
ABB Motion control products 1
new.abb.com/motion

Ready to use PLC function blocks, combine with a
pre-written Mint application for simple control of
MicroFlex e190 and MotiFlex e180 drives via
Modbus

Introduction

This application note provides and details an example Automation Studio project that includes library functions to allow a B&R
X20 PLC to control and monitor ABB MicroFlex e190 and/or MotiFlex e180 AC servo drives via Modbus TCP. The library
provides pre-written data structures and function blocks that integrate seamlessly with the Mint based GDI and allow the user to
write IEC61131 based code to control a wide variety of motion on these drives. Note that MicroFlex e190 and MotiFlex e180
drives must be provided with the Mint memory card (option code +N8020).

The instructions promote consistency in all projects and greatly simplify the development of B&R PLC motion control
applications where simple point to point motion is required.

This document assumes that the reader has basic knowledge of B&R PLCs, Automation Studio, Mint Workbench and the Mint
GDI. It is recommended that the reader refers to application note AN00204 for details on the Mint GDI operation and
configuration.

The project included with this application note provides mechanisms for a B&R X20 PLC (X20CP0410 with X20BB52 base) to:

 Issue a home command
 Issue a command to detect a physical axis end stop and use this as a datum position (drive firmware version 5863

onwards required)
 Issue a relative move
 Issue an absolute move
 Issue an incremental relative move (and optionally stop a programmed distance past a “fast-capture” position)
 Issue an incremental absolute move (and optionally stop a programmed distance past a “fast-capture” position)
 Setup an offset target for an incremental move (i.e. position the axis relative to a captured fast interrupt)
 Jog the axis
 Set the axis position
 Issue a speed reference
 Issue a torque reference
 Enable/disable the axis
 Enable/disable hardware limits
 Reset axis errors
 Perform a controlled stop or crash stop on the axis
 Gear the axis to a secondary encoder input
 Set speed, acceleration times, deceleration times and jerk times for all motion
 Control modulo or non-modulo axes

Motion Control Products

Application note
Generic drive interface: B&R PLC with Modbus TCP

AN00265
REV B (EN)

Application note Generic drive interface: B&R PLC with Modbus AN00265-001

ABB Motion control products 2
new.abb.com/motion

At the same time the PLC is able to monitor status information from the drive including:

 Enabled state
 Ready to be enabled state
 Idle state
 In Position state
 Motor brake state
 Homed state
 Forward limit state
 Reverse limit state
 Fault state
 Stop input state
 Indication of missing fast latch interrupt
 Phase search status
 Error code
 Measured position
 Measured velocity
 Following error
 Axis mode of operation
 RMS current

This is all achieved via, what appears to the PLC as, input and output process data mappings (PDO) to NETDATA objects on
the drive. Because we have used 32 bit data (UDINT data type) for the interface each value is mapped onto a single 32-bit
NETINTEGER or NETFLOAT location in the drive.
An optional watchdog mechanism is also included, allowing the drive to take action (crash stop and disable by default) in the
event of communication loss.

Because a X20CP0410 processor is used, Automation studio version 4.5.2.102 or later is required to open and use the example
project. The automation runtime versions used are as shown below…

Configuring the Generic Drive Interface (GDI) Mint program

The pre-written GDI Mint program only requires only a small amount of customisation to suit the user’s application. Please refer
to application note AN00204 for details.

Configuring Modbus TCP on the Mint based drive

MicroFlex e190 and MotiFlex e180 drives are delivered “pre-configured” for operation of Modbus TCP via the standard Ethernet
port on the front of the drive (E3). All that the user needs to do is assign a (unique) IP address to the drive via Mint Workbench
to match the IP address programmed in the PLC project. In the example project provided the MicroFlex e190 is expected to be
set as 192.168.0.1 (the PLC is configured with address 192.168.0.109).
When adding additional axes be sure to set unique IP addresses for each drive, remembering that these drives must all be on
the same subnet as the PLC (e.g. 192.168.0.x). Use a standard Ethernet switch to connect all devices to the same network.

