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5.2.2	 Work-hardened copper and copper alloys
5.2.3	 Shapes and types of conductor for power transformers
5.2.3.1	 Rectangular paper-insulated conductors
5.2.3.2	 Enamel covered conductors
5.2.3.3	 Continuously transposed conductors (CTC)
5.2.3.4	 �Epoxy-bonded conductors - Adhesive coating for bonding purpose
5.3	 Insulation materials
5.3.1	 Paper for conductor insulation
5.3.2	 Pressboard

Contents

Short Circuit 0.indd   1 2014-03-25   14:33



II Power Transformers & Short Circuits

5.3.2.1	 Hard (high-density) pressboard
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8.3	 �Basic considerations for calculating design forces, with specific reference to axial forces in core-type 
transformers

8.4	 �ABB simplified procedure for calculation of axial electromagnetic forces for mechanical design purpose 
of core-type transformers

8.4.1	 Winding axial displacements
8.4.2	 Dynamic considerations 
8.4.3	 �Axial forces to be considered for design purpose of winding conductors, internal and external winding 

insulation components, top and bottom press and insulation structures, axial clamping structures
8.4.4	 �Axial forces to be considered for design purpose of electrostatic shield rings and winding spreaders, 

radial spacers with disc- and helical-type windings, and conductor insulation with layer-type windings
8.4.5	 �Axial force to be considered for design purpose of insulation and structural non-metallic components 

common to the limb winding assembly, such as common spacer rings, press rings or press plates, 
winding support blocks, etc. 

8.4.6	 �Design force of yoke clamping structure and tie rods (flitch plates or tie plates)
8.5.	� Design layouts of core-type transformers creating special force problems

9	 MECHANICAL STRESSES
9.1	 General
9.2	� Basic mechanical stresses induced by electromagnetic forces on winding conductors and insulation and 

clamping structures on the occasion of short-circuit events
9.3	 Mechanical stresses in core-type transformers
9.3.1	 Mechanical stresses on winding conductors
9.3.2	� Mechanical stresses on insulation, structural non-metallic components and clamping structures
9.4	 �Approximate formulas for calculation of mechanical stresses on winding conductors, insulation 

components, structural non-metallic components, and clamping structures of core-type transformers
9.4.1	 Calculation of stresses on winding conductors
9.4.1.1	 Mean hoop tensile and mean hoop compressive stress
9.4.1.2	 �Stress due to radial bending of conductors in the span between axial sticks and between spacers 

provided in the middle of hoop compressed windings in order to build axial cooling ducts
9.4.1.3	� Bending stress on disc-type winding crossovers and helical-type winding conductor transpositions
9.4.1.4	� Bending stress on series crossovers between adjacent layers and double-shell helical windings
9.4.1.5	 �Stress due to axial bending of conductors between radial spacers of disc- and helical-type windings
9.4.2	� Calculation of stresses on insulation, non-metallic structural components and clamping structures
9.4.2.1	 Stresses produced by radial forces
9.4.2.2	 Stresses produced by axial forces 
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rings, yoke collars (angle rings), pressboard rings with spacers (spacer rings)
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�– static shield rings and winding spreaders placed at middle-height of a winding 
�– radial spacers with disc- and helical-type windings 
– conductor insulation with layer-type windings

9.4.2.2.3	� Stresses on insulation and structural non-metallic components common to the limb winding assembly, 
such as common spacer rings, press plates, press blocks, etc. 

9.4.2.2.4	 �Stresses on core clamps (clamping beams, yoke clamps), cross bars (horizontal tie-rods) and flitch 
plates (tie plates)

9.5	 Mechanical stresses with shell-type transformers
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9.5.2	 Action of the forces on the magnetic circuit and on the tank
9.5.3	 Mechanical stresses on winding conductors
9.5.4	� Mechanical stresses on insulation, structural non-metallic components and clamping structures
9.6	� Calculation of mechanical stresses on winding conductors and insulation, non-metallic structural 

components and clamping structure(s) of shell-type transformers
9.6.1	 General – Static and dynamic considerations
9.6.2	 Calculation of stresses on winding conductors
9.6.2.1	 �Compressive stress on pancake coil conductors produced by axial forces transferred by the spacers 

fastened to the washers
9.6.2.2	 �Bending stress on pancake coil conductors in the spans between spacers
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9.6.2.3	 �Bending stress on pancake coil conductors in the winding region outside core window
9.6.2.4	� Compressive or tensile stress on conductors originated by radial forces
9.7	� Comparison between two-winding core-type transformers and autotransformers as regards short-circuit 

stresses
9.7.1	 �Consequences associated with high or low values of internal and external short-circuit impedances 

respectively of autotransformers
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10.2	 Failure modes of core-type transformers caused by axial forces 
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10.4	 Failure modes of shell-type transformers
10.4.1	 Failure modes caused by axial forces
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10.5	 Exceptional failure events

