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Abstract 

Industrial plants, to comply with environmental regulation, 
have to monitor, store and report emission data. The 
traditional and most performing approach, and therefore the 
most applied one, is represented by the Continuous 
Emission Monitoring Systems (CEMS), where a continuous 
stream of data is acquired by rapid-response instruments, 
displayed in real-time and stored for archiving and 
reporting purposes. However in the last years, advanced 
modeling technologies have made available a powerful 
complement to the hardware based analyzers which are the 
heart of most CEMS. 

Modeling technologies can provide strong support to 
existing emission management systems, by means of what is 
known as a Predictive Emission Monitoring System (PEMS). 
These systems do not measure emissions through any 
hardware device, but use computer models to predict 
emission concentrations on the ground of process data (e.g. 
fuel flow, load, and ambient air temperature). They actually 
represent a relevant application arena for the so-called 
Inferential Sensor technology which has quickly proved to 
be invaluable in modern process automation and 
optimization strategies. 

While lots of applications prove that software systems 
provide accuracy comparable to that of hardware-based 
CEMS, virtual analyzers are able to offer additional features 
and capabilities which are often not properly considered by 
end-users. Depending on local regulations and constraints, 
PEMS can be exploited either as primary source of emission 
monitoring or as an enhancement to hardware-based CEMS. 

The present paper aims at providing feedback from 
industrial field experience related to both the approaches. 
Lessons learnt at two large projects in O&G Production and 
Refinery will be used as examples which justify the quickly 
growing confidence on this modern and efficient technology.  
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Introduction 

According to ISO 14001, the goal of Environmental 
Management Systems (EMS) is “to enable an 

organization to establish and assess the effectiveness 
of procedures to set an environmental policy and 
objectives, achieve conformance with them, and 
demonstrate such conformance to others” [ISO]. In 
accordance with this, a typical EMS is designed to 
provide a number of functions, including:  
 Collecting and processing environmental-

related data 
 Providing key environmental performance 

indicators 
 Providing environmental performance 

evaluation planning 
 Emission calculation and reporting 
 Record keeping and audit trail functionalities. 

Within any EMS, a major role is played by air 
pollution control and prevention. In order to monitor 
the pollutant released into the atmosphere, the 
industry typically relies on Continuous Emission 
Monitoring System (CEMS). A CEMS is defined as the 
total equipment used to acquire reliable data on air 
emission levels, including sample extraction, 
treatment and transportation hardware, analyser, data 
recording and processing hardware and software 
[Arioni].  

CEMS can broadly be broken into three types of 
methods (Fig. 1, see also [EPA Handbook]): 

 Extractive Methods 
 In-situ Instrumental Methods 
 Parameter-based Methods. 

 
FIG. 1 TYPICAL CEMS CONFIGURATIONS 
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There are two classes of parameter–based methods: 
surrogate and predictive. 

Surrogates may be used to determine the compliance 
of a source with the emission standard. Predictive 
parameters are applied in cases where a functional 
relationship between process conditions and emission 
levels is such that it cannot be properly described by a 
single parameter. This is where the inferential sensor 
technology applies under the name of predictive 
emission monitoring system (PEMS).  

PEMS are software-based systems that exploit 
advanced mathematical models in order to estimate 
emission values. Typically PEMS models are built on 
process data, such as fuel flow, load, operating 
pressure and temperature. PEMS provide an effective 
way in order to obtain a continuous stream of 
(estimated) emission values in process units where 
CEMS are not present. According to a growing 
number of environmental regulations, plants are 
allowed to lease a portable CEMS to gather sufficient 
emissions data to build and validate mathematical 
models.  

 
FIG.2 INFERENTIAL MODELING FOR EMISSION MONITORING 

Once the models have been qualified, temporary 
CEMS is removed and replaced by the inferential-type 
system. PEMS can also be used as a back-up if a CEMS 
is in place, and irrespective of which role it plays, it 
provides numerous benefits in different applications 
[Samdami]. 

Inferential Sensors and PEMS 

Highly complex processes mostly characterize modern 
industrial plants. The complexity stems from the 
number of inputs and outputs, the frequent occurrence 
of delays, the inherent process non-linearity and the 
high degree of interconnection between the various 
process units (heat regeneration, recirculation, etc.), 
indispensable to make production more energy 
efficient. 

Complexity management strategies need to access 
accurate, timely and reliable information on process 
conditions in order to properly select the set of actions 

which can assure safety, mitigate environmental 
impact and optimize economic performances.  

