running firmware version 4.2.32.2 or later). All other processors require a CM579-ECAT communication module (which
must be running firmware version 2.6.9 or later, but ideally version 4.3.0.2 or later). Contact your local ABB PLC support
team for details on how to check these requirements and update if necessary or visit
http://new.abb.com/plc/programmable-logic-controllers-plcs and select the link for ‘Software’. For the purposes of the
text in this application note we have assumed the use of a PM591 PLC with CM579-ETHCAT coupler

· Ethernet cable to connect the EtherCAT coupler to the drive

To follow the basic steps to create example code to read drive error data only requires a PC or laptop running Automation Builder
1.2 or later and an installed copy of the PS552-MC-E motion control libraries and the servo drive package (version 1.2.4.1 or later if
using 5863 firmware). It is assumed the reader has a basic working knowledge of Mint Workbench, Automation Builder, CoDeSys
and the AC500 PLC and that the reader has read and understood the contents of application note AN00205, which is also available
for download from new.abb.com/motion, and has commissioned an EtherCAT based servo drive (MicroFlex e190 or MotiFlex e180
for example) ready for use with the AC500 PLC.

This application note includes the Mint servo drives package file suitable for use with 5863 firmware for convenience.

Motion Control Products

Application note
Accessing drive error data via EtherCAT

AN00252
Rev B (EN)

Application note Accessing drive error data via EtherCAT AN00252

ABB Motion control products 2
new.abb.com/motion

Available error code

The ECAT_CIA402_CONTROL_APP function block provided as part of the PS552-MC motion control library provides two outputs
that will indicate some error information…

The drive_fault output will become TRUE in the event of a drive error occurring. At the same time drive_errorcode will report the
appropriate DS402 error code. The table below (extracted from the Mint Help file) shows the list of possible errors and their
associated DS402 and Mint error codes…

DS 402 error code DS 402 description Mint error code Mint description
0x2310 Continuous over current 10014 Over current
0x2350 Load level fault (I2t, thermal state) 10011 Drive Overload
0x3110 Mains over voltage 10016 Bus over voltage
0x3120 Mains under voltage 10017 Bus under voltage
0x3130 Phase failure 10029 Supply phase loss
0x4210 Excess temperature device 10019 Motor temperature input
0x4310 Excess temperature drive 30001 Drive over-temperature
0x4320 Too low temperature drive 30029 Drive under-temperature
0x5110 Supply low voltage 30000 Internal power supply loss
0x5114 U4 = manufacturer specific 10023 Encoder supply lost
0x5400 Power section 10012 Power base not ready
0x5410 Output stages 10013 Power module fault
0x5441 Contact 1 - Manufacturer specific 10010 Drive Enable Input Inactive
0x5442 Contact 2 - Manufacturer specific 10001 Forward Hardware Limit
0x5443 Contact 3 - Manufacturer specific 10002 Reverse Hardware Limit
0x5444 Contact 4 - Manufacturer specific 10033 Safe Torque Off is active
0x5445 Contact 5 - Manufacturer specific 10007 Error Input active
0x7303 Manufacturer specific error 10039 Resolver signals lost or incorrect
0x7305 Incremental sensor 1 fault 10022 Encoder signals lost
0x7310 Speed 10015 Over speed
0x7500 Communication 10026 PDO data lost
0x8400 Velocity speed controller 10006 Fatal velocity exceeded
0x8611 Following Error 10005 Following Error
0x8612 Software limits 10003/10004 Fwd/Rev soft limit hit
0xFF00 Manufacturer specific error 10020 Phase search failed
0xFF01 Manufacturer specific error 10031 Heatsink too hot to Phase Search
0xFF02 Manufacturer specific error 10028 Encoder not ready
0xFF03 Manufacturer specific error 10018 Motor overload
0xFF04 Manufacturer specific error 30002 Production data not valid
0xFF05 Manufacturer specific error 10000 Motion aborted
0xFF06 Manufacturer specific error 10034 Safe Torque Off hardware is faulty
0xFF07 Manufacturer specific error 10035 Safe Torque Off inputs not same level
0xFF08 Manufacturer specific error 30009 Internal API error
0xFF09 Manufacturer specific error 10036 Encoder reading wrong
0xFF0A Manufacturer specific error 20000 Axis has reached FolErrorWarning
0xFF0B Manufacturer specific error 10038 Encoder battery dead
0xFF0C Manufacturer specific error 20004 Encoder battery low