PLC configuration
The example application included with this application note shows how an X20CP0410 PLC would be configured to
communicate with ABB motion drives via Modbus TCP. If starting a new application from scratch follow this process:

Application note Generic drive interface: B&R PLC with Modbus TCP AN00265-001

ABB Motion control products 3
new.abb.com/motion

In the physical view within Automation Studio right click the Ethernet port (ETH) for the PLC and select ‘Configuration’. In the
right hand pane expand the ‘Modbus parameters’ section and activate Modbus as shown below…

Now, with the ETH icon still highlighted in the Physical view, scroll down through the Device Catalog in the toolbox and select a
‘ModbusTcp_any’ device (and drag and drop this onto the ETH icon)….

You can rename the device that has been added if necessary (to make it clearer which drive this is)….we renamed ours to
‘MicroFlex_e190’…

Now right click the device you just added and select ‘Configuration’. The port number will already be set to 502 (because we
selected a Modbus TCP device), but we will need to initially configure the IP address of the drive the PLC will be communicating
with…

As our drive was configured as 192.168.0.1 we entered this IP address.

Application note Generic drive interface: B&R PLC with Modbus AN00265-001

ABB Motion control products 4
new.abb.com/motion

Lastly we need to add a block for the Modbus TCP read/write (Function code 23) that will be used to transfer all of the PDO data
between the PLC and the drive. The starting addresses for this block and number of items (i.e. address and number of Modbus
registers) must suit the Netdata locations used by the Mint GDI program on the drive. In the case of our standard GDI
application the read data starts at Netdata(100) / Modbus register 200 (and there are 7 Netdata locations to read – 14 Modbus
registers). The write data starts at Netdata(0) / Modbus register 0 (and there are 9 Netdata locations to write – 18 Modbus
registers).

The refresh time would typically be set to half of the cycle time used for the program that transfers all Modbus data between the
PLC and drives. In this example our data transfer program uses task class #1 and runs at 10ms, so we will set the Modbus
refresh time to 5ms.

Our Block 1 configuration therefore ends up like this…

Once the block is configured we can then continue to add information about each ‘Channel’ associated with this block. For each
Netdata location we must add a Channel, giving this channel a name (e.g. mbStatusWord), a data type of UDINT (all the data is
transferred as a 32 bit double integer initially) and a direction (Read or Write). The screenshot below illustrates some of the
channel configuration…

Now right click the drive icon again and this time select ‘I/O Mapping…’ In the resulting right hand pane we need to select
Process Variables for the ModuleOK channel (automatically added and indicates the operational state of the device on Modbus
TCP) as well as all of the GDI PDO items we previously added via the Channel configuration…

Application note Generic drive interface: B&R PLC with Modbus TCP AN00265-001

ABB Motion control products 5
new.abb.com/motion

B&R GDI Function Blocks

The following sections detail the use of the B&R GDI function blocks:

GDI_Power

This function block is used to enable / disable an axis. The enable input enables the power stage in the drive and not the
function block itself.

GDI_Reset
This function block is
used to reset any
axis error that is

present.

GDI_Home

This function block is used to datum an axis. The details of the datum sequence are dependent on the Home type set in the Mint
GDI program. The Position input is used to set the axis position at the end of a successful datum sequence.

 Type Description

VAR_IN_OUT
Axis TGDIAxisRef Reference to the axis structure

VAR_INPUT
Enable BOOL Whilst true the PLC will request the axis to be enabled

EnablePosNeg BOOL Whist true motion in both directions is permitted. If false motion is
prevented (or a stop is performed if motion is already in
progress)

VAR_OUTPUT
Status BOOL Indicates whether the axis is enabled (1) or not (0)
Error BOOL Set to true if the axis is in error

ErrorID DINT Indicates the Mint error code reported by the axis

 Type Description
VAR_IN_OUT

Axis TGDIAxisRef Reference to the axis structure
VAR_INPUT

Execute BOOL Start the datum sequence on a rising edge

Position REAL Absolute position to be set at the end of a successful datum
sequence

HomeSpeed REAL Homing speed in user units/sec
HomeAccel REAL Homing accel rate in user units/sec2

HomeDecel REAL Homing decel rate in user units/sec2
HomeAccelJerk REAL Homing accel jerk rate in user units/sec3 (set to 0 for trapezoidal

motion)
HomeDecelJerk REAL Homing decel jerk rate in user units/sec3 (set to 0 for trapezoidal

motion)
HomeBackOff REAL Ratio of Home speed to backoff speed

VAR_OUTPUT
Done BOOL Indicates that the axis has homed successfully. If the Execute input

is removed during homing and the axis completes the home
sequence the Done output will be set for one PLC scan. If the
Execute input remains 1 then the Done output will also remain set
(providing the home was successful)

