Motion Control Products

Application note
Generic drive interface: B&R PLC with Modbus TCP
AN00265

REV B (EN)

Introduction

This application note provides and details an example Automation Studio project that includes library functions to allow a B&R
X20 PLC to control and monitor ABB MicroFlex €190 and/or MotiFlex €180 AC servo drives via Modbus TCP. The library
provides pre-written data structures and function blocks that integrate seamlessly with the Mint based GDI and allow the user to
write IEC61131 based code to control a wide variety of motion on these drives. Note that MicroFlex e190 and MotiFlex €180
drives must be provided with the Mint memory card (option code +N8020).

The instructions promote consistency in all projects and greatly simplify the development of B&R PLC motion control
applications where simple point to point motion is required.

This document assumes that the reader has basic knowledge of B&R PLCs, Automation Studio, Mint Workbench and the Mint
GDI. It is recommended that the reader refers to application note AN00204 for details on the Mint GDI operation and
configuration.

The project included with this application note provides mechanisms for a B&R X20 PLC (X20CP0410 with X20BB52 base) to:

— Issue a home command

— Issue a command to detect a physical axis end stop and use this as a datum position (drive firmware version 5863
onwards required)

— Issue a relative move

— Issue an absolute move

— Issue an incremental relative move (and optionally stop a programmed distance past a “fast-capture” position)

— Issue an incremental absolute move (and optionally stop a programmed distance past a “fast-capture” position)

— Setup an offset target for an incremental move (i.e. position the axis relative to a captured fast interrupt)

— Jog the axis

— Set the axis position

— Issue a speed reference

— Issue a torque reference

— Enable/disable the axis

— Enable/disable hardware limits

— Reset axis errors

— Perform a controlled stop or crash stop on the axis

— Gear the axis to a secondary encoder input

— Set speed, acceleration times, deceleration times and jerk times for all motion

— Control modulo or non-modulo axes

ABB Motion control products 1 Power and productivity “ l. ll

new.abb.com/motion for a better world™ "l. l.

Application note Generic drive interface: B&R PLC with Modbus AN00265-001

At the same time the PLC is able to monitor status information from the drive including:

— Enabled state

— Ready to be enabled state
— Idle state

— In Position state

— Motor brake state

— Homed state

— Forward limit state

— Reverse limit state

— Fault state

— Stop input state

— Indication of missing fast latch interrupt
— Phase search status

— Error code

— Measured position

— Measured velocity

— Following error

— Axis mode of operation

— RMS current

This is all achieved via, what appears to the PLC as, input and output process data mappings (PDO) to NETDATA objects on
the drive. Because we have used 32 bit data (UDINT data type) for the interface each value is mapped onto a single 32-bit
NETINTEGER or NETFLOAT location in the drive.

An optional watchdog mechanism is also included, allowing the drive to take action (crash stop and disable by default) in the
event of communication loss.

Because a X20CP0410 processor is used, Automation studio version 4.5.2.102 or later is required to open and use the example
project. The automation runtime versions used are as shown below...

B4 X20CPO410 - Properties (2 i
Build Events I 10 | OPC | VC Teminals |
General] Runtime Versions | Build I Transfer I Comparison | GR |
|._J X20CP0410
Component Preferred In use
@ Automation Runtime |D4.52 v | D452
@ Safety Release | not defined | not defined
§ Visual Components |v4 520 | V4520
@ mapp View |not defined v | not defined

Configuring the Generic Drive Interface (GDI) Mint program

The pre-written GDI Mint program only requires only a small amount of customisation to suit the user’s application. Please refer
to application note AN00204 for details.

Configuring Modbus TCP on the Mint based drive

MicroFlex e190 and MotiFlex 180 drives are delivered “pre-configured” for operation of Modbus TCP via the standard Ethernet
port on the front of the drive (E3). All that the user needs to do is assign a (unique) IP address to the drive via Mint Workbench
to match the IP address programmed in the PLC project. In the example project provided the MicroFlex e190 is expected to be
set as 192.168.0.1 (the PLC is configured with address 192.168.0.109).

When adding additional axes be sure to set unique IP addresses for each drive, remembering that these drives must all be on
the same subnet as the PLC (e.g. 192.168.0.x). Use a standard Ethernet switch to connect all devices to the same network.

PLC configuration
The example application included with this application note shows how an X20CP0410 PLC would be configured to
communicate with ABB motion drives via Modbus TCP. If starting a new application from scratch follow this process:

ABB Motion control products 2 Power and productivity ‘l l. l‘

new.abb.com/motion for a better world™ "l'l.

Application note Generic drive interface: B&R PLC with Modbus TCP AN00265-001

In the physical view within Automation Studio right click the Ethernet port (ETH) for the PLC and select ‘Configuration’. In the
right hand pane expand the ‘Modbus parameters’ section and activate Modbus as shown below...

E-s 25 Activate Modbus communication an
- 25 Use as Modbus slave off
i @ Use as Modbus master an
El #* openSafety over TCP/IP
S5 @ Use as Modbus slave off
El #8* Diagnostics
[B8 Slave diagnostics none

Now, with the ETH icon still highlighted in the Physical view, scroll down through the Device Catalog in the toolbox and select a
‘ModbusTcp_any’ device (and drag and drop this onto the ETH icon)....

Mame Description
6PPT30.0702-208 T30 TFT WVGA 7.0in LB, 2< ET
E6PPT30.0702-20W T30 TFT WVGA 7.0in L'W, 2 E
G6PPT20.070M-20B T30 TFT WVGA 7.0in P/B, 2« ET
GPPT30.070M-20W T30 TFT WVGA 7.0in PAW, 2¢E
6PPT20.101G-20B T30 TFT WS5VGA 10.7in L/B, 2«
E6PPT30.101G-20W T30 TFT WSVGA 10.%in LW, 2x
E6PPT20.101N-20B T30 TFT WSVGA 10.1in P/B, 2¢
GPPT0.10TN-20W T30 TFT WSVGA 10.%in PAW, 2
i} = <dzind : = jon o1

I MadbusTep_any Generic Modbus Station
¥20cHB2880 ¥20 Ceated hub expansion modul
¥20cHB2830 %20 Costed 2/4/Ffach Fast Ether
¥20cHBEES4 %20 Coated POWERLINK Compz
X20HB2880 *20 hub expansion module (2 10
*20HBB280 %20 2/4/%fach Fast Ethemet Huk
¥20HBBag4 20 POWERLINK Compact Link |

You can rename the device that has been added if necessary (to make it clearer which drive this is)....we renamed ours to
‘MicroFlex_e190’...

