Description of product

The Blind/Roller Shutter Actuator with Binary Inputs is a modular installation (MDRC) device in Pro M design. It is intended for installation in the distribution board on 35 mm mounting rails. Physical address assignment and device parametrization are carried out using ETS and the current application.

The JRA/S 6.230.3.1 is powered via the ABB i-bus ${ }^{\circledR}$ and does not require an additional auxiliary voltage supply.

The device is ready for operation after connecting the bus voltage.

ABB i-bus ${ }^{\oplus}$ KNX
 Blind/Roller Shutter Actuator with Binary Inputs
 JRA/S 6.230.3.1, 2CDG110208R0011

Technical data

Power supply	Bus voltage	21... 32 V DC
	Current consumption, bus	Maximum 12 mA (Fan-in 1)
	Leakage loss, bus	Maximum 250 mW
	Leakage loss, device	Maximum 4.8 W *
* The maximum power consumption of the device results from the following specifications:	Relay 6 A	0.8 W
	Blind output	$6 \times 6 \mathrm{~A}, \mathrm{AC3}, 250 \mathrm{~V}$ AC
Connections	KNX	Via bus connection terminals, 2 -fold (red/black) $0.8 \mathrm{~mm} \varnothing$, single core
	Circuits	Screw terminal with universal head (PZ 1)
		$0.2 \ldots 4 \mathrm{~mm}^{2}$ stranded, $2 \times\left(0.2 \ldots 2.5 \mathrm{~mm}^{2}\right)$
		$0.2 \ldots 6 \mathrm{~mm}^{2}$ single core, $2 \times\left(0.2 \ldots 4 \mathrm{~mm}^{2}\right)$
	Ferrules without/with plastic sleeves	without: $0.25 \ldots 2.5 \mathrm{~mm}^{2}$
		with: $0.25 \ldots 4 \mathrm{~mm}^{2}$
	TWIN ferrules	$0.5 \ldots 2.5 \mathrm{~mm}^{2}$
	Tightening torque	Max. 0.6 Nm
Operating and display elements	Push button/LED $\Longrightarrow 0$	For assignment of the physical address
Protection degree	IP 20	To DIN EN 60529
Protection class	11	To DIN EN 61140
Isolation category	Overvoltage category	III according to EN 60 664-1
	Pollution degree	2 to EN 60 664-1
KNX safety extra low voltage	SELV 24 V DC	
Temperature range	Operation	$-5^{\circ} \mathrm{C} \ldots+45^{\circ} \mathrm{C}$
	Transport	$-25^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$
	Storage	$-25^{\circ} \mathrm{C} \ldots+55^{\circ} \mathrm{C}$
Ambient conditions	Maximum air humidity	93 \%, no condensation allowed
Design	Modular installation device (MDRC)	Modular installation device, Pro M
	Dimensions	$90 \times 216 \times 64.5 \mathrm{~mm}(\mathrm{H} \times \mathrm{W} \times \mathrm{D})$
	Mounting width in space units	$12 \times 18 \mathrm{~mm}$ modules
	Mounting depth	64.5 mm
Installation	On 35 mm mounting rail	To DIN EN 60715
Mounting position	any	
Weight	0.55 kg	
Housing/color	Plastic housing, gray	
Approvals	KNX to EN 50 090-1, -2	Certification
CE marking	In accordance with the EMC directive and low voltage directive	

ABB i-bus ${ }^{\oplus}$ KNX
 Blind/Roller Shutter Actuator with Binary Inputs JRA/S 6.230.3.1, 2CDG110208R0011

Binary inputs

Rated values	Number	$12^{1)}$
	U_{n} scanning voltage	32 V , pulsed
I_{n} scanning current	0.1 mA	
I_{n} scanning current when switching on	Maximum 355 mA	
	Permitted cable length	$\leq 100 \mathrm{~m}$ one-way, at cross-section $1.5 \mathrm{~mm}{ }^{2}$ even
		when the core is routed in a multi-control cable

${ }^{1)}$ All binary inputs are internally connected to the same potential.