Busy BOOL Set true whilst the homing sequence is in progress
Error BOOL Set true if the axis is in error

ErrorID DINT Indicates the Mint error code reported by the axis

 Type Description
VAR_IN_OUT

Axis TGDIAxisRef Reference to the axis structure

VAR_INPUT
Execute BOOL Start the fault reset on a rising edge

VAR_OUTPUT
Done BOOL Set True when the axis no longer has an error present. Remains True until

the Execute input is removed. If the Execute input is removed before the
Done bit is set then the Done bit will be set for a single PLC cycle. The Done
bit will not be set if the error could not be cleared (use the Busy output to
detect when the fault reset has been attempted)

Busy BOOL Set True whilst the function block is attempting to clear any axis error

Error BOOL Set True if the axis is in error
ErrorID DINT Indicates the Mint error code reported by the axis

Application note Generic drive interface: B&R PLC with Modbus AN00265-001

ABB Motion control products 6
new.abb.com/motion

GDI_FindEndStop

This function block is used as an alternative way to datum an axis in the absence of a home sensor. The axis will run at a
commanded velocity with a programmed torque limit until this torque limit is reached and the speed of the axis is less than the
programmed idle velocity. The Position input is used to set the axis position at the end of a successful datum sequence.

GDI_MoveRelative

This function block is used to command a controlled motion of a specified distance relative to the start position.

 Type Description
VAR_IN_OUT

Axis TGDIAxisRef Reference to the axis structure
VAR_INPUT

Execute BOOL Start the datum sequence on a rising edge

Position REAL Absolute position to be set at the end of a successful datum
sequence

FindSpeed REAL Speed in user units/sec (the sign of this value determines the seek
direction)

FindAccel REAL Accel rate in user units/sec2
FindDecel REAL Decel rate in user units/sec2

FindAccelJerk REAL Accel jerk rate in user units/sec3 (set to 0 for trapezoidal motion)
FindDecelJerk REAL Decel jerk rate in user units/sec3 (set to 0 for trapezoidal motion)

TorqueLimit REAL Torque limit to apply during sequence (% of drive rated current)
VAR_OUTPUT

Done BOOL Indicates that the axis has found the end stop successfully. If the
Execute input is removed during the sequence and the axis finds
the end stop the Done output will be set for one PLC scan. If the
Execute input remains 1 then the Done output will also remain set
(providing the sequence was successful)

Busy BOOL Set true whilst the find sequence is in progress
Error BOOL Set true if the axis is in error

ErrorID DINT Indicates the Mint error code reported by the axis

 Type Description
VAR_IN_OUT

Axis TGDIAxisRef Reference to the axis structure
VAR_INPUT

Execute BOOL Start the motion on a rising edge
Distance REAL Relative distance for the move (in user units)
Velocity REAL Maximum speed (not necessarily reached) in user units/sec
Accel REAL Accel rate in user units/sec2
Decel REAL Decel rate in user units/sec2

AccelJerk REAL Accel jerk rate in user units/sec3 (0 for trapezoidal motion)
DecelJerk REAL Decel jerk rate in user units/sec3 (0 for trapezoidal motion)

VAR_OUTPUT
Done BOOL Indicates that the axis has reached the target position

successfully. If the Execute input is removed during motion
and the relative move completes the Done output will be
set 1 for one PLC scan. If the Execute input remains True
then the Done output will also remain set (providing the
target position was successfully achieved)

Busy BOOL Set True whilst the relative move is in progress
Error BOOL Set True if the axis is in error

ErrorID DINT Indicates the Mint error code reported by the axis

Application note Generic drive interface: B&R PLC with Modbus TCP AN00265-001

ABB Motion control products 7
new.abb.com/motion

GDI_MoveAbsolute

This function block is used to command a controlled motion to a specified absolute position. This function can be used with
Modulo axes (in which case the shortest route to the specified position will be taken).