Name L... Position Wersion Description
= 4 X20CP1382 1320 X20 CPU xB6 400MHz, 3« /O, POWER
...... -l Serial IF1 Communication Port
B g ETH IF2 Ethemet

________ ﬁ MMicroFlex 150 | 5T 1052 Generic Modbus Station

L. PLK IF3 POWERLINK
------ Use IF4 Universal Serial Bus
------ Use IF5 Universal Serial Bus
------ @ X *1 Module 2<AI/RTD, 4DI, CAN, R5232
...... o X2 2 10D, £xHSDI
...... @ X3 *3 4xD0), 4xDM, 4xH5DO, Supply
...... # in

B OK2X IF6 B&R X2X Link

------ oN CAN IF7 Controller Area Metwork Bus
...... ks 551

Now right click the device you just added and select ‘Configuration’. The port number will already be set to 502 (because we
selected a Modbus TCP device), but we will need to initially configure the IP address of the drive the PLC will be communicating
with...

MName Walue Unit Description

‘E 8 [MicroFiex <180 |

& General

-z @ Module supervised off Service mode f there is no hardware module
Sy 5 Ethemet
i E Mode Intemet address
@ 1P addess

Unit idertifier i}
TCP port 502
Number of pending requests 1

As our drive was configured as 192.168.0.1 we entered this IP address.

ABB Motion control products 3 Power and productivity A"
new.abb.com/motion for a better world™

Application note Generic drive interface: B&R PLC with Modbus AN00265-001

Lastly we need to add a block for the Modbus TCP read/write (Function code 23) that will be used to transfer all of the PDO data
between the PLC and the drive. The starting addresses for this block and number of items (i.e. address and number of Modbus
registers) must suit the Netdata locations used by the Mint GDI program on the drive. In the case of our standard GDI
application the read data starts at Netdata(100) / Modbus register 200 (and there are 7 Netdata locations to read — 14 Modbus
registers). The write data starts at Netdata(0) / Modbus register 0 (and there are 9 Netdata locations to write — 18 Modbus
registers).

The refresh time would typically be set to half of the cycle time used for the program that transfers all Modbus data between the
PLC and drives. In this example our data transfer program uses task class #1 and runs at 10ms, so we will set the Modbus
refresh time to 5ms.

Our Block 1 configuration therefore ends up like this...
Bi-y5 Block 1

Function code FC23: Read/Writ...
Refresh time B ms
Block send mode cyclic

Starting address fread) 200
Mumber of items fread) 14
Starting address fwrite) 0
MNumber of items fwrite) 18

Set to 0 for automatic calculation

Set to 0 for automatic calculation

e

Once the block is configured we can then continue to add information about each ‘Channel’ associated with this block. For each
Netdata location we must add a Channel, giving this channel a name (e.g. mbStatusWord), a data type of UDINT (all the data is
transferred as a 32 bit double integer initially) and a direction (Read or Write). The screenshot below illustrates some of the
channel configuration...

B 15 Channel 1

-~y @ Name mb Status\Word
@ Datatype UDINT
- @ Direction Read
By % Channel 2
1 @ Name mbMeasuredPos
-y § Datatype UDINT
- @ Direction Read
mbMeasuredVel
1 @ Datatype UDINT
. @ Direction Read
g 2 Channel 4
@ Name mbFolEror
@ Datatype UDINT
- @ Direction Read
% Channel 5
-y @ Name mbAdsMode
1 @ Datatype UDINT
- @ Direction Read
By 25 Channel 6
-y @ MName mbRMSCumrent
-y § Datatype UDINT
- @ Direction Read

Now right click the drive icon again and this time select ‘1/O Mapping...” In the resulting right hand pane we need to select
Process Variables for the ModuleOK channel (automatically added and indicates the operational state of the device on Modbus
TCP) as well as all of the GDI PDO items we previously added via the Channel configuration...

Channel Name Process Variable Data Type Task Class
+J ModuleOk s 0. NodeOK BOOL Automatic
+J mbStatusWord :Ais.PDOIn pdo STATUS_WORD UDINT Automatic
+J mbMeasuredPoz :Aodg0.PDOIn pdoMEASURED_POS UDINT Automatic
+J mbMeasuredVel ::fdg0.PDOIn pdoMEASURED_VEL LDINT Automatic
+J mbFolEmor :Ais(.PDOIn pdoFOL_ERROR UDINT Automatic
+J mblxisMods +:Ais0.PDOIn pdoAX]S_MODE UDINT Automatic
+J mbRMSCumrent ::fodg0.PDOIn pdoRMS_CURRENT LIDINT Automatic
+J mbEmorCode <:Aods0.PDOIn pdoERROR_CODE UDINT Automatic
@+ mbCommandWaord +:Awis0.PDOCUt pdoCONTROL_WORD UDINT Automatic
@ mbCmdType A0 .PDOCUE pdoCMD_TYPE LIDINT Automatic
@ mbValue <:Aods. PDOCUt pdoWVALUE UDINT Automatic
@+ mbSpeed Az PDOCUt pdoSPEED UDINT Automatic
g+ mbAccel :Aedg0.PDOOU. pdo ACCEL LIDINT Automatic
@+ mbDecel ::feds0.PDOOU pdoDECEL LDINT Automatic
@+ mbAccelJerk :Ais(.PDOCUt pdo ACCELIERK UDINT Automatic
ig#+ mdDecellerk +:Aedg0.PDOOUt. pdoDECELIERK UDINT Automatic
@+ mbOffeet ::fedg0.PDOOU pdoOFFSET LIDINT Automatic

ABB Motion control products 4 Power and productivity

new.abb.com/motion

for a better world™

Application note Generic drive interface: B&R PLC with Modbus TCP AN00265-001

B&R GDI Function Blocks

The following sections detail the use of the B&R GDI function blocks:

GDI_Power

This function block is used to enable / disable an axis. The enable input enables the power stage in the drive and not the

function block itself. —
| Type | Description
VAR_IN_OUT
ED|_Power 0 Axis | TGDIAxisRef | Reference to the axis structure
T [
e i VAR_INPUT
= Enable Statusf= Enable BOOL Whilst true the PLC will request the axis to be enabled
TRUE= EnablePasieg Emarf= EnablePosNeg BOOL Whist true motion in both directions is permitted. If false motion is
EmorlDI= prevented (or a stop is performed if motion is already in
progress)
VAR_OUTPUT
Status BOOL Indicates whether the axis is enabled (1) or not (0)
Error BOOL Set to true if the axis is in error
ErrorlD DINT Indicates the Mint error code reported by the axis

GDI_Reset

This function block is

used to reset any

GD|_Reset 0 | Type | Description
GDI_Reset | 1] VAR_IN_OUT
Roisl) Rods Axis | TGDIAxisRef | Reference to the axis structure
= Execute Donef™ VAR_INPUT
Busy[™~ Execute | BOOL [Start the fault reset on a rising edge
Emor = VAR_OUTPUT
Emod D= Done BOOL Set True when the axis no longer has an error present. Remains True until
the Execute input is removed. If the Execute input is removed before the
Done bit is set then the Done bit will be set for a single PLC cycle. The Done
bit will not be set if the error could not be cleared (use the Busy output to
detect when the fault reset has been attempted)
Busy BOOL Set True whilst the function block is attempting to clear any axis error
Error BOOL Set True if the axis is in error
ErrorlD DINT Indicates the Mint error code reported by the axis
GDI_Home

This function block is used to datum an axis. The details of the datum sequence are dependent on the Home type set in the Mint
GDI program. The Position input is used to set the axis position at the end of a successful datum sequence.

| Type | Description
GDI_Home 0 VAR_IN_OUT
GDI_Home [1] Axis | TGDIAxisRef | Reference to the axis structure
- e ki VAR_INPUT _
- Donal= Exegute BOOL Start the datu‘r.n sequence on a rising edge
. Position REAL Absolute position to be set at the end of a successful datum

™= Posinon Busy™
sequence

=|HomeSpeed Ewor= HomeSpeed REAL Homing speed in user units/sec

=|HomeAccel EmorlD HomeAccel REAL Homing accel rate in user units/sec?