Modelling techniques have become a key pillar for 
control and monitoring strategies for its capability to 
provide compact and efficient descriptions of the 
behaviour of a process or event. Essentially models are 
based on equations which are able to compute values 
of unmeasured variables using other process variables 
as input values. Depending on the nature of the model, 
this may or may not represent a causal relationship. 

One of the main application of modelling in process 
control aims at inferring hard-to-measure variables 
from other measurable process variables. 
Paradoxically hard-to measure variables are often 
among the most important ones for plant economic 
performances, as they include final or intermediate 
product qualities. Because of their relevance they are 
traditionally measured through devoted and 
expensive laboratory tests. However meaningful 
results are affected by two kinds of problems related 
to their limited availability (analysis are performed 
infrequently, usually 1-4 times a day) and the 
unavoidable delays (one or more hours) due to sample 
extraction and processing times. These problems have 
heavy impact on overall performances often 
preventing any possibility for process optimization. A 
possible solution is represented by including more and 
more process analysers in the process, but this could 
result expensive (both as Capex and Opex, due to 
disposables and calibration costs) and difficult to be 
implemented in harsh environment or when available 
room is an issue. 

Inferential sensors have been designed, developed and 
deployed mainly to provide a practical and affordable 
alternative to process analysers. They are in fact able 
to deliver reliable, real-time and continuous estimation 
of critical quality variables with a non-invasive 
technology requiring much less initial investment and 
only a fraction of the maintenance costs. 

The fundamental principle behind inferential sensors 
is that there is a functional relationship between the 
variables to be predicted and process operating 
conditions [Qin]. Since 1978 when the Kalman filter 
approach was proposed, once a state space model is 
available [Joseph and Brosilow], several different 
technologies have been exploited to the scope. 
Nowadays there are two poles in modelling 
technology, the theoretical and the empirical [Bonavita 
and Matsko]. A theoretical model is derived from 
scientific principles such as conservation of mass, 
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energy and species, and the laws of thermodynamics. 
An empirical model is mathematically derived from 
collected process data. Valid theoretical models 
always provide a causal relationship, while an 
empirical model may not. The empirical model may 
just imply that the same driving forces move both the 
input and output variables, and that they are related 
by the underlying theoretical model. So the user must 
insure that the underlying process does not change 
behaviour if an empirical model is used.  

In practice, full theoretical models, although in 
principle very powerful, require such an effort so as to 
make them very expensive to derive and only used in 
full scale optimization projects. 

On the other side the massive presence of computers 
and IT technology in control room has made process 
plants become actual “data-manufacturers”, where 
hundreds of thousands data are collected and stored 
each day [Bonavita and Martini]. With such an 
abundance of “raw data” the problem moves from 
how to write and solve complex theoretical equations 
to how to manage process data in order to distillate a 
reduced amount of valuable key information. A 
number of data processing and modelling techniques 
come to help the end-user and are included in several 
software packages that are commercially available in 
user-friendly formats, reducing the entry barrier to the 
scope. 

The merging of the reduced developer effort (and 
competence needed), the abundance of data and the 
growing power and ease of use of data mining 
techniques, makes quite a case in favour of the 
empirical modelling approach. 

While real-time product quality prediction was the 
original reason for developing inferential sensors, 
starting from mid-90s air emission monitoring became 
a relevant application field as well [Keeler]. The 
extension is pretty straightforward: like Inferentials 
are a convenient alternative to process analysers, so 
PEMS can be the same for hardware-based CEMS. 
Although there are relevant differences mainly due to 
regulations and implementation (for example PEMS 
outputs are very seldom used for closing control 
loops), the two applications share most of the technical 
challenges. 

In the last fifteen years, many projects have proven 
that software systems are practically just as accurate as 
the hardware-based CEMS. In addition, virtual 
analysers offer other exclusive functionalities that can: 

 Identify the key variables that cause emissions 

 Automatically validate sensors 
 Reconstruct emission levels from historical 

data when the hardware device fails 
 Complement and enhance process 

optimization strategies. 
However PEMS penetration has been slower than 
expected and seems ready to accelerate just now 
[Shoker]. A reasonable explanation is that not enough 
attention has been paid to practical implementation 
issues. As a matter of fact, PEMS technology is at the 
crossroad among different technical disciplines, 
combining knowledge and expertise from process 
automation, process analytics and Information 
Technology. 

 
FIG.3 PEMS KEY TOPICS 

To fulfil the requirements from the industry and 
deliver an effective solution, PEMS providers must be 
able to condensate their know-how in process and 
analytics and integrate it within the complexity of 
plant infrastructure and network. 

In the following a number of lessons learnt and 
experience-driven considerations will be shared 
complemented by two actual case studies related to 
the use of PEMS in industrial applications. 