 Type Description
VAR_IN_OUT

Axis TGDIAxisRef Reference to the axis structure
VAR_INPUT

Execute BOOL Start the motion on a rising edge
Position REAL Target position for the move (in user units)

Velocity REAL Maximum speed (not necessarily reached) in user units/sec
Accel REAL Accel rate in user units/sec2
Decel REAL Decel rate in user units/sec2

AccelJerk REAL Accel jerk rate in user units/sec3 (0 for trapezoidal motion)
DecelJerk REAL Decel jerk rate in user units/sec3 (0 for trapezoidal motion)

ModuloAxis BOOL Defines whether the axis is a modulo axis (i.e. using an
ENCODERWRAP to define travel within one cycle). Absolute moves
when using modulo axes are always implemented via the shortest path
(e.g. an absolute move to 20 degrees from 350 degrees on a 0-360
degree modulo axis will result in forward travel of 30 degrees)

VAR_OUTPUT

Done BOOL Indicates that the axis has reached the target position successfully. If
the Execute input is removed during motion and the absolute move
completes the Done output will be set True for one PLC scan. If the
Execute input remains True then the Done output will also remain set
(providing the target position was successfully achieved)

Busy BOOL Set True whilst the absolute move is in progress
Error BOOL Set True if the axis is in error

ErrorID DINT Indicates the Mint error code reported by the axis

Application note Generic drive interface: B&R PLC with Modbus AN00265-001

ABB Motion control products 8
new.abb.com/motion

GDI_IncR

This function block is used to command a controlled motion of a specified distance relative to the target position at the time of

the execution. The target position resulting from a call to this function block can be modified whilst motion is still in progress by

any of the following methods:

a. By issuing another GDI_IncR or GDI_IncA function (providing input parameter BufferMode is True)

b. By setting the input parameter Latchmode to True and specifying a value for the input parameter LatchOffset. Mint

code on the drive will then automatically modify the axis target position such that it stops the LatchOffset distance past

the axis position captured by the defined fast interrupt. A bit within the Axis status word (btLatchMissed) is available to

indicate failure to detect this fast interrupt (this condition may then be used to alert the operator to a system failure for

example). Using Latchmode and LatchOffset allows simple implementation of indexing conveyor applications.

VAR_OUTPUT

Done BOOL When BufferMode is set False this indicates that the axis has
reached the target position successfully. If the Execute input is
removed during motion and the relative move completes the
Done output will be set True for one PLC scan. If the Execute
input remains True then the Done output will also remain set
(providing the target position was successfully achieved). When
BufferMode is set True the Done output is set for one PLC scan
to indicate successful loading of the move

Busy BOOL Set True whilst the move is in progress
Error BOOL Set True if the axis is in error

ErrorID DINT Indicates the Mint error code reported by the axis

GDI_IncR is also useful if the application needs to modify SPEED/ACCEL/DECEL of a relative move already in progress. Moves
loaded using GDI_MoveRelative are profiled using the SPEED/ACCEL/DECEL loaded at the time and these cannot be changed
once the move has started. By using GDI_IncR with the input parameter BufferMode set True then it is possible to modify the
profile parameters by loading another GDI_IncR (with new SPEED/ACCEL/DECEL) with input parameter Distance set to zero.

 Type Description
VAR_IN_OUT

Axis TGDIAxisRef Reference to the axis structure
VAR_INPUT

Execute BOOL Start the motion on a rising edge
Distance REAL Relative distance for the move (in user units)

Velocity REAL Maximum speed (not necessarily reached) in user units/sec
Accel REAL Accel rate in user units/sec2
Decel REAL Decel rate in user units/sec2

AccelJerk REAL Accel jerk rate in user units/sec3 (0 for trapezoidal motion)
DecelJerk REAL Decel jerk rate in user units/sec3 (0 for trapezoidal motion)
LatchMode BOOL Sets whether the axis should utilise the configured fast latch

interrupt and set a new target position ‘LatchOffset’ user units past
the captured position

LatchOffset REAL Defines the distance past the captured fast position (in user units)
the target for GDI_INCR should be modified by (when input
parameter LatchMode is set True)

BufferMode BOOL Defines whether the function block should set the Done output and
complete as soon as the move has been loaded. Setting
BufferMode True allows the application to trigger further
incremental moves whilst existing moves are in progress