=|HomeDecel HomeDecel REAL Homing decel rate in user units/sec?

| Homefocellerk HomeAccelJerk REAL Homing accel jerk rate in user units/sec? (set to 0 for trapezoidal

= HomeDecellerk motion)

= HemeBackOHF HomeDecelJerk REAL Homing decel jerk rate in user units/sec® (set to 0 for trapezoidal
motion)

HomeBackOff REAL Ratio of Home speed to backoff speed
VAR_OUTPUT
Done BOOL Indicates that the axis has homed successfully. If the Execute input
is removed during homing and the axis completes the home
sequence the Done output will be set for one PLC scan. If the
Execute input remains 1 then the Done output will also remain set
(providing the home was successful)
Busy BOOL Set true whilst the homing sequence is in progress
Error BOOL Set true if the axis is in error
ErrorlD DINT Indicates the Mint error code reported by the axis
ABB Motion control products 5 Power and productivity ‘\I' I‘
new.abb.com/motion for a better world™

Application note

GDI_FindEndStop

This function block is used as an alternative way to datum an axis in the absence of a home sensor. The axis will run at a
commanded velocity with a programmed torque limit until this torque limit is reached and the speed of the axis is less than the
programmed idle velocity. The Position input is used to set the axis position at the end of a successful datum sequence.

GDI_FindEndStop_0

Generic drive interface: B&R PLC with Modbus

AN00265-001

GD|_FindEndStop | 1|
Aol fods

= Execute Done
™ Pasticn Busy
= FindSpeed Enor
= Findfcoe] EncelD
= FindDece!
= FindAcoel Jerk
= FindDecellerk
= Torguelimit

GDI_MoveRelative

| Type | Description
VAR_IN_OUT
Axis | TGDIAxisRef | Reference to the axis structure
VAR_INPUT
Execute BOOL Start the datum sequence on a rising edge
Position REAL Absolute position to be set at the end of a successful datum
sequence
FindSpeed REAL Speed in user units/sec (the sign of this value determines the seek
direction)
FindAccel REAL Accel rate in user units/sec?
FindDecel REAL Decel rate in user units/sec?

FindAccelJerk REAL Accel jerk rate in user units/sec® (set to 0 for trapezoidal motion)
FindDecelJerk REAL Decel jerk rate in user units/sec? (set to 0 for trapezoidal motion)
TorqueLimit REAL Torque limit to apply during sequence (% of drive rated current)

VAR_OUTPUT

Done BOOL Indicates that the axis has found the end stop successfully. If the
Execute input is removed during the sequence and the axis finds
the end stop the Done output will be set for one PLC scan. If the
Execute input remains 1 then the Done output will also remain set
(providing the sequence was successful)

Busy BOOL Set true whilst the find sequence is in progress

Error BOOL Set true if the axis is in error

ErrorlD DINT Indicates the Mint error code reported by the axis

This function block is used to command a controlled motion of a specified distance relative to the start position.

GDI_MoveRelative_0

GDI_MoveRelatve | 1]

Pogs(l Pods:

= Execute Dionef™
= Diistance Busy[™
= elacity Errcef=
= Accel Emod D=
= Deeal

= Accellark

™ Decellerk

ABB Motion control products

new.abb.com/motion

| Type Description
VAR_IN_OUT
Axis | TGDIAxisRef | Reference to the axis structure
VAR_INPUT
Execute BOOL Start the motion on a rising edge
Distance REAL Relative distance for the move (in user units)
Velocity REAL Maximum speed (not necessarily reached) in user units/sec
Accel REAL Accel rate in user units/sec?
Decel REAL Decel rate in user units/sec?
AccelJerk REAL Accel jerk rate in user units/sec® (0 for trapezoidal motion)
DecelJerk REAL Decel jerk rate in user units/sec® (0 for trapezoidal motion)
VAR_OUTPUT
Done BOOL Indicates that the axis has reached the target position
successfully. If the Execute input is removed during motion
and the relative move completes the Done output will be
set 1 for one PLC scan. If the Execute input remains True
then the Done output will also remain set (providing the
target position was successfully achieved)
Busy BOOL Set True whilst the relative move is in progress
Error BOOL Set True if the axis is in error
ErrorlD DINT Indicates the Mint error code reported by the axis

Power and productivity
for a better world™

AREBD
al

Application note

GDI_MoveAbsolute

Generic drive interface: B&R PLC with Modbus TCP

AN00265-001

This function block is used to command a controlled motion to a specified absolute position. This function can be used with
Modulo axes (in which case the shortest route to the specified position will be taken).

GDI_Movebbsclute_0

GDI_Movelbschit=

Aoasl Aoas
= Execute
= Postian

= Welocity

= Accel EmorlD

= Decel

= Accellerk

= Decellerk

= Modulofas

ABB Motion control products

new.abb.com/motion

| Type | Description
VAR_IN_OUT
Axis | TGDIAxisRef | Reference to the axis structure
VAR_INPUT
Execute BOOL Start the motion on a rising edge
Position REAL Target position for the move (in user units)
Velocity REAL Maximum speed (not necessarily reached) in user units/sec
Accel REAL Accel rate in user units/sec?
Decel REAL Decel rate in user units/sec?
AccelJerk REAL Accel jerk rate in user units/sec® (0 for trapezoidal motion)
DecelJerk REAL Decel jerk rate in user units/sec? (0 for trapezoidal motion)
ModuloAxis BOOL Defines whether the axis is a modulo axis (i.e. using an
ENCODERWRAP to define travel within one cycle). Absolute moves
when using modulo axes are always implemented via the shortest path
(e.g. an absolute move to 20 degrees from 350 degrees on a 0-360
degree modulo axis will result in forward travel of 30 degrees)
VAR_OUTPUT
Done BOOL Indicates that the axis has reached the target position successfully. If
the Execute input is removed during motion and the absolute move
completes the Done output will be set True for one PLC scan. If the
Execute input remains True then the Done output will also remain set
(providing the target position was successfully achieved)
Busy BOOL Set True whilst the absolute move is in progress
Error BOOL Set True if the axis is in error
ErrorID DINT Indicates the Mint error code reported by the axis
7 Power and productivity ‘\ I' I‘
for a better world™

Application note Generic drive interface: B&R PLC with Modbus AN00265-001

GDI_IncR

This function block is used to command a controlled motion of a specified distance relative to the target position at the time of
the execution. The target position resulting from a call to this function block can be modified whilst motion is still in progress by

any of the following methods:

a. By issuing another GDI_IncR or GDI_IncA function (providing input parameter BufferMode is True)

b. By setting the input parameter Latchmode to True and specifying a value for the input parameter LatchOffset. Mint
code on the drive will then automatically modify the axis target position such that it stops the LatchOffset distance past
the axis position captured by the defined fast interrupt. A bit within the Axis status word (btLatchMissed) is available to
indicate failure to detect this fast interrupt (this condition may then be used to alert the operator to a system failure for
example). Using Latchmode and LatchOffset allows simple implementation of indexing conveyor applications.