Industrial Applications Fields 

Inferential analysers are nowadays a widely accepted 
technology for emission monitoring purposes, 
although their usage is quite different depending on 
the provisions of the local environmental regulations. 
Essentially PEMS can play two main roles: 

 As the primary source for emission monitoring; 
this option is accepted by several US states and 
by a growing number of countries especially in 
Middle East [Shoker]. 

 As a back-up of traditional CEMS to provide a 
redundant measurement which increases the 
availability of emission data. This option is 
acknowledged especially in Europe and Far 
East because of the possibility to extend the 



www.seipub.org/fiee                                                                              Frontiers in Environmental Engineering (FIEE) Volume 3, 2014 

24    

service factor of CEMS, covering periods when 
the hardware-based devices are not available 
because of failures or maintenance activities. 

There is also a third possibility for PEMS usage, which 
is somehow an intermediate between the back-up and 
the primary source approach: predictive systems 
allows the extension of emission monitoring programs 
from campaign-based to continuous ones.  

In the last section of this paper two industrial 
applications where authors have been involved will be 
briefly described in order to outline the different 
approaches and the peculiarities of each one. 

PEMS Project Workflow 

No matter the final applications, implementing a 
PEMS systems encompasses three main activities: 

 Data-collection 
 Model building and off-line validation 
 System commissioning. 

The data-collection phase is aimed at gathering a 
baseline of process and emission data to be used for 
model development. This phase is quite different if 
PEMS is designed to back-up an existing CEMS or to 
act as the primary emission monitoring tool. In the 
first case the data-collection can be easily performed 
extracting emission and process data from plant data 
acquisition systems (e.g. historian, EMS). Otherwise, a 
temporary analyser has to be installed at plant-site for 
a period in order to collect pollutant concentration 
values, while in parallel real-time values are gathered 
from the control system. 

The data-collection phase has to be accurately 
designed and executed in order to cover all the normal 
operating conditions and to ensure the maximum 
reliability and robustness to the final models. The key 
requirement is related to the characteristics of the data: 
emission and process data must be in raw format with 
minimal or no time-compression factor in order not to 
lose relevant information concerning variability of the 
different operating and emission parameters. It is in 
this phase that analytical competences have an 
invaluable role: choosing the best technologies for the 
temporary analysers to be installed at site and 
validating the provided emission measurements 
(allowing, for example, a pre-identification of bad-
quality data) will have a tremendous impact on 
system final performances. 

Model building and validation are “the heart” of any 
PEMS project: it includes all the tasks from pre-
processing of raw data to the final testing of the 

inferentials and requires the usage of advanced 
statistical, mathematical and modeling techniques. The 
amount of mathematics and statistics to be used here 
is not trivial and could represent an entrance barrier to 
this solution (and actually it did in the past). However 
technology comes to help the developer with 
advanced software packages which provide powerful 
algorithms in easy-to-use formats and environments 

Several years of experience allow to specify at least 
three critical phases where IT and data management 
tools are essential for PEMS successful implementation: 

 Data Pre-processing, which includes the 
removal of outliers and other bad-quality data, 
the definition of the proper sampling time and 
the identification of the most representative 
variables to be used for model development. 
An easy to use interface is crucial to exploit 
advanced statistical methods, like Principal 
Component Analysis (PCA), that support the 
developer in creating much better performing 
models. 

 Model Building itself, where a number of 
modelling techniques, such as Artificial Neural 
Networks (ANN), Genetic Algorithms, Partial 
Least Squares (PLS), could be selected and 
used depending on goals and constraints. In 
particular neural networks have proved to 
ensure the needed flexibility and robustness to 
the models and are commonly used for 
emission monitoring purposes.  

 Model Validation, where models have to be 
carefully validated off-line in order to ensure 
their performances and reliability is suitable for 
on-field application.  

Several commercial packages are nowadays available 
in order to assist PEMS engineers in the phases above. 
No wide spread of PEMS is and will be possible 
without their presence and further progress.  

 
FIG.4 EXAMPLE OF A SOFTWARE FOR PEMS DEVELOPMENT 



Frontiers in Environmental Engineering (FIEE) Volume 3, 2014                                                                              www.seipub.org/fiee 

  25 

The final stage of PEMS projects is the implementation 
of the models at plant side: here they must be properly 
installed in computing platforms connected to the 
basic automation layers so to be fed with the real-time 
process values in order to generate the required 
predictions (see Fig.5). 