Application note Generic drive interface: B&R PLC with Modbus TCP AN00265-001

ABB Motion control products 9
new.abb.com/motion

GDI_IncA

This function block is used to command a controlled motion to a specified absolute position. This function differs from
GDI_MoveAbsolute in that the target position can be modified whilst motion is in progress by any of the following methods:

a. By issuing another GDI_IncR or GDI_IncA function (providing input parameter BufferMode is True)
b. By setting the input parameter Latchmode to True and specifying a value for the input parameter LatchOffset. Mint

code on the drive will then automatically modify the axis target position such that it stops the LatchOffset distance past
the axis position captured by the defined fast interrupt. A bit within the Axis status word (btLatchMissed) is available to
indicate failure to detect this fast interrupt (the example programs show how missing 3 latches in a row can be detected
– this condition may then be used to alert the operator to a system failure for example).

GDI_IncA is also useful if the application needs to modify SPEED/ACCEL/DECEL of an absolute move already in progress.
Moves loaded using GDI_MoveAbsolute are profiled using the SPEED/ACCEL/DECEL loaded at the time and these cannot be
changed once the move has started. By using GDI_IncA with the input parameter BufferMode set True then it is possible to
modify the profile parameters by first loading a GDI_IncA move and then loading a GDI_IncR (with new
SPEED/ACCEL/DECEL) with input parameter Distance set to zero.

 Type Description

VAR_IN_OUT

Axis TGDIAxisRef Reference to the axis structure
VAR_INPUT

Execute BOOL Start the motion on a rising edge
Position REAL Absolute position target for the move (in user units)
Velocity REAL Maximum speed (not necessarily reached) in user units/sec
Accel REAL Accel rate in user units/sec2
Decel REAL Decel rate in user units/sec2

AccelJerk REAL Accel jerk rate in user units/sec3 (0 for trapezoidal motion)
DecelJerk REAL Decel jerk rate in user units/sec3 (0 for trapezoidal motion)

LatchMode BOOL Sets whether the axis should utilise the configured fast latch interrupt and set a
new target position ‘LatchOffset’ user units past the captured position

ModuloAxis BOOL Defines whether the axis is a modulo axis (i.e. using an ENCODERWRAP to
define travel within one cycle). Absolute moves when using modulo axes are
always implemented via the shortest path (e.g. an absolute move to 20
degrees from 350 degrees on a 0-360 degree modulo axis will result in forward
travel of 30 degrees)

LatchOffset REAL Defines the distance past the captured fast position (in user units) the target for
ABB_GDI_INCA should be modified by (when input parameter LatchMode is
set True)

BufferMode BOOL Defines whether the function block should set the Done output and complete
as soon as the move has been loaded. Setting BufferMode True allows the
application to trigger further incremental moves whilst existing moves are in
progress

VAR_OUTPUT
Done BOOL When BufferMode is set False this indicates that the axis has reached the

target position successfully. If the Execute input is removed during motion and
the absolute move completes the Done output will be set True for one PLC
scan. If the Execute input remains True then the Done output will also remain
set (providing the target position was successfully achieved). When
BufferMode is set True the Done output is set for one PLC scan to indicate
successful loading of the move

Busy BOOL Set True whilst the function block is in progress
Error BOOL Set True if the axis is in error

ErrorID DINT Indicates the Mint error code reported by the axis

Application note Generic drive interface: B&R PLC with Modbus AN00265-001

ABB Motion control products 10
new.abb.com/motion

GDI_Jog

This function block is used to command a constant speed move on the axis (using the position loop controller in the drive).
Motion is performed as long as the Execute input remains True.

GDI_SetPos

This function block is used to set the axis position (encoder and position values on the drive) to a programmed value. The axis
must be idle when this function is called, otherwise the axis will return an “action not possible - motion in progress” error (Error
code 10). If the axis is using an absolute encoder this will set/teach a new absolute position (GDI Mint program v2.17 onwards).