GDI_IncR_0 | Type | Description
GDI_lneR | 1] VAR_IN_OUT
Aol s Axis | TGDIAxisRef | Reference to the axis structure
= Execute Donef™ VAR_INPUT
- Distance Busyf= Execute BOOL Start the motion on a rising edge
= Velocity Error= Distance REAL Relative distance for the move (in user units)
= focel EmorlD = Velocity REAL Maximum speed (not necessarily reached) in user units/sec
= Diacel Accel REAL Accel rate in user units/sec?
= Arcellack Decel REAL Decel rate in user units/sec?
= Decellerk AccelJerk REAL Accel jerk rate in user units/sec® (0 for trapezoidal motion)
= LatchMode DecelJerk REAL Decel jerk rate in user units/sec? (0 for trapezoidal motion)
= LatchOffset LatchMode BOOL Sets whether the axis should utilise the configured fast latch
= BufferMode interrupt and set a new target position ‘LatchOffset’ user units past
the captured position
LatchOffset REAL Defines the distance past the captured fast position (in user units)
the target for GDI_INCR should be modified by (when input
parameter LatchMode is set True)
BufferMode BOOL Defines whether the function block should set the Done output and
complete as soon as the move has been loaded. Setting
BufferMode True allows the application to trigger further
incremental moves whilst existing moves are in progress
VAR_OUTPUT
Done BOOL When BufferMode is set False this indicates that the axis has
reached the target position successfully. If the Execute input is
removed during motion and the relative move completes the
Done output will be set True for one PLC scan. If the Execute
input remains True then the Done output will also remain set
(providing the target position was successfully achieved). When
BufferMode is set True the Done output is set for one PLC scan
to indicate successful loading of the move
Busy BOOL Set True whilst the move is in progress
Error BOOL Set True if the axis is in error
ErrorID DINT Indicates the Mint error code reported by the axis

GDI_IncR is also useful if the application needs to modify SPEED/ACCEL/DECEL of a relative move already in progress. Moves
loaded using GDI_MoveRelative are profiled using the SPEED/ACCEL/DECEL loaded at the time and these cannot be changed
once the move has started. By using GDI_IncR with the input parameter BufferMode set True then it is possible to modify the
profile parameters by loading another GDI_IncR (with new SPEED/ACCEL/DECEL) with input parameter Distance set to zero.

ABB Motion control products
new.abb.com/motion

Power and productivity ‘l .. .l
for a better world™ " l' .

Application note

GDI_IncA

Generic drive interface: B&R PLC with Modbus TCP

AN00265-001

This function block is used to command a controlled motion to a specified absolute position. This function differs from
GDI_MoveAbsolute in that the target position can be modified whilst motion is in progress by any of the following methods:

a. By issuing another GDI_IncR or GDI_IncA function (providing input parameter BufferMode is True)

b. By setting the input parameter Latchmode to True and specifying a value for the input parameter LatchOffset. Mint
code on the drive will then automatically modify the axis target position such that it stops the LatchOffset distance past
the axis position captured by the defined fast interrupt. A bit within the Axis status word (btLatchMissed) is available to
indicate failure to detect this fast interrupt (the example programs show how missing 3 latches in a row can be detected
— this condition may then be used to alert the operator to a system failure for example).

| Type | Description
GO Inch. [} VAR_IN_OUT
| 1] Axis | TGDIAxisRef | Reference to the axis structure
il o VAR_INPUT
| E:;:: [;: Execute BOOL Start the motion on a rising edge
2 Position REAL Absolute position target for the move (in user units)

= Velocity Errar

= Accel EncrdD Velocity REAL Maximum speed (not necessarily reached) in user units/sec

= Decel Accel REAL Accel rate in user units/sec?

= el Jerk Decel REAL Decel rate in user units/sec?

= Decellark AccelJerk REAL Accel jerk rate in user units/sec® (0 for trapezoidal motion)

= LatchMode DecelJerk REAL Decel jerk rate in user units/sec® (0 for trapezoidal motion)

= Modulolisis LatchMode BOOL Sets whether the axis should utilise the configured fast latch interrupt and set a

= LatchOffset new target position ‘LatchOffset’ user units past the captured position

=|BufferMode ModuloAxis BOOL Defines whether the axis is a modulo axis (i.e. using an ENCODERWRAP to
define travel within one cycle). Absolute moves when using modulo axes are
always implemented via the shortest path (e.g. an absolute move to 20
degrees from 350 degrees on a 0-360 degree modulo axis will result in forward
travel of 30 degrees)

LatchOffset REAL Defines the distance past the captured fast position (in user units) the target for
ABB_GDI_INCA should be modified by (when input parameter LatchMode is
set True)

BufferMode BOOL Defines whether the function block should set the Done output and complete
as soon as the move has been loaded. Setting BufferMode True allows the
application to trigger further incremental moves whilst existing moves are in
progress

VAR_OUTPUT

Done BOOL When BufferMode is set False this indicates that the axis has reached the
target position successfully. If the Execute input is removed during motion and
the absolute move completes the Done output will be set True for one PLC
scan. If the Execute input remains True then the Done output will also remain
set (providing the target position was successfully achieved). When
BufferMode is set True the Done output is set for one PLC scan to indicate
successful loading of the move

Busy BOOL Set True whilst the function block is in progress

Error BOOL Set True if the axis is in error

ErrorD DINT Indicates the Mint error code reported by the axis

GDI_IncA is also useful if the application needs to modify SPEED/ACCEL/DECEL of an absolute move already in progress.
Moves loaded using GDI_MoveAbsolute are profiled using the SPEED/ACCEL/DECEL loaded at the time and these cannot be
changed once the move has started. By using GDI_IncA with the input parameter BufferMode set True then it is possible to
modify the profile parameters by first loading a GDI_IncA move and then loading a GDI_IncR (with new
SPEED/ACCEL/DECEL) with input parameter Distance set to zero.