 
FIG.5 ON-LINE MODEL DEPLOYEMENT 

Putting the models on-line is not enough. A number of 
possible additional schemes could be added to 
improve PEMS performances. For example, when a 
physical measurement is available (e.g. from 
infrequent lab analysis or from CEMS if PEMS acts as 
back-up), models are typically accompanied with a 
periodic recalibration procedure able to improve their 
accuracy over the time. These strategies compute the 
discrepancies between model prediction and physical 
measurement. The difference is statistically treated (in 
order to mitigate possible errors from noise or outliers 
and provide bumpless adjustment) and, if exceeds 
predefined thresholds, a recalibration factor is 
calculated and added to the model output, enhancing 
its accuracy and avoiding drift in case of failure in 
input sensors.  

 
FIG.6 RECALIBRATION FACTOR CONCEPT 

From an operative point of view it is very important 
that the recalibration strategies are implemented in 
order to update models only when a statistically 
significant change in the process is detected. 

Practical Issues 

From an industrial perspective, the development of an 
effective PEMS solution is much more than the simple 
creation of the models, but it is a combination of 
several ingredients that have to be put properly 
together. 

As seen, process and automation know-how has a 
major role. PEMS developers need an extensive and 
sound understanding of process dynamics and control 

strategy in order to check and validate the inputs from 
mathematical and statistical tools. Another 
fundamental element to be considered concerns final 
PEMS implementation at plant. Developing reliable 
and accurate models is not enough to fulfil end-users 
requirements: successful applications necessitate to 
overcome the gap between the advanced modeling 
techniques and the implementation in the control 
room. The seamless integration with the existing 
infrastructure is crucial in order to provide an effective 
solution. Predictive systems have to be able to dialog 
and interface with other automation layers through 
standard communication protocols, minimizing times 
and efforts for the commissioning phase. 

When installing PEMS on site, providers shall take 
into account also that plant personnel is often not 
familiar nor comfortable with advanced mathematical 
and modeling techniques. Software platform shall be 
fully transparent to the operators regarding the 
technology background but must provide them all the 
relevant information concerning emission values in a 
clear and manageable way. This point is clearly of 
paramount importance since it makes the solution 
truly effective once at site: otherwise, the risk is to 
develop a very powerful application which operators 
are not confident in because of its “complexity”.  

A final and often neglected issue to be considered is 
related to application maintenance. Generally process 
units operate under time-varying conditions. Different 
market requirements, feed or raw material quality 
variations, normal component aging slowly may drive 
unit conditions outside the ‘window’ which has been 
explored (and modelled) during project execution. 
Because empirical models, and neural networks in 
particular, are not specifically good in extrapolating 
[Qin], it is recommended and good engineering 
practice to foresee a periodic data collection campaign 
(usually 1 week per year) which will be used to retune 
and refine the models. Further than improving the 
overall PEMS performances (“Neural networks learn 
from experience”) this practice will also allow to 
increase detailed process know-how and personnel 
awareness on what’s going on and how the plant is 
behaving. Because of the impact on long-term 
performances, logistics and cost of yearly maintenance 
should be taken into consideration in the life-cycle cost 
assessment. From a practical perspective periodic 
recalibrations highlight the benefit of wide-spread 
service networks which can efficiently perform the 
after-commissioning activities with minimal 
intervention time and reduced cost.  
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Case Study I: PEMS as a Primary Monitoring 
Source 

PEMS have been successfully implemented as the 
primary emission monitoring source at a gas injection 
unit in a major O&G production facility in the Gulf 
Region. 

The injection plant is made of two parallel 
compression trains: before injection, gas undergoes 
two compression stages each driven by a gas turbine, 
as depicted in figure 7. 

 
FIG. 7 GAS INJECTION PLANT LAYOUT 

PEMS solution was developed in order to monitor the 
following pollutant emissions from each gas turbines: 

 NOx; 
 SO2 
 O2; 
 CO; 
 CO2. 

In order to acquire the emission values needed from 
models creation, a temporary CEMS was used at each 
stack, while a simultaneous set of data was collected 
directly from the plant control system thorough a 
standard OPC protocol. This data-collection phase 
lasted about six weeks in order to cover the widest 
range of operating conditions, providing an adequate 
baseline for an effective predictive solution. 

Following the data gathering, plant and emission data 
were processed in order to remove bad-quality data 
and outliers and to identify the relevant variables to be 
used as input for the models. Each model was 
developed using a set of 6-8 input identified among 
most relevant process (e.g. fuel gas flow, exhaust gas 
temperature, compressor gas flow) and ambient 
parameters (e.g. air humidity). Feedforward neural 
networks were chosen as model architecture since they 
proved to be the most accurate and robust. 