 Type Description

VAR_IN_OUT
Axis TGDIAxisRef Reference to the axis structure

VAR_INPUT
Execute BOOL Start the motion on a rising edge and maintain motion as long as

the input remains True. Motion ramps to zero speed at the
configured Decel rate when Execute becomes False

JogSpeed REAL Value for the speed the axis will reach in user units/sec

Accel REAL Accel rate in user units/sec2
Decel REAL Decel rate in user units/sec2

AccelJerk REAL Accel jerk rate in user units/sec3 (0 for trapezoidal motion)
DecelJerk REAL Decel jerk rate in user units/sec3 (0 for trapezoidal motion)

VAR_OUTPUT
Done BOOL Set True as soon as the Jog command has been successfully

issued and remains set until Execute becomes False or an axis
error occurs

Busy BOOL Set True whilst the function block is in progress
Error BOOL Set True if the axis is in error

ErrorID DINT Indicates the Mint error code reported by the axis

 Type Description
VAR_IN_OUT

Axis TGDIAxisRef Reference to the axis structure
VAR_INPUT

Execute BOOL Set the new position on a rising edge
Position REAL Value for the axis position to be set (in user units)

VAR_OUTPUT
Done BOOL Set True as soon as the command has been issued (regardless of

whether it was successful or not – use the Error output to determine
whether the command was successful). Remains True until the Execute
input is removed. If the Execute input is removed before the Done bit is
set then the Done bit will be set for a single PLC cycle.

Busy BOOL Set True whilst the function block is in progress (cleared once the Done
bit is set)

Error BOOL Set True if the axis is in error
ErrorID DINT Indicates the Mint error code reported by the axis

Application note Generic drive interface: B&R PLC with Modbus TCP AN00265-001

ABB Motion control products 11
new.abb.com/motion

GDI_Clear

This function block is used to crash stop the axis and interrupt any motion that is in progress. The axis will remain enabled
(providing GDI_Power is requesting the enabled state and the axis is not in error).

GDI_Stop

This function block is used to perform a controlled stop on the axis at the programmed deceleration rate.

 Type Description
VAR_IN_OUT

Axis TGDIAxisRef Reference to the axis structure
VAR_INPUT

Execute BOOL Start the controlled stop on a rising edge

Decel REAL Decel rate in user units/sec2
DecelJerk REAL Decel jerk rate in user units/sec3 (0 for trapezoidal motion)

VAR_OUTPUT
Done BOOL Set True when the axis becomes idle after completing the controlled

stop or if an error occurs when the stop command is issued.
Remains True until the Execute input is removed. If the Execute
input is removed before the Done bit is set then the Done bit will be
set for a single PLC cycle.

Busy BOOL Set True whilst the stop is in progress – cleared once the Done bit is
set

Error BOOL Set True if the axis is in error

ErrorID DINT Indicates the Mint error code reported by the axis

 Type Description
VAR_IN_OUT

Axis TGDIAxisRef Reference to the axis structure
VAR_INPUT

Execute BOOL Start the crash stop on a rising edge
VAR_OUTPUT

Done BOOL Set True when the axis becomes idle after completing the crash stop or if
an error occurs when the crash stop command is issued. Remains True
until the Execute input is removed. If the Execute input is removed before
the Done bit is set then the Done bit will be set for a single PLC cycle.

Busy BOOL Set True whilst the stop is in progress – cleared once the Done bit is set
Error BOOL Set True if the axis is in error

ErrorID DINT Indicates the Mint error code reported by the axis

Application note Generic drive interface: B&R PLC with Modbus AN00265-001

ABB Motion control products 12
new.abb.com/motion

GDI_SpeedRef

This function block is used to command a speed/velocity reference on the axis. In this mode of operation the position loop is not
used on the drive (so no following error is recorded or acted upon). The axis will remain in Speed control mode (as indicated by
the Statusword bits for Controlmode) until motion of another control mode type is issued (e.g. a position controlled move). To
switch from zero speed operation (in speed control mode) to holding position (in position control mode) a GDI_MoveRelative
could be issued, for example, with a relative move distance of zero user units.

GDI_TorqueRef

This function block is used to command a torque (current) reference on the axis. In this mode of operation the position loop is
not used on the drive (so no following error is recorded or acted upon). The axis will remain in torque control mode (as indicated
by the Statusword bits for Controlmode) until motion of another control mode type is issued (e.g. a position controlled move). To
switch from zero torque operation (in torque control mode) to holding position (in position control mode) a GDI_MoveRelative
could be issued, for example, with a relative move distance of zero user units.