ABB Motion control products

new.abb.com/motion

9 Power and productivity

for a better world™ ‘\ I' I'

Application note

GDI_Jog

This function block is used to command a constant speed move
Motion is performed as long as the Execute input remains True.

Generic drive interface: B&R PLC with Modbus

AN00265-001

on the axis (using the position loop controller in the drive).

GDI_log 0 | Type | Description
[L VAR_IN_OUT
msc: e : Axis | TGDIAxisRef | Reference to the axis structure
m [;: VAR_INPUT
= Aol Ervorl= Execute BOOL Start the motion on a rising edge and maintain motion as long as
= Dol EncrlDi the input remains True. Motion ramps to zero speed at the
= pccelJerk configured Decel rate when Execute becomes False
= Decalerk JogSpeed REAL Value for the speed the axis will reach in user units/sec
Accel REAL Accel rate in user units/sec?
Decel REAL Decel rate in user units/sec?
AccelJerk REAL Accel jerk rate in user units/sec® (0 for trapezoidal motion)
DecelJerk REAL Decel jerk rate in user units/sec® (0 for trapezoidal motion)
VAR_OUTPUT
Done BOOL Set True as soon as the Jog command has been successfully
issued and remains set until Execute becomes False or an axis
error occurs
Busy BOOL Set True whilst the function block is in progress
Error BOOL Set True if the axis is in error
ErrorID DINT Indicates the Mint error code reported by the axis
GDI_SetPos

This function block is used to set the axis position (encoder and

position values on the drive) to a programmed value. The axis

must be idle when this function is called, otherwise the axis will return an “action not possible - motion in progress” error (Error
code 10). If the axis is using an absolute encoder this will set/teach a new absolute position (GDI Mint program v2.17 onwards).

GDI_SetPos_0 —
GOl SePos | 1] | Type | Description
sz Aus VAR_IN_OUT
b e Axis | TGDIAxisRef | Reference to the axis structure
—a Busy}= VAR_INPUT
Erncal= Execute BOOL Set the new position on a rising edge
EncrlD = Position REAL Value for the axis position to be set (in user units)
VAR_OUTPUT
Done BOOL Set True as soon as the command has been issued (regardless of
whether it was successful or not — use the Error output to determine
whether the command was successful). Remains True until the Execute
input is removed. If the Execute input is removed before the Done bit is
set then the Done bit will be set for a single PLC cycle.
Busy BOOL Set True whilst the function block is in progress (cleared once the Done
bit is set)
Error BOOL Set True if the axis is in error
ErrorID DINT Indicates the Mint error code reported by the axis

ABB Motion control products 10

new.abb.com/motion

Power and productivity
for a better world™

AREBD
al

Application note Generic drive interface: B&R PLC with Modbus TCP AN00265-001

GDI_Clear

This function block is used to crash stop the axis and interrupt any motion that is in progress. The axis will remain enabled
(providing GDI_Power is requesting the enabled state and the axis is not in error).

GDI_Clear 0 | Type | Description
GD|_Clear IL VAR_IN_OUT
sl Pois Axis | TGDIAxisRef | Reference to the axis structure
= Eenfe Donef= VAR_INPUT
Busy = Execute [BOOL [Start the crash stop on a rising edge
= VAR_OUTPUT
Errorl D= Done BOOL Set True when the axis becomes idle after completing the crash stop or if
an error occurs when the crash stop command is issued. Remains True
until the Execute input is removed. If the Execute input is removed before
the Done bit is set then the Done bit will be set for a single PLC cycle.
Busy BOOL Set True whilst the stop is in progress — cleared once the Done bit is set
Error BOOL Set True if the axis is in error
ErrorlD DINT Indicates the Mint error code reported by the axis

GDI_Stop
This function block is used to perform a controlled stop on the axis at the programmed deceleration rate.

= b A | Type | Description
Sl s L] VAR_IN_OUT
Fomd o B Axis | TGDIAxisRef | Reference to the axis structure
e e VAR_INPUT
= - B Execute BOOL Start the controlled stop on a rising edge
R =B Decel REAL Decel rate in user units/sec?
Siiili DecelJerk REAL Decel jerk rate in user units/sec? (0 for trapezoidal motion)
VAR_OUTPUT
Done BOOL Set True when the axis becomes idle after completing the controlled
stop or if an error occurs when the stop command is issued.
Remains True until the Execute input is removed. If the Execute
input is removed before the Done bit is set then the Done bit will be
set for a single PLC cycle.
Busy BOOL Set True whilst the stop is in progress — cleared once the Done bit is
set
Error BOOL Set True if the axis is in error
ErrorlD DINT Indicates the Mint error code reported by the axis

ABB Motion control products 11 Power and productivity ‘\I' I‘
new.abb.com/motion for a better world™

Application note Generic drive interface: B&R PLC with Modbus AN00265-001

GDI_SpeedRef

This function block is used to command a speed/velocity reference on the axis. In this mode of operation the position loop is not
used on the drive (so no following error is recorded or acted upon). The axis will remain in Speed control mode (as indicated by
the Statusword bits for Controlmode) until motion of another control mode type is issued (e.g. a position controlled move). To
switch from zero speed operation (in speed control mode) to holding position (in position control mode) a GDI_MoveRelative
could be issued, for example, with a relative move distance of zero user units.

GDI_SpeedRef 0 | Type | Description
GDI_SpesdRef | 1] VAR_IN_OUT
Poxisll Puds Axis | TGDIAxisRef | Reference to the axis structure
= Execute Donef~ VAR_INPUT
= Speed Busy[™ Execute BOOL Start the axis on a rising edge and maintain motion as long as the input
- el Errorf= remains True. Motion ramps to zero speed at the configured Decel rate
- Cecel Ermoed D= when Execute becomes False
Speed REAL Value for the speed the axis will reach in user units/sec. Can be modified
whilst Execute is True to change the axis speed
Accel REAL Accel rate in user units/sec?
Decel REAL Decel rate in user units/sec?
VAR_OUTPUT
Done BOOL Set True as soon as the speed reference has been issued (regardless of
whether it was successful or not). The Done output remains set until
Execute becomes False
Busy BOOL Set True whilst the function block is in progress (i.e. whilst Execute is
True)
Error BOOL Set True if the axis is in error
ErrorlD DINT Indicates the Mint error code reported by the axis

GDI_TorqueRef

This function block is used to command a torque (current) reference on the axis. In this mode of operation the position loop is
not used on the drive (so no following error is recorded or acted upon). The axis will remain in torque control mode (as indicated
by the Statusword bits for Controlmode) until motion of another control mode type is issued (e.g. a position controlled move). To
switch from zero torque operation (in torque control mode) to holding position (in position control mode) a GDI_MoveRelative
could be issued, for example, with a relative move distance of zero user units.