Inferential models were implemented at site and 
integrated with the existing IT infrastructure: a 
standard OPC protocol was used to gather real-time 
data from plant DCS and to write back the predictions. 
After the commissioning, an Environmental Protection 
Agency (EPA) assessment was performed in order to 
verify system performances and compliance to the 
applicable regulations [EPA]. PEMS estimations were 
compared with the measurements of a certified 
temporary CEMS: 18 test runs lasting 30 minutes each 
at different operating conditions were performed in 
order to calculate PEMS relative accuracy: 

 
FIG. 8 FINAL PERFORMANCES OF THE SYSTEM 

PEMS performances proved to be comparable with the 
temporary CEMS, allowing to obtain the final 
certification. 

Case Study II: PEMS as an Enhancement 
and Back-up to Hardware-based CEMS 

A major European refinery had the necessity to 
increase the up-time of its Emission Monitoring 
System in order to fully comply with local regulation 
in terms of emission data availability. Environmental 
authorities may impose plant shutdown in case 
pollutant concentration data are not available for 
extended periods. The end user chose to install PEMS 
to back-up traditional CEMS installed at two relevant 
units: Fluid Catalytic Cracking and Sulphur Recovery 
Units. 

PEMS system was designed to provide an estimation 
of the following pollutant parameters from each plant: 

 NO; 
 SO2 
 O2; 
 CO; 
 Flue gas flow; 
 Particulate. 
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SRU and FCC processes determined additional 
challenges to the development of an effective 
inferential solution: their operations (and 
consequently the final emission output) are strictly 
related to the characteristics of the processed feeds and 
to the performances of the upstream units which are 
obviously subjected to wide and unforeseeable 
variations.  

Historical process data and emission values were 
extracted, respectively, from the plant historian and 
the emission data acquisition system in order to gather 
a significant set of information suitable for model 
creation: a six month baseline of synchronized data 
were necessary to assess properly the model building 
and validation phases. 

During the model building phase a close interaction 
with plant personnel was instrumental to support 
PEMS developing team in identifying model input 
variables, validating simulations and tests performed 
through PCA and other advanced mathematical 
techniques. Once the design and validation phases 
were completed, the predictive system was 
commissioned and integrated with the existing IT data 
acquisition system, allowing the usage of predicted 
measures for the refinery bubble limit when CEMS are 
out of service. 

 
FIG. 9 PEMS SUBSTITUING OFF-SERVICE ANALYZERS 

The adoption of PEMS as a complement to the 
traditional HW-based system provided the plant with 
a very accurate alternative to traditional HW-based 
analysers, allowing to comply with the provisions of 
the environmental regulation and to extend the 
operating availability of the emission monitoring 
system well above 97.5%. Fig. 9 shows the excellent 
agreement between CEMS and PEMS, and the 
reliability of the latter during the period when CEMS 
had to be shut-off for Periodic Maintenance. 

Conclusions 

Industry focus on emission monitoring is growing 
significantly due to the ever increasing public 
perception and interest on environmental matters and 
to regulating frameworks that are becoming more and 
more stringent. PEMS have shown the capability to 
provide a valuable alternative to traditional HW-based 
analysers, offering comparable level of performances 
and reliability. Plant owners are becoming more and 
more aware of PEMS potentialities and are focusing 
their interests on this technology. However as this 
paper has described, the development of effective 
data-driven solutions for emission monitoring is not so 
straightforward. 

Basing on the experience acquired on several years 
applying inferential technologies for both quality and 
emission monitoring, PEMS implementation at 
production sites is bounded to the fulfilment of these 
three fundamental requirements: 

 Technology: since the model creation phase 
involves the usage of complex mathematical 
and statistical routines, it is required an easy-
to-use software environment to enable the user 
to perform all the engineering steps in an easy 
and effective way. In addition PEMS require to 
be integrated within the plant network and 
automation infrastructure: this means that 
standard interfaces and communication 
protocols shall be provided in order to dialog 
with every system present at site. 

 Know-how: to develop an effective solution, 
engineers should have an extensive 
background encompassing from process 
knowledge to automation and control 
strategies skills, from base instrumentation 
expertise to advanced analytics competences. 

 Local presence: a wide-spread network of 
technicians and engineers is crucial to provide 
support to the users during the different 
phases of a project. In addition, local resources 
can be easily contacted and, if needed, 
mobilized in order to perform upgrades and 
first level services on the system. 

PEMS successful diffusion is mainly conditioned by 
the acknowledgement and the overcoming of these 
potential issues. Some companies structured to 
overcome the hurdles and are now able to deal with 
PEMS challenge on a global scale. 
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