11.	 CRITICAL AND ALLOWABLE MECHANICAL STRESS VALUES
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11.2	� Critical and allowable mechanical stress values in power transformers – The approach adopted by ABB 
11.3	� Critical and allowable mechanical stress values in conductors of core-type transformers
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11.3.2	 Critical and allowable mean hoop compressive stress
11.3.2.1	� Allowable mean hoop compressive stress on conductors of disc- and helical-type windings
11.3.2.2	� Allowable mean hoop compressive stress on conductors of layer-type windings
11.3.3	 Allowable thrust force on exit leads to prevent spiralling
11.3.3.1	 Allowable thrust force on exit leads of helical-type windings
11.3.3.2	 Allowable thrust force on exit leads of layer-type windings
11.3.4	 �ABB design rules for allowable thrust force on winding exit leads to prevent spiralling
11.3.5	 Critical axial force for conductor tilting
11.3.5.1	 Allowable axial force to prevent conductor tilting
11.3.6	� Allowable hoop compressive stress on disc winding conductors to prevent over-bending of crossovers 

between disc sections
11.3.7	 �Allowable stress relating to axial bending of conductors in the spans between radial spacers of disc- and 

helical-type windings
11.4	� Allowable compressive, bending and shear stress values on various components of core-type transformers 

(radial spacers, winding spreaders, end rings, common spacer rings, press rings, press plates, winding 
supports, etc. made of hard pressboard and resin-impregnated laminated wood

11.4.1	� Allowable stress values according to IEC Standard 60076-5, Edition 3.0-2006
11.4.2	 Allowable mechanical stress limits for various structural materials
11.5	� Allowable mechanical stresses on conductors of shell-type transformers
11.5.1	 Allowable compressive stress on pancake coil conductors
11.5.2	 �Allowable stress relating to axial bending of pancake coil conductors in the spans between spacers
11.5.3.	� Allowable compressive or tensile stress on conductors originated by radial forces
11.6	� Allowable mechanical stresses on various components of shell-type transformers
11.6.1	� Allowable compressive stress on conductor paper insulation, spacers, washers, and laminated wood 

wedges and shims
11.6.2	� Allowable compressive and bending stresses on core laminations and tensile and bending stresses on 

the steel tank
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12.	� CRITICAL COMPRESSIVE STRESS FOR FREE BUCKLING OF CORE-TYPE TRANSFORMER  
WINDINGS

12.1	 General
12.2	 �Critical and allowable stress values for free buckling of core-type transformer windings: various types of 

approach
12.2.1	� The conventional approach based of the theory of the Strength of Materials 
12.2.2	� Research activity carried out in the former URSS, in particular at VEI (AREI) and OSC-VIT, on transformers 

produced by various domestic manufacturers, together with testing activities carried out at the High-
Power Test Centre located in Togliatti

12.2.2.1	 R&D activity carried out at VEI - Moscow
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12.2.2.4	 Final comments
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12.2.4	� Dynamic approach to the short-circuit behavior of core-type transformer windings subjected to compressive 

stress: the contribution provided by the Advanced Development Engineering of General Electric Large 
Power Transformer Operation – Pittsfield, Mass. USA.
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12.2.4.2	 �Buckling of disc- and helical-type windings - Dynamic considerations
12.2.4.3	 Buckling of layer-type windings - Case of a single layer
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12.2.4.5	 Use of hardened copper and epoxy bonded CTCs
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windings subjected to inward forces 
12.2.5.2	� Critical and allowable mean hoop compressive stress according to ABB design criteria
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13.	 MANUFACTURING ISSUES
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13.2	 Winding manufacture
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arrangements
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procedures
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Detection of faults, evaluation of test results
14.9	� Typical “problems” concerning the pre-established short-circuit test method
14.10	 �Tests of core-type transformers with axial-split winding arrangement
14.11	� Behavior of transformer components and accessories during short-circuit tests and on the occasion of 

faults in the network
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14.12	 �Typical damages observed at the visual inspection after the untanking of the active parts of power 
transformers which did not pass the short-circuit withstand test

14.13	 Learning from short-circuit withstand tests – The ABB experience
14.14	 �A special experience: a failure of dielectric nature occurred on an autotransformer during the short-

circuit withstand test 
14.15	� Transformers for short-circuit testing purposes – Special requirements
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14.16.2	 Winding capacitances
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