GDI_TorqueRef_0

CDI TorquaRef IL | Type | Description
. 5 VAR_IN_OUT
Poasll Foas — - -
A B Axis | TGDIAxisRef | Reference to the axis structure
- ens” [VARINPUT
T'_Iqm Busy Execute BOOL Start the torque reference on a rising edge and maintain torque as
g g long as the input remains True. Torque ramps to zero at the
=|Fellme Emorl D= configured FallTime rate when Execute becomes False
Torque REAL Value for the torque reference the axis will use (in % of
DRIVERATEDCURRENT - see Mint Help file). Can be modified whilst
Execute is True to change the torque produced
RiseTime REAL Sets the time taken (in ms) for current to rise from zero to
DRIVEPEAKCURRENT (see Mint Help file)
FallTime REAL Sets the time taken (in ms) for current to fall from
DRIVEPEAKCURRENT to zero (see Mint Help file)
VAR_OUTPUT
Done BOOL Set True as soon as the torque reference has been issued (regardless
of whether it was successful or not). The Done output remains set until
Execute becomes False
Busy BOOL Set True whilst the function block is in progress (i.e. whilst Execute is
True)
Error BOOL Set True if the axis is in error
ErrorlD DINT Indicates the Mint error code reported by the axis
ABB Motion control products 12 Power and productivity ‘l l. ll

MD

new.abb.com/motion for a better world™

Application note

GDI_Follow

This function block is used to command the axis to start following the configured master encoder reference at the programmed

follow ratio.

GD|_Fcollow_0

GDI_Folow | 1]
o
Execute
oo

Done™
Busy[™
Emos™

Enorl D™

GDI_Datalnterface
This function block is used to transfer command/status data between the PLC and the ABB motion drive. An instance of the
relevant function block must exist for each axis in the application.

GDI_Datalnterface_0

Generic drive interface: B&R PLC with Modbus TCP

| Type | Description
VAR_IN_OUT
Axis TGDIAxisRe | Reference to the axis structure
f
VAR_INPUT
Execute BOOL Start the follow on a rising edge. The axis will remain in follow mode
when the Execute input becomes False (to stop the follow issue
another motion command or clear motion using ABB_GDI_CLEAR)
Ratio REAL Value for the follow (gear) ratio between the axis and the master
encoder reference (the value will affected by the scaling of the axis
and the scaling of the master encoder — see the Mint Help file topic for
FOLLOW). To set a new ratio whilst following it is necessary to issue a
new ABB_GDI_FOLLOW command
VAR_OUTPUT
Done BOOL Set True as soon as the follow has been issued (regardless of whether
it was successful or not). The Done output remains set until Execute
becomes False
Busy BOOL Set True whilst the function block is in progress (i.e. whilst Execute is
True)
Error BOOL Set True if the axis is in error
ErrorID DINT Indicates the Mint error code reported by the axis

GDI_Datzlnterface

L]

AN00265-001

Aods

ABB Motion control products

new.a

bb.com/motion

| Type | Description
VAR_IN_OUT
Axis | TGDIAxisRef | Reference to the axis structure
13 Power and productivity

for a better world™

ADBB

Application note

Using the Axis Structure

Generic drive interface: B&R PLC with Modbus

AN00265-001

Most of the functionality of the GDI is encapsulated by the various GDI functions provided as library function blocks. However, in
some cases the application logic may find access to the axis structure data useful. The TGDIAxisRef data type declaration is

shown below:

‘3 GDILib::GDITypes.typ [Data Type Declaration] | :Tj proAxisDataTransfen:Cyclicfod |

| Mame Type & Reference

£ £ P4 [TGDIAdsRef

I G Rdsho INT |
B txisName STRING[20] O
..... P& 1PAddress STRING[15] O
- & CommandWond TCommandWord O
-® @ CommandType DINT O
B 5 Value REAL |
..... P& Speed REAL O
-2 & Accel REAL |
~# % Decel REAL |
B g pecellek REAL O
..... P& Decellers REAL O
- & LatchOffset REAL O
- % StatusWord TStatusWord O
- % Pos REAL |
..... P Vel REAL O
-3 5 FolEmor REAL O
P fisMode DINT |
-3 @ CurentMeas REAL O
..... P EmoCode DINT |
- & PDOOW TPDOOU [e)]
P& PDOIN TPDOIn |
B @ NodeOK BOOL |

This data structure in turn contains four further data structures (TCommandWord, TStatusWord, TPDOOut and TPDOIn). The
declarations for these are shown below:

Command word

= #%% TCommandWord
--# & btEnable

-2 & btModulo

-® & btlgnoreFE

Status word

= #¢ TStatusWord
-® & btEnabled
-2 btlde

- & btinPos

-# & btHomed
¥ @ btFwdLimit
-® & btRevLimit
- & biFauk
----’0 bit Stop Input

-® & btMationAlowed
-# & btPoslatchEnable
- & btDisFwdLimit
¥ & btDisRevLimit

¥ @ biFaultReset

- & biTiggerCmd
- & btWatchdog

¥ & btBrakeEngaged

ABB Motion control products

¥ & btReadyToEnable
-3 @ btControlModel

- # @ btCortrolMode 1

- & btTriggerDone

-® & btPermitted

-# & btlatchMissed

-® & btFaultReset

B ¢ btPhaseSearchDone

new.abb.com/motion

BOOL
BOOL
BOOL
BOOL
BOOL
BOOL
BOOL
BOOL
BOOL
BOOL

BOOL
BOOL
BOOL
BOOL
BOOL
BOOL
BOOL
BOOL
BOOL
BOOL
BOOL
BOOL
BOOL
BOOL
BOOL
BOOL
BOOL

14

Power and productivity

for a better world™

A B
MD

Application note Generic drive interface: B&R PLC with Modbus TCP AN00265-001

PDO Data Out (to the drive)

= #¢ TPDOOW
----- # % pdoCONTROL_WORD UDINT
----- 7% pdoCMD_TYPE UDINT
----- 9% pdoVALUE UDINT
----- ¥ % pdoSPEED UDINT
----- ¥ % pdoACCEL UDINT
----- ¥ & pdoDECEL UDINT
----- 9% pdoACCELIERK UDINT
----- ¥ & pdoDECELIERK UDINT
----- ¥ % pdoOFFSET UDINT

pdoSTATUS_WORD UDINT
pdoMEASURED_POS UDINT
pdoMEASURED_VEL UDINT
pdoFOL_ERROR UDINT
pdoAXIS_MODE UDINT
pdoRMS_CURRENT UDINT
pdoERROR_CODE UDINT

The PLC code can therefore access any of this data via these structures, although the structures for process data are only really
included to encapsulate the PDO mapping variables into the main structure to avoid the need to create unique variable names
for each mapping as additional axes are added to the project and therefore wouldn’t usually be accessed from the general
application logic.

Example:
Two rungs accessing the axis data structure directly, one reading the status of the Forward Limit Input on the drive and the

other storing the measured axis velocity...