Application note Accessing drive error data via EtherCAT AN00252

ABB Motion control products 3
new.abb.com/motion

0xFF0D Manufacturer specific error 10040 The DSL encoder is reporting an error
0xFF0E Manufacturer specific error 10041 Drive output frequency limit exceeded
0xFF0F Manufacturer specific error 20005 Phase loss detected
0xFF10 Manufacturer specific error 20006 Motor temperature has not been read

0xFF09 Manufacturer specific error

The screenshot of our CIA402 function block shows an example of the drive reporting error code 21572 (decimal). In hexadecimal
this equates to 0x5444, which the table above reveals to be “Contact 4 – Manufacturer specific” as far as DS402 is concerned but
which can be decoded as Error Code 10033 – “Safe Torque Off is active” when looking at the equivalent Mint code/description
(which is correct, for the example we attempted to enable the drive whilst the STO input was turned off).

Whilst it is possible to use the CIA402 function block to report application errors to the user its functionality is limited. It is necessary
to hard code a look-up table to translate the DS402 error codes into meaningful error messages – although this might be a
preferred solution if the error data must be presented to the user in a non-English language for example.

The following section details EtherCAT objects available within the drive that are also available to provide error information.

EtherCAT drive error objects

The MicroFlex e190 and MotiFlex e180 drives are provided with two objects that are able to present error data to an EtherCAT
master such as the AC500 PLC.

Diagnosis history object
Object 0x10F3 is the standard “Diagnosis History Object” and operates as defined by the EtherCAT Technology Group document
1020 (EtherCAT Protocol Enhancements)…

This object will log up to 16 errors in a circular buffer (from subindex 0x06 to 0x15). It can operate in either overwrite mode or
acknowledge mode. Acknowledge mode is the default (as bit 4 of subindex 0x05 is set by default to define this).

The PLC application can detect that new errors are available by reading subindex 0x04 (which will return TRUE if there are
unacknowledged errors in the history). The PLC application can identify the latest error produced by the drive from subindex 0x02.
Errors are acknowledged by writing the subindex of the message concerned to subindex 0x03. So for example, in the screenshot
above the last error acknowledged by the PLC is held in subindex 18 (0x12) but it can be seen that the newest message (subindex
0x02) indicates 19 (0x13) and so there is an unacknowledged error available (and hence subindex 0x04 reports TRUE).

Application note Accessing drive error data via EtherCAT AN00252

ABB Motion control products 4
new.abb.com/motion

The diagnostic messages themselves (subindex 0x06 to 0x15) are encoded as follows (we will use the diagnosis message stored in
subindex 0x13 as an example):

¾ The first 4 bytes are a diagnostic code to indicate what type of message this is. The message is always an ‘Emergency
error code’ and so these bytes are always ‘00 E0 00 00’ (note that these are encoded in little endian format so the actual
value is 0x0000E000).

¾ The next 2 bytes are flags for the message content. These bytes are always ‘02 02’ to indicate the message is an error
message with two parameters.

