Process controller P100/500

(Protronic 100/500) Versatile controller with powerful PLC functionality, extensible with hardware modules

PRO日T

- BUS

Process controller P100/500
 (Protronic 100/500)
 Versatile controller with powerful PLC functionality, extensible with hardware modules

User Manual

Document No. 42/62-50013 EN
Date of issue: 07.03
Revision: 05

Manufacturer:

ABB Automation Products GmbH
Hoeseler Platz 2
42579 Heiligenhaus
Germany

Tel: +49 2056-12-5181
Fax: +49 2056-12-5081
© Copyright 2003 by ABB Automation Products GmbH
We reserve the right to technical amendments
This document is protected by copyright. Information in this document is intended only to assist the user in safe and efficient operation of the equipment. Its contents are not to be reproduced in full or part without prior approval of legal owner.
Content Page
Preface 5
Delivery state 5
Switching on the device 5
1 Important information in advance 6
1.1 Symbols 6
1.2 Conventions used in these user manual 6
2 Application according to designation, general safety instructions 7
2.1 Range of application, application according to designation 7
2.2 Safe operation 7
3 Operation 9
3.1 Operating elements on the P100/500 front panel 9
3.2 LC-Display 10
3.3 Alarm handling 11
3.4 Channel switching 11
3.5 Automatic mode (A) 11
3.6 Manual mode (M) 12
3.7 Setpoints 12
3.8 Ratio controller 13
3.9 Programmer 14
3.9.1 Selecting the program 14
3.9.2 Starting the program 14
3.9.3 Displays during program execution 14
3.9.4 Stopping the program 15
3.9.5 Fast forward/backward 15
3.9.6 Resetting (cancelling) the program 15
3.10 Cascade control 16
3.10.1 Cascade with one slave controller 16
3.10.2 Cascade with several slave controllers (not P100) 17
3.10.3 Combustion control (not P100) 19
3.11 Override-control 20
3.12 DDC-Control (Direct Digital Control) 21
3.13 Stations 22
3.13.1 Manual station 22
3.13.2 Setpoint station 22
3.13.3 Ratio station 23
3.13.4 Positioner 23
3.14 Remote control (Profibus or Modbus) 23
4 Error information on the display 24
5 Menu structure 25
5.1 Indication 2 26
5.1.1 Inputs/outputs 26
5.1.2 Parameter display 27
5.1.3 Effective PID parameter 27
5.1.4 Identification 27
5.1.5 Library identification 27
5.1.6 Version display 28
5.2 Operate 2 28
6 Password protection 29
7 Index 30

Preface

The documentation included in the $\mathrm{P} 100 / 500$ (Protronic 100/500) package consists of the following parts: Commissioning Instructions P100/500 (Protronic 100/500) 42/62-50011
Configuration Instructions P100/500 (Protronic 100/500)/ D500 (Digitric 500) 42/62-50012
User Manual P100/500 (Protronic 100/500) 42/62-50013
Also available on request:
User Manual IBIS-R, List Configuration 42/62-50020
User Manual IBIS-R, Free Configuration 42/62-50030

The User Manual in this manual include all important information for menu-guided configuration and parameterization of the device. All necessary entries can be made locally via the device's front panel operating elements, or remotely from a PC with the IBIS-R configuration and parameterization program.

The configuration options of the device menu are also available in the IBIS-R program. The description of this program is beyond the scope of this user manual.

Delivery state

The devices are delivered off stock and without customized settings. The factory setting is adjusted to the following functions:

- Single-loop continuous controller
- Input: 4 ... 20 mA
- Output: 4... 20 mA
- Language: German

The factory setting and its definitions are described in detail in this user manual.
Customized versions are available upon special request.

Switching on the device

Upon power-on or return of the power after power failure the device automatically performs a selftest of the internal functions. The progress of the test program can be seen on the display. Usually, no special attention has to be paid to this display.

1 Important information in advance

1.1 Symbols

To ensure optimum use of these user manual and a safe use of the assemblies during commissioning, operation and maintenance, please observe the following explanations regarding the symbols used.

Explanations of symbols used.