Dot
Pods0.Status\Wa xFwd Limit
rd bt Fevd Limit Activel
BOOL BOOL
| | F
11 A
Doo2
Pods Vel MOVE M dVell
s0. Vel easuredVe
REAL i e REAL

Being able to access this data directly allows great flexibility in the PLC application code (e.g. for an indexing conveyor
application the PLC application can access the latch missed status bit (btLatchMissed) and use this to drive a counter that stops
motion if a certain number of latches (fast interrupts) are missed in a row).

Communication Watchdog

By default the Mint GDI is configured to use a watchdog mechanism. From receipt of the first message from the PLC the Mint
program checks that communication is still active. If this is lost the axis will stop and no further moves will be possible until the
error is cleared. It is possible to disable the watchdog at the drive end (see AN00204 for details), but for completeness a
watchdog mechanism is included in the GDI_Datalnterface function block...

WatchdogBlink (Enable:=TRUE, Timelow := _WatchdogTime / 2, TimeHigh := _WatchdegTime / 2);
WatchdogRTrig (CLE:=HatchdogBlink.Out) ;
IF WatchdegRTrig.(Q = TRUE THEN
iWatchdog = (iWatechdog + 1) MOD 2Z;
END_IF;

ABB Motion control products 15 Power and productivity ‘\I' I‘
for a better world™

new.abb.com/motion

Application note Generic drive interface: B&R PLC with Modbus AN00265-001

Example application
The example Automation Studio project included with this application note allows control of a single MicroFlex €190 drive (from
a X20CP0410 PLC). There are two main program files (both written in Function Block Diagram / FBD)...

prgAxisDataTransfer — the cyclic.fbd element of this program calls an instance of GDI_Datalnterface to transmit/receive all PDO
data

prgMotion — the cyclic.fbd element of this program contains instances of every single GDI motion function block, pre-configured
for use with Axis O (where Axis 0 is defined in Global.var as type TGDIAxisRef). The Init.fbd element of this program is used to
pre-load some default values for each motion function block

These two programs are configured to run as Cyclic #1 task class (configured for 10ms cycles). This cycle time (or task class)
can be adjusted to suit the application requirements and/or to suit the processor specification in use.

COhject Mame Description
w0 GO via_Modbus
Gt ¥ Globaltyp Global data types
G- @4 Globalvar Global variables
Bt) Libraries Global librariss

operator This library containg function interfaces for IEC 61131-3 operator functions. Fo
il runtime This library containg runtime functions for |EC tasks.

astime The AsTime Library supports DATE_AND_TIME and TIME data types.
standard This library containg standard function blecks and functions for [EC 61131-3.

T

AslecCon This library contains function inteffaces for 1EC 61131-3 conversion functions.
- [GDIlb

Inttialization code
Exit code

Cyclic code

Local dats types

Local variables

Cyclic code
Intialization code
Exit code
Local data types
B @ Varables var Local varables
il st Action.st
G- el Visu GO BAD4R0 (VGA)

In the example application the PLC is configured with IP address of 192.168.0.109. A VNC server is configured to allow a VNC
viewer (e.g. https://www.realvnc.com) to utilise the visualisation included with the project. This visualisation allows the user to
test every single motion function supported by the GDI library...

-

192.168.0.109 (GDI Test Panel) - VNC Viewer

0
o
T

Move Absolute

ABB Motion control products 16 Power and productivity A.'
new.abb.com/motion for a better world™

Application note Generic drive interface: B&R PLC with Modbus TCP AN00265-001

Adding additional axes
To expand the example application and add additional axes to the Ethernet (Modbus TCP) network the following simple steps
should be followed:

Add the new drive to the Physical View by copying and pasting the existing drive in the device tree (an additional drive should
appear in the hardware (System Designer) screen as shown below)...

MName L... Position ‘Version Description
B 4 ¥20CP1382 1320 20 CPU x86 400MHz, 3¢ 1O, POWEI
ol Serial IF1 Communication Port
(= ETH IF2 Ethemet
Axisl 3T 1.052 Generic Modbus Station
[Ruds | 5T2 1052 Generic Modbus Station
- T PLK IF3 POWERLINK
- »% USH IF4 Uriversal Serial Bus
- »% USB IF5 Uriversal Serial Bus
- f X1 x1 Module 2¢Al/RTD, 4xDI, CAN, R5232
B X2 *2 10Dl, 4xHSDI
- g X3 x3 £D0, 4xDM, £HSDO, Supply
o W XD IF& B&R X2 Link
- @K CAN IF7 Cortroller Area Metwork Bus
= 551

We decided to rename our drives to AxisO and Axis1 now (as they were both MicroFlex e190 drives). Right click the new drive
and select ‘Configuration’ and set the IP address to suit the additional drive...

: B! xis0 (VO Mapping] | 4 Hardware.hwl [System Designer] | % Axist [Configuration]* x |
PELLELABR ETROR, 2
Name L.. Postion Version Descrintion = o Unit e———
B 4 Xo0CP1382 1320 X20CPUXBE 400MHz. 3 /0. FOWER | || pemerarese | | |
A Setal IF1 Commurication Port B & Generd
g iHMsD ‘5?1 1.052 g:rafmmhus Station @ Module supervised off Service mode f thers is no hardware module
¥ [Rast | ST2 1052 Genenc Modbus Station B Bhemet
- Th PLK IF3 POWERLINK g Mode i 5
& UsSB IF4 Universal Serial Bus 1@ IPaddress
< USE IF5 Universal Serial Bus @ Untidentfier y
& Xt X1 Module 2AI/RTD, 4DI. CAN, RS232 @ TCPpor 502
45 = L, ~ @ Mumber of pending requests 1
£ o 6 BAR X2 Link i = [Tments
LN o
@ can e e e Fiiiiin @ Refresh time violation 1500 ms
4 551 . m? Pend ey i 1 s

Note that by copying and pasting the drive (rather than dragging a new device from the Device Catalog) the software will
automatically duplicate all of the PDO mappings that are required for the GDI interface to operate.

Now select the ‘Logical View’ in Automation Studio and add a new global variable for the new axis. This should be added as a
variable of type ‘TGDIAxisRef as shown below...

File Edit View Insert Open Project Debug Source Control Opline Tools Window Help

¥ FAr] i B 1036 Modula ced® S LE Il b @By
45 Hardware hwi [System Designer] | | e190_Avist VO Mapping] | & Global.var [Variable Declaration] X ‘
I NER= il AL S RERT R & E
Tw; Constant @ Ret [Replioable Value
P misl GDIAdsRef] O
H- 1 Global data types
8- Global variables e g O O
- Global librares
- @ profisDataTransfer
b~ proMotion
Visu_GDI 640x480 (VGA)

Now select the ‘Configuration View’ in Automation Studio, expand the PLC folder (X20CP0410 in our case) and right-click the
loMap.iom entry and select ‘Open>Open As Text'...