¾ The next 2 bytes are a text id…. ‘00 01’…..again these will never change and can effectively be ignored
¾ The next 8 bytes are a timestamp for when the error occured….’55 EB DF 57 D6 04 00 00’ ignoring the endian-

ness….these can be ignored as the drive doesn’t have a real time clock (RTC), you would use the PLC time (which can
use a RTC is a battery is fitted) to timestamp the errors if required

¾ The next 2 bytes are parameters relating to the error information….’20 04’….bits 12-15 define the data type (2 =
string….this will never change)…..bits 0-11 define the length (in bytes) of the string that follows (4 bytes). So in this case
the next 4 bytes can be decoded as a string….these aren’t little endian…..’41 78 69 73’ = “Axis” in ASCII…

¾ The next 2 bytes are parameters relating to the next piece of error information…..’20 22’ ….so as before, bits 12-15 define
the data type (2 = string….this will never change)…..bits 0-11 define the length (in bytes) of the string that follows (22 hex
= 34 bytes). If you then look at the next 34 bytes in subindex 0x13 you will see “50 44 4F 20 64 61 74 61 20 69 73 20 6E
6F 74 20 70 72 65 etc….” which in ASCII reads “PDO data is not pre….” If we could have screenshot the whole message
this would have read “PDO data is not present (MN to CN)”

Whilst this object is very useful and will allow the PLC application to access error descriptions it is quite complex to decode, will
most likely require an additional PDO mapping for each axis (to continually read the status of subindex 0x04
“NewMessagesAvailable”) and doesn’t provide any information about the error code that the e190 or e180 drive will be flashing via
its seven segment display. This object is most likely to be used by the PC based PLC programming tool itself which may be able to
more easily decode the object’s contents (Note that Automation Builder does not include integrated support to access the
Diagnosis History object). The sample project includes with this application note includes an example function block
(FBReadDriveDiagHistory) that will decode drive errors as they occur via this object, but it is recommended that for most (if not all)
applications an alternative object is used as described in the following paragraphs.

First error object
The first error object (0x4144) is an ABB (manufacturer) specific object that has been included to allow very simple retrieval of error
information from the MicroFlex e190 and MotiFlex e180 servo drives….

This object stores the Mint (MML) error description and error code (as indicated by the seven segment display on the drive) for the
first error detected in sub-indexes of object 0x4144. If multiple errors occur (e.g. loss of an encoder input may also result in an over-
speed trip or following error very shortly afterwards) only the first (root cause) error is recorded – this is sufficient for most, if not all,
applications.

Subindex 0x03 contains the error description and subindex 0x01 contains the error code (as shown above).

The rising edge (from FALSE to TRUE) of the CIA402 function block ‘drive_fault’ output can be used to call additional function
blocks to make SDO calls to these objects (see application note AN00242 for further information about the use of SDO access via
EtherCAT).

This application note includes an export file for a pre-written function block that will return the error description and error code and
this is also included in the sample Automation Builder project. This function block in turn makes use of another ABB function block
created to simplify SDO reads of 32 bit integer objects. This function block can be included by importing the SDO access export file

Application note Accessing drive error data via EtherCAT AN00252

ABB Motion control products 5
new.abb.com/motion

from application note AN00242 (this exp file is also included with this application note for convenience). The screenshot below
illustrates the typical use of this function block…

The following table details the input and output parameters for FBReadFirstDriveError:

Input parameter Data type Description
xExecute BOOL Rising edge on this input will cause the function block to attempt to read the drive error

code and description
bSlot BYTE Slot number of the EtherCAT coupler being used by the PLC
dwNode DWORD Node ID for the drive to be accessed

Output parameter Data type Description
xDone BOOL Becomes TRUE when the function block completes (successfully or otherwise)
xErr BOOL Becomes TRUE if the function block encounters an error trying to read error data from the

specified drive
wErrNo WORD Provides an error code to explain the reason for the function block returning TRUE on xErr

(refer to the Automation Builder Help system for detailed explanations for these error codes
diErrCode DINT Provides the drive’s (Mint/MML) error code (as will be indicated via the drive’s seven

segment display)
strError STRING This is the error description retrieved from the specified drive

Contact Us

For more information please contact your
local ABB representative or one of the following:

new.abb.com/motion
new.abb.com/drives
new.abb.com/drivespartners
new.abb.com/PLC

EtherCAT® is a registered trademark and patented technology, licenced by Beckhoff Automation GmbH, Germany

© Copyright 2016 ABB. All rights reserved.
Specifications subject to change without notice.