STOP	Warning	Indicates a risk or potentially hazardous situation which, if not avoided, could result in death or serious injury.
	Caution	Indicates a potentially hazardous situation or alerts against unsafe prac- tices which, if not avoided, may result in injury of persons or property damage.
Notice	Indicates a potentially harmful situation which, if not avoided, may result in damage of the product itself or of adjacent objects.	
	Important	Indicates useful hints or other special information which, if not observed, could lead to a decline in operating convenience or affect the functionality.

Apart from the information in these user manual you must also observe commonly valid safety and accident prevention directives.

If the information contained in these user manual is not sufficient for an application our service organisation will gladly be at your disposal for further information.

Please read these assembly and user manual carefully prior to installation.

1.2 Conventions used in these user manual

<Enter> <\|nd>, <Loop> <Menu>, <Enter>	Keys on the device, with their labels Keys available at all times for operator actions.
[P-W]	Flashing texts or text fragments from the digital display
P-W, A	Texts or text fragments from the digital display
/8/	Reference to numbers in Fig. 3-1
M , A , C	Light-emitting diodes (LEDs) alongside the keys with the same name are lit.
Menu9, Enter	Light-emitting diodes (LEDs) alongside the keys with the same name are lit.
$\mathrm{M} \bullet$, A®, C•	Light-emitting diodes (LEDs) alongside the keys with the same name are not lit.
Menu ${ }^{\text {, Enter }}$	Light-emitting diodes (LEDs) alongside the keys with the same name are not lit.
Sxt	External setpopint source
Hand	Operating mode

2 Application according to designation, general safety instructions

i

Important instructions for your safety! Please read and observe.

2.1 Range of application, application according to designation

P100 (Protronic 100) is a 1-loop compact controller (2nd loop cascade and override) P500 (Protronic 500) is a 1...4-loop compact controller.
The devices are designated for the instrumentation of single control loops and for automating small and medium-sized processes in control engneering.

For proper use it is required to observe the „Technical Data section " in the Data Sheets. You will find the technical data in the data Sheets 10/62-6.11 (P100) and 10/62-6.15 (P500).

Any other use is considered improper.

2.2 Safe operation

The technology of the devices is state of the art.

Prerequisites for safe operation.

Qualification of personnel

Operator

National regulations
Notes and regulations to be observed

The devices are constructed and tested according to EN 61 010-1 = IEC 1010-1 = DIN VDE 0411 Part 1 "Safety Requirements for Electronic Measurement Apparatus" and have left the factory in a safe condition. To maintain this state and guarantee hazard-free operation, all safety instructions in this manual headed by "Warning, Caution or Notice" must be observed.
Otherwise, personnel might be endangered and the mass flow meter itself or other devices and equipment could be damaged.

These user manual contain important information about the safe and proper operation of the equipment. Observing these instructions is mandatory for safe operation.
Failure to observe the instructions can cause hazards for life and limb of the user respectively property damages at the devices or the entire system.

Proper and safe operation of the mass flow meter requires proper transportation and storage, installation and commissioning by qualified personnel, operation within its design limits, and careful maintenance observing all information in these user manual.

Only personnel familiar with the installation, commissioning, and maintenance of similar devices and having the required qualifications for their tasks are allowed to work on the device.

The operator of the plant is fully and solely responsible for proper and workmanlike and, thus, safe operation.
The operator must make sure that the user manual have been understood by the target audience.
A copy of the user manual must be stored in a suitable place at the usage location of the device at all times.
Read these user manual prior to commissioning, decommissioning, maintaining, or repairing a device.
The regulations, standards, and guidelines mentioned in these user manual are valid for Germany. When using the devices in other countries the appropriate and valid national regulations must be observed.

Observe

- the contents of these user manual and references to other documents and their contents
- the safety regulations affixed to the device
- the appropriate and valid safety instructions for the construction and operation of electrical systems
- the regulations and directives regarding explosion protection.

During operation The operator must commission a qualified electrician to inspect and examine the system at defined intervals. The examination intervals must be chosen in such a way that any damages that can be expected can be recognised in time.
The examinations must be performed at least every three years.
The examinations can be skipped if the electrical system is continuously monitored by a responsible engineer

Duties of the operator:

- maintain the system in proper condition
- continuously monitor the system
- execute required maintenance and repair work immediately
- carry out required safety measures

If the devices are used in areas where dusts can cause explosion hazards, you must clean the devices frequently.