Configuration View R | & Haraware.nwi [sy
&@0= &6
Corfiguration Bztch Description Mame
e & X20CP 1585 [Active] O T st
- P Hardware hw Hardware configuration Ve ks
3 Hardware Hardware topology @ s
B) X2IcP13ez
2 Cpusw Software corfiguration
= Pemanert variables
£) loMap lom 1/0 mapping
S R Vanzbls map Open » Open As Text I

Open with Explorer Open As Table

@l Connectivity
% TedSmtem Add Configuration...
UnitSystem "
G AccessAndSecurty Add Object...
et cut
= Hardwarejpg
Copy
Paste
Delete

ABB Motion control products 17 Power and productivity A"
new.abb.com/motion for a better world™

Application note Generic drive interface: B&R PLC with Modbus AN00265-001

Copy all of the existing entries for the first axis (e.g. Axis0) and paste them back into the editor at the end of the file, then edit
these new entries to change all references to the first axis and its associated device name so that they now refer to the new axis
as shown below...

& Axisd [I'O Mapplnal] |3_)_IoMap.iom [0 Mapping]* = |

[VAR__CONFIG

| ::Axis0_PDOIn.pdoSTATUS WORD AT %ID."Axis0".mbStatusWord;
:zAxis0_PDOIn.pdoMEASURED POS AT %ID."AxisO" . mbMeasuredPos:
:chxis0_PDOIn. pdoMEASURED VEL AT %ID."Axis0" mbMeasuredWVel;
::hxuia0 PDOIn.pdoFOL _ERROR AT %ID."Axis0O" mbFolError;
:chxis0_PDOIn.pdoANIS _MODE AT %ID."RAxisO" . mbRxisMode;
:zAxis0_PDOIn.pdoRMS CURRENT AT %ID."Axis0" . mbRMSCurrent;
:zhxis0 PDOIn.pdoERROR CODE AT SID."RAxis0" _mbErrorCode;
:zhxis0_ PDOCut pdoCONTROL WORD AT %QD. "RAxis0" mbCommandWord;
::Axial _PDOOut . pdoCHMD TYPE AT %QD."Axis0" mbCmdType;
:zRxis0 PDOCut pdoVALUE AT 0D "Rxis0" mbValue;
::hxia0_PDOCut pdoSPEED AT &QD_"Rxis0"™ mbSpeed;

:zRxis0 PDOOut pdoRACCEL AT %QD._"Rxis0" mblAccel;
:zAxis0_PDOOut .pdoDECEL AT %QD."Rxis0"™ mbDecel;

:zRxis0 PDOCut pdoRACCELJERE AT %QD."Rxis0" _mbRccelJerk;
::Axis0_PDOOut pdoDECELJERE AT %QD "Axis0" mdDecelderk;

: -hxia0_PDOOut pdoOFFSET AT %0D_"Axis0" mbOffset;

:chxisl PDOIn.pdoSTATUS WORD AT $ID."Axisl" . mbStatusWord;
::hxisl PDOIn.pdoMEASURED POS AT %ID."Axisl" mbMeasuredPos;
:zhxisl PDOIn. pdoMEASURED VEL AT %ID."Axisl" mbMeasuredWVel;
:zhxigl PDOIn.pdoFOL _ERROR AT %ID."Axigl" mbFolError;
:zhyisl PDROIn.pdoRHIS MODE AT %ID."Rxisl" mbhxisMode;
::hxisl PDOIn.pdoRMS CURRENT AT %ID."Axisl™ mbRMSCurrent;
::hxisl PDOIn.pdoERROR CODE AT %ID. “Axisl" mbErrorCode;
cchxisl PDOCut.pdoCONTROL WORD AT %QD. "Rxisl" mbCommandWord;
::hxisl PDOCut pdoCMD TYDPE AT QD "Axigl" mbCmdType;
:zRxisl PDOCut pdoVALUE AT QD "Rxisl" mbValue;

:zhxial PDOOut pdoSPEED AT QD "Rxigl"™ mbSpeed;

:zRxisl PDOOut pdoRACCEL AT QD _"Rxisl" mblAccel;

::hxisl PDOOut pdoDECEL AT %QD."RAxisl"™ mbDecel;

:zhxisl PDOOut pdoACCELJERK AT %0QD “"Axisl" mblAccelJerk;
::Axisl.PDOOut .pdoDECELJERK AT %QD."Axisl".mdDecelJerk;
::hyisl PDOOut .pdoOFFSET AT %0QD._"Axisl™ mbOffset;

| o 2vER

Now we need to update our program file used to transfer PDO data to/from the ABB motion drives on the Ethernet network.
Switch to the ‘Logical View’ and double-click the prgAxisDataTransfer program’s ‘Cyclic.fbd’ entry...

File Edit WView Insert OCpen Project Debug Source Control

§®

l.n_gita;l View

Object Name ‘ Description

B & GDI_via_EPL_2_Axes
E- i’[g Globaltyp Global data types
- ¢ Globalvar Global varables
[+ Libraries Global libraries
-H% praseasUata |anster
B T3 Initfbd Initiglization code
G-] Bdtfbd Exit code
F- 17 [Cyclic fbd |Cyclic code
B Types typ Local data types
B @ Variables.var Local variables
WUUH
T Cyclicibd Cyclic code
Init fbd Initiglization code
_____ Exit fbd Exit code
P Typestyp Local data types
@ Varables.var Local variables
- st Actionst
- B Visu_GDI E40x4B0 (VGA)

ABB Motion control products 18 Power and productivity A.'
new.abb.com/motion for a better world™

Application note Generic drive interface: B&R PLC with Modbus TCP AN00265-001

Add a new network to the Cyclic.fbd program and insert a new function block of the GDI_Datalnterface type (you will find this
within the GDILib section of the Libraries). You will also need to declare a new variable of this type to assign to this new function

block instance...
: I1 progAxisDataTransfer:Cydlic.fbd [Function Block Diagram - Cyclic]* X @ progtxisDatal

T = 3 Wil g |l od 58 He. R o =z I >
dor A g [v DSRARR T g B £ = e e B ! T proAuisDataTransfer: Cyclicfbd [Function Block Diagram - Cyciic)* | 41 proAxis i [Variable i x
| EiE .6
|| Process PDO cata for A= 07} & Reference & Contart @dRetain [0 Replable
& GDI_Datalrterface_1 DI Daiginterface | Ll [m}

1 > GD|_Dalaietace O Datstienace Ll] [m]

GD|_D=talnterface 0
GOI_Dazlnarface

Ao

|joco2

GDI_Dstalnterface_1

GOl D=mmintsrface
ozt Auis

The addition of a new axis is now complete and you are ready to start adding new application code to perform motion on this
second axis, simply reference the new axis name (e.g. Axis1) in all motion function blocks.

Contact us

For more information please contact your

" . © Copyright 2018 ABB. All rights reserved.
local ABB representative or one of the following:

Specifications subject to change without notice.

new.abb.com/motion
new.abb.com/drives
new.abb.com/drivespartners
new.abb.com/PLC

ABB Motion control products 19 Power and productivity ‘\I' I‘
new.abb.com/motion for a better world™