 Type Description
VAR_IN_OUT

Axis TGDIAxisRef Reference to the axis structure

VAR_INPUT
Execute BOOL Start the axis on a rising edge and maintain motion as long as the input

remains True. Motion ramps to zero speed at the configured Decel rate
when Execute becomes False

Speed REAL Value for the speed the axis will reach in user units/sec. Can be modified
whilst Execute is True to change the axis speed

Accel REAL Accel rate in user units/sec2
Decel REAL Decel rate in user units/sec2

VAR_OUTPUT
Done BOOL Set True as soon as the speed reference has been issued (regardless of

whether it was successful or not). The Done output remains set until
Execute becomes False

Busy BOOL Set True whilst the function block is in progress (i.e. whilst Execute is
True)

Error BOOL Set True if the axis is in error
ErrorID DINT Indicates the Mint error code reported by the axis

 Type Description

VAR_IN_OUT
Axis TGDIAxisRef Reference to the axis structure

VAR_INPUT
Execute BOOL Start the torque reference on a rising edge and maintain torque as

long as the input remains True. Torque ramps to zero at the
configured FallTime rate when Execute becomes False

Torque REAL Value for the torque reference the axis will use (in % of
DRIVERATEDCURRENT – see Mint Help file). Can be modified whilst
Execute is True to change the torque produced

RiseTime REAL Sets the time taken (in ms) for current to rise from zero to
DRIVEPEAKCURRENT (see Mint Help file)

FallTime REAL Sets the time taken (in ms) for current to fall from
DRIVEPEAKCURRENT to zero (see Mint Help file)

VAR_OUTPUT
Done BOOL Set True as soon as the torque reference has been issued (regardless

of whether it was successful or not). The Done output remains set until
Execute becomes False

Busy BOOL Set True whilst the function block is in progress (i.e. whilst Execute is
True)

Error BOOL Set True if the axis is in error
ErrorID DINT Indicates the Mint error code reported by the axis

Application note Generic drive interface: B&R PLC with Modbus TCP AN00265-001

ABB Motion control products 13
new.abb.com/motion

GDI_Follow

This function block is used to command the axis to start following the configured master encoder reference at the programmed
follow ratio.

GDI_DataInterface
This function block is used to transfer command/status data between the PLC and the ABB motion drive. An instance of the
relevant function block must exist for each axis in the application.

 Type Description

VAR_IN_OUT
Axis TGDIAxisRe

f
Reference to the axis structure

VAR_INPUT
Execute BOOL Start the follow on a rising edge. The axis will remain in follow mode

when the Execute input becomes False (to stop the follow issue
another motion command or clear motion using ABB_GDI_CLEAR)

Ratio REAL Value for the follow (gear) ratio between the axis and the master
encoder reference (the value will affected by the scaling of the axis
and the scaling of the master encoder – see the Mint Help file topic for
FOLLOW). To set a new ratio whilst following it is necessary to issue a
new ABB_GDI_FOLLOW command

VAR_OUTPUT
Done BOOL Set True as soon as the follow has been issued (regardless of whether

it was successful or not). The Done output remains set until Execute
becomes False

Busy BOOL Set True whilst the function block is in progress (i.e. whilst Execute is
True)

Error BOOL Set True if the axis is in error

ErrorID DINT Indicates the Mint error code reported by the axis

 Type Description
VAR_IN_OUT

Axis TGDIAxisRef Reference to the axis structure

Application note Generic drive interface: B&R PLC with Modbus AN00265-001

ABB Motion control products 14
new.abb.com/motion

Using the Axis Structure

Most of the functionality of the GDI is encapsulated by the various GDI functions provided as library function blocks. However, in
some cases the application logic may find access to the axis structure data useful. The TGDIAxisRef data type declaration is
shown below:

This data structure in turn contains four further data structures (TCommandWord, TStatusWord, TPDOOut and TPDOIn). The
declarations for these are shown below:

Command word

Status word

Application note Generic drive interface: B&R PLC with Modbus TCP AN00265-001

ABB Motion control products 15
new.abb.com/motion

PDO Data Out (to the drive)

PDO Data In (from the drive)

The PLC code can therefore access any of this data via these structures, although the structures for process data are only really
included to encapsulate the PDO mapping variables into the main structure to avoid the need to create unique variable names
for each mapping as additional axes are added to the project and therefore wouldn’t usually be accessed from the general
application logic.