Use genuine spare parts, only.

3 Operation

3.1 Operating elements on the P100/500 front panel

Fig. 3-1 Front panel P100/500 (Protronic 100/500)
1 Text line
2 Digital indicator for process value PV
Designation of the process value
Dimension of the process value
Digital indicator: indicates setpoint SP in automatic mode and output value OUT in manual mode

6 Designation of the indicated value
7 Dimension of the value indicated value
8 Number of the control loop displayed, interchanges with display „A" if alarm is output
9 Indicator for programmer activity
10 Remote control indicator
11 Configurable binary messages (flags)
12 Analog display for controlled variable PV
13 Analog display for set point SP
14 Setpoint changeover (see chpt. „Setpoints")
15 Button for incrementing the values indicated in 5, 6 and 7
16 Toggle switch for indicators 5, 6 and 7
17 Button for decrementing the values indicated in 5, 6 and 7
18 Loop transfer switch
19 Mode switch for selecting manual or automatic mode, with indicator LEDs
20 Button for accessing the configuration or parameterization level
The appropriate LED lights up as soon as the operator control level is exited;
at the same time menu symbol is visible in the text line
21 Button for alarm acknowledgement and confirmation of data (configuration and parameters)
22 Up button for incrementing in manual mode
23 Down button for decrementing in manual mode
24 Analog display for controller output „OUT"
25 Srew for fastening display/keypad
The numbers of the individual control and display elements are used consistently throughout the device documentation.

Operation

3.2 LC-Display

The values seen in the "2nd line" column of the table below can be accessed in two different ways:

1. From left to right:

Press <Ind> button (several times).
2. From right to left:

Press and hold <Ind> button

Input circuit/ function	1st line	2nd line Controller									Programmer	
Fixed value (FV)	PV	SP1-SP4		Sxt	SPC	P0x	-	Err	OUT	ALi	PS	PGt
Multi components	PV	SP1-SP4		Sxt	SPC	P0x	-	Err	OUT	ALi		
Multiplication	PV	SP1-SP4		Sxt	SPC	P0x	-	Err	OUT	ALi		
Ratio (RPV, SR)	RPV	SR1-SR3		Rxt	SRC	P0x	SR	Err	OUT	ALi		
Ratio (PV, SR* ${ }^{*}$ C2)	PV	SR1-SR3		Rxt	SRC	P0x	SR	Err	OUT	ALi		
Fixed value/Ratio FV	RPV	SP1	$\begin{aligned} & \text { SR1- } \\ & \text { SR3 } \end{aligned}$	Rxt	SRC	P0x	SR	Err	OUT	ALi		
(RPV, SR) Ratio	RPV	SP1	$\begin{aligned} & \text { SR1- } \\ & \text { SR3 } \end{aligned}$	Rxt	SRC	P0x	SR	Err	OUT	ALi		
Fixed value/ratio \quad FV	PV	SP1	$\begin{aligned} & \hline \text { SR1- } \\ & \text { SR3 } \end{aligned}$	Rxt	SRC	P0x	SR	Err	OUT	ALi		
(PV, SR* ${ }^{*}$ 2) \quad Ratio	PV	SP1	$\begin{aligned} & \text { SR1- } \\ & \text { SR3 } \end{aligned}$	Rxt	SRC	P0x	SR	Err	OUT	ALi		
Extreme value (Max, Min, PV, SP)	PV	SP1-		Sxt	SPC	P0x	-	Err	OUT	ALi		
Load control - air				ne as								
Load control - fuel				e as	d value							
Manual station	PV	-		-	-	-	-	-	OUT	ALi	-	-
Setpoint station	-	SP1-		Sxt	SPC	P0x	-	-	-	-		
Ratio station	PV	SR1-		Rxt	SRC	P0x	SR	-	-	-	PS	PGt
Positioner	PV=OUTfb	SP1-		Sxt	SPC	P0x	-	Err	OUT	ALi		

Table 3-1 Grayed indicators flash. These values are only displayed, but are currently not active.
PV Measured value (with ratio control: measured value in the quotient numerator)