Rated current output 6 A

Rated values	Number	6 or 12 contacts
	U_{n} rated voltage	250/440 V AC (50/60 Hz)
	I_{n} rated current (per output)	6 A
Switching currents	AC3* operation $(\cos \varphi=0.45)$ To EN 60 947-4-1	6 A/230 V
	AC1* operation $(\cos \varphi=0.8)$ To EN 60 947-4-1	6 A/230 V
	Fluorescent lighting load as per DIN EN 60 669-1	$6 \mathrm{~A} / 250 \mathrm{~V}(35 \mu \mathrm{~F})^{2)}$
	Minimum switching capacity	$20 \mathrm{~mA} / 5 \mathrm{~V}$
		$10 \mathrm{~mA} / 12 \mathrm{~V}$
		$7 \mathrm{~mA} / 24 \mathrm{~V}$
	DC current switching capacity (resistive load)	$6 \mathrm{~A} / 24 \mathrm{~V}=$
Service life	Mechanical service life	$>10^{7}$
	Electronic service life To IEC 60 947-4-1	
	AC1* (240 V/cos $\varphi=0.8$)	$>10^{5}$
	AC3* (240 V/cos $\varphi=0.45$)	$>1.5 \times 10^{4}$
	AC5a* (240 V/cos $\varphi=0.45$)	$>1.5 \times 10^{4}$
Switching times ${ }^{1)}$	Maximum relay position change per output and minute if only one relay is switched.	2,683

[^0]
ABB i-bus ${ }^{\circledR}$ KNX

Blind/Roller Shutter Actuator with Binary Inputs
JRA/S 6.230.3.1, 2CDG110208R0011

Lamp load output 6 A		
Lamps	Incandescent lamp load	1200 W
Fluorescent lamps T5/T8	Uncompensated	800 W
	Parallel compensated	300 W
	DUO circuit	350 W
Low-voltage halogen lamps	Inductive transformer	800 W
	Electronic transformer	1000 W
	Halogen lamps 230 V	1000 W
Dulux lamp	Uncompensated	800 W
	Parallel compensated	800 W
Mercury-vapor lamp	Uncompensated	1000 W
Switching capacity (switching contact)	Parallel compensated	800 W
	Maximum peak inrush current $\mathrm{I}_{\mathrm{p}}(150 \mu \mathrm{~s})$	200 A
	Maximum peak inrush current $\mathrm{I}_{\mathrm{p}}(250 \mu \mathrm{~s})$	160 A

ABB i-bus ${ }^{\circledR}$ KNX
 Blind/Roller Shutter Actuator with Binary Inputs JRA/S 6.230.3.1, 2CDG110208R0011

Device type	Application	Max. number of group objects	Max. number of group addresses	Max. number of associations
JRA/S 6.230.3.1	Shutter Actuator binary input $6 f 12 f / \ldots$	255	255	255

[^1]
Note

Please refer to the JRA/S 6.230.3.1 Blind/Roller Shutter Actuator with Binary Inputs product manual for a detailed description of the application. It is available free of charge at www.abb.com/knx.
ETS and the current version of the device application program are required for programming.
The current application program is available for download at www.abb.com/knx. After import in the ETS, it is available in the ETS under $A B B / B l i n d / S w i t c h$.

The device does not support the locking function of a KNX device in ETS. If you use a BCU code to inhibit access to all the project devices, this has no effect on this device. Data can still be read and programmed.

ABB i-bus ${ }^{\oplus}$ KNX

Blind/Roller Shutter Actuator with Binary Inputs
JRA/S 6.230.3.1, 2CDG110208R0011

Connection

1 Label carrier
2 Programming button
3 Programming LED
4 Bus connection terminal
5 Blind/shutter (A, B)
6 Blind/shutter (C, D)
7 Blind/shutter (E, F)
8 Blind/shutter (G, H)
9 Blind/shutter (I, J)
10 Blind/shutter (K, L)
11 Binary inputs (g, h, i, j, k, l)
12 Binary inputs (a, b, c, d, e, f)

ABB i-bus ${ }^{\circledR}$ KNX

Blind/Roller Shutter Actuator with Binary Inputs JRA/S 6.230.3.1, 2CDG110208R0011

Dimension drawing

2CDC072028F0016

Contact us

ABB STOTZ－KONTAKT GmbH
Eppelheimer Straße 82
69123 Heidelberg，Germany
Telefon：＋49（0）6221 701607
Telefax：＋49（0）6221701724
E－Mail：knx．marketing＠de．abb．com

Further Information and Local Contacts： www．abb．com／knx

Note：

We reserve the right to make technical changes or modify the contents of this document without prior notice．With regard to purchase orders，the agreed particulars shall prevail．
ABB AG does not accept any responsibility
whatsoever for potential errors or possible lack of information in this document．

We reserve all rights in this document and in the subject matter and illustrations contained therein． Any reproduction，disclosure to third parties or utilization of this contents－in whole or in parts－is forbidden without prior written consent of ABB AG．

Copyright© 2017 ABB
All rights reserved

[^0]: ${ }^{\text {1) }}$ The specifications apply only after the bus voltage has been applied to the device for at least 10 seconds. The typical relay delay is approx. 20 ms.
 ${ }^{\text {2) }}$ The maximum inrush-current peak may not be exceeded, see Lamp load output 6 A.

[^1]: * \ldots = Current version number of the application. Please refer to the software information on our website for this purpose.