Example:
Two rungs accessing the axis data structure directly, one reading the status of the Forward Limit Input on the drive and the
other storing the measured axis velocity…

Being able to access this data directly allows great flexibility in the PLC application code (e.g. for an indexing conveyor
application the PLC application can access the latch missed status bit (btLatchMissed) and use this to drive a counter that stops
motion if a certain number of latches (fast interrupts) are missed in a row).

Communication Watchdog

By default the Mint GDI is configured to use a watchdog mechanism. From receipt of the first message from the PLC the Mint
program checks that communication is still active. If this is lost the axis will stop and no further moves will be possible until the
error is cleared. It is possible to disable the watchdog at the drive end (see AN00204 for details), but for completeness a
watchdog mechanism is included in the GDI_DataInterface function block…

Application note Generic drive interface: B&R PLC with Modbus AN00265-001

ABB Motion control products 16
new.abb.com/motion

Example application
The example Automation Studio project included with this application note allows control of a single MicroFlex e190 drive (from
a X20CP0410 PLC). There are two main program files (both written in Function Block Diagram / FBD)…

prgAxisDataTransfer – the cyclic.fbd element of this program calls an instance of GDI_DataInterface to transmit/receive all PDO
data
prgMotion – the cyclic.fbd element of this program contains instances of every single GDI motion function block, pre-configured
for use with Axis 0 (where Axis 0 is defined in Global.var as type TGDIAxisRef). The Init.fbd element of this program is used to
pre-load some default values for each motion function block

These two programs are configured to run as Cyclic #1 task class (configured for 10ms cycles). This cycle time (or task class)
can be adjusted to suit the application requirements and/or to suit the processor specification in use.

In the example application the PLC is configured with IP address of 192.168.0.109. A VNC server is configured to allow a VNC
viewer (e.g. https://www.realvnc.com) to utilise the visualisation included with the project. This visualisation allows the user to
test every single motion function supported by the GDI library…

Application note Generic drive interface: B&R PLC with Modbus TCP AN00265-001

ABB Motion control products 17
new.abb.com/motion

Adding additional axes
To expand the example application and add additional axes to the Ethernet (Modbus TCP) network the following simple steps
should be followed:

Add the new drive to the Physical View by copying and pasting the existing drive in the device tree (an additional drive should
appear in the hardware (System Designer) screen as shown below)…

We decided to rename our drives to Axis0 and Axis1 now (as they were both MicroFlex e190 drives). Right click the new drive
and select ‘Configuration’ and set the IP address to suit the additional drive…

Note that by copying and pasting the drive (rather than dragging a new device from the Device Catalog) the software will
automatically duplicate all of the PDO mappings that are required for the GDI interface to operate.
Now select the ‘Logical View’ in Automation Studio and add a new global variable for the new axis. This should be added as a
variable of type ‘TGDIAxisRef’ as shown below…

Now select the ‘Configuration View’ in Automation Studio, expand the PLC folder (X20CP0410 in our case) and right-click the
IoMap.iom entry and select ‘Open>Open As Text’…

Application note Generic drive interface: B&R PLC with Modbus AN00265-001

ABB Motion control products 18
new.abb.com/motion

Copy all of the existing entries for the first axis (e.g. Axis0) and paste them back into the editor at the end of the file, then edit
these new entries to change all references to the first axis and its associated device name so that they now refer to the new axis
as shown below…

Now we need to update our program file used to transfer PDO data to/from the ABB motion drives on the Ethernet network.
Switch to the ‘Logical View’ and double-click the prgAxisDataTransfer program’s ‘Cyclic.fbd’ entry…

Application note Generic drive interface: B&R PLC with Modbus TCP AN00265-001

ABB Motion control products 19
new.abb.com/motion

Add a new network to the Cyclic.fbd program and insert a new function block of the GDI_DataInterface type (you will find this
within the GDILib section of the Libraries). You will also need to declare a new variable of this type to assign to this new function
block instance…

The addition of a new axis is now complete and you are ready to start adding new application code to perform motion on this
second axis, simply reference the new axis name (e.g. Axis1) in all motion function blocks.

Contact us

For more information please contact your
local ABB representative or one of the following:

new.abb.com/motion
new.abb.com/drives
new.abb.com/drivespartners
new.abb.com/PLC

© Copyright 2018 ABB. All rights reserved.

Specifications subject to change without notice.