SP1-SP4 Setpoints 1 to 4
Sxt, Rxt
SPC, SRC
P0x
IC2 With ratio control: measured value in the quotation denominator
SR Setpoint active during ratio control ($\mathrm{R}^{*} \mathrm{IC} 2$) or ($\mathrm{R}^{\star} \mathrm{IC} 2$)/(1-R)
Err Control deviation
OUT
OUTfb Position feedback
ALi Alarm limits AL1 to AL4, if enabled
Setpoints are only indicated when they are enabled in the configuration.
External setpoint
Computer setpoint
Programmer setpoint (indicated as P01 to P10)

Programmer:
PS Currently executed program segment PS
PGt Program run time since startup

Display color switchover

All Controllers P100 and P500 with a negativ display (illuminated signs on a dark background, new since July 2003) allow to switch the color of the display between red and green if the firmware of the controller is V1.206 or later. The switchover has to be done in the menu. First of all you have to navigate to any subitem of „Service/Display Unit" (if you see at the „Display Unit" you must press once „Enter").
If you are in this subitems and you press the keys <LOOP> and <IND> at once, the color will immediatelly change. The adjusted color will be stored on non volatile memory.
In the future software library 3.70 (controller firmware $1.3 x x$ or later) the color switchover will be realised as separat item in the menu. The description for this will then be written in the configuration manual.

3.3 Alarm handling

When an alarm or error occurs or an alarm value is
exceeded during an operating cycle,

- a flashing "A" appears in the bottom right corner
of the display,
- the error or alarm source is indicated in the first
line of the display instead of the TAG name,
- the <Enter> LED is lighted.
Note
Unconfirmed operating instructions displayed in
the text line have priority over error codes. As long
as the operating instruction is still unconfirmed, the
alarm is only indicated by the flashing "A". Alarm
acknowledgement is not possible in this situation!
Displaying the exceeded alarm value
z-19000

3.4 Channel switching

If several controllers are configured in one device, <Loop> can be used to switch the control cycles. There are up to 4 Loops (P100 max. 2 loops).

3.5 Automatic mode (A)

Possible operator actions

When the controller is switched over from manual to automatic mode, the active setpoint is seen on the digital indicator. Other values can be selected by pressing the <Ind> button.

<M/A/C>	Switch over from manual to automatic mode
$<$ SP-w $>$	Switch over the setpoint (if configured)
$<\boldsymbol{\nabla}><\boldsymbol{\Delta}>$	Increment/decrement the setpoint
$<$ Menu>	Switch over to another menu level

3.6 Manual mode (M)

$\begin{aligned} & \text { Fig. 3-4 } \\ & \text { z-19020 } \end{aligned}$		The functions of the $<\boldsymbol{\Delta}\rangle$ and $\langle\boldsymbol{\nabla}\rangle$ buttons are defined either through configuration or, in case of the step controller, through the appropriate wiring. Usually, a more critical state - e.g. a higher furnace temperature - is reached by pressing the $<\boldsymbol{\Delta}>$ button. After the controller has been changed over from automatic to manual mode, the output variable OUT is shown by the digital indicator.
	Output OUT is indicated	In the case of controllers with double output (split range or heating-off-cooling) the display $0 . . .100 \%$ corresponds to the full output range of both outputs.
		Example: Heating-off-cooling (with normal characteristic curve) OUT $=0 \%$ corresponds to 100% cooling OUT $=50 \%$ corresponds to 0% cooling and 0% heating OUT $=100 \%$ corresponds to 100% heating
		Possible operator actions
		Increment/decrement the output signal Press and hold <Enter>, additionally press control output jumps to end value -5 \% Press and hold <Enter>, additionally press control output jumps to end value $+105 \%$
		$<\boldsymbol{\nabla}><\boldsymbol{A}>$ SP indicator: increment/decrement the setpoint $<$ M/A/C> Switch over between manual, automatic mode, cascade
		<SP-w> Switch over the setpoint (if configured) <Menu> Select another menu level

3.7 Setpoints

The <SP-w> button can be used to toggle between several setpoint sources, provided that the controller has been configured accordingly.
Possible setpoint sources are:

- setpoints SP1 to SP4 (or ratio setpoints SR1 to SR3) that can be selected on the device by pressing the $<\boldsymbol{\Delta}>$ or $\langle\boldsymbol{\nabla}>$ button or
- an external setpoint Sxt (Rxt) via analog input or
- a computer setpoint SPC (SRC) via serial interface or
- a programmer with 10 programs P01 to P10

Display in field /6/:

For ratio control:

Unconfigured setpoints are suppressed.
Pressing the <SP-w> button will call up the current setpoint for display by the digital indicator, independent of the number of available setpoints.
The setpoint is indicated immediately, but first flashes and becomes active with a delay of 3 seconds. This means that only the last setpoint selected becomes active when the setpoints are switched over quickly.

Operation
3.8 Ratio controller

		When the PV and SP displays are configured, the calculated setpoint of flow A is indicated in the fields $/ 5 /$, /6/ and $/ 7 /$. The fields $/ 2 /, / 3 /$, /4/ indicate the measured actual value of flow A.
Fig. 3-7	Process value $P V=$ flow A and SP = setpoint flow A	
		Press the <Ind> button to call up the SR1value in the display fields (/5/, /6/, /7/) and then change it.
Fig. 3-8 z-19005	SR1 is adjustable	

3.9 Programmer

A programmer can be configured in the controller. Up to 10 different programs with 15 segments each can be saved. Refer to „Configuration instruction" 42/62-50012 for details about setting the values.

3.10 Cascade control

3.10.1 Cascade with one slave controller

Fig. 3-20 Cascade with a slave controller

Fig. 3-21 Slave controller TICA 100-1 display, (z-19020) Controller output in display

Cascade operation

Fig. 3-22 Master controller TICA 100-2 (z-19021)

Fig. 3-23 Slave controller TICA 100-1 (z-19022)

Operating mode switching
Switching is always in the sequence below:

Manual operation applies only to the slave controller. Both in manual and automatic mode the master controller is always synchronised in such a manner that the switchover can take place smoothly.

When switching, the selected operating mode does not come into effect until 3 s have elapsed since the last key press.

At the same time as the operating mode is changed, the display also switches to the more important loop. It is always possible to switch manually to the other loop.

Manual	\rightarrow automatic	on Loop 1
Automatic	\rightarrow cascade	on Loop 2
Cascade	\rightarrow manual	on Loop 1
Cascade	\rightarrow automatic	on Loop 1

OUT always shows the actual output to the final control element or the final control element position reported back.

By switching from automatic to cascade the slave controller switched to external set point, the master controller's output. The transition from automatic to cascade is performed smoothly as the master controller's output is synchronised in such manner that the slave controller is not subjected to any control deviation at the moment of switchover.

When changing from automatic to cascade the system automatically switches to loop 2 , the master controller

Control actions allowed

Display	Keys/Operating mode	Master controller	Slave controller
	Manual M\%		
	<SP-w>	+	+
Sxt		+	+
	<M/A/C>	operates on slave contr.	+
OUT	< $\boldsymbol{\text { < }}$ \ll ${ }^{\text {l }}$ >	-	+
	Automatic A\%		
	<SP-W>	+	+
Sxt	< $\boldsymbol{\Delta}$ > < ${ }^{\text {l }}$ >	+	+
	<M/A/C>	operates on slave contr.	+
OUT	< $\boldsymbol{\text { s }}$ > < ${ }^{\text {/ }}$ >	-	-
	Cascade C\%		
	<SP-w>	+	-
Sxt		+	-
	<M/A/C>	operates on slave contr.	+
OUT	< $\boldsymbol{\Delta}><\boldsymbol{\nabla}$ >	-	-

[^0]
3.10.2 Cascade with several slave controllers (not P100)

General

The integral controllers in a device in a cascade with several slave controllers have their own mode selector switches which are largely independent.
Thus the operation of such controllers is similar to the operation of the equivalent cascade comprising individual controllers.
For the master controller there is the additional operating mode TRACK in which none of the three LEDs on the $<\mathrm{M} / \mathrm{A} / \mathrm{C}>$ key is lit. This operating mode is imposed through the slave controller's operating mode and cannot be changed at the master controller.

Cascade with two slave controllers with the same set point.

Fig. 3-24

Fig. 3-25
(z-19027)

Fig. 3-26 (z-19023)

The master controller gives the same set point to both slave controllers. The controller output (OUT = $0 . . .100 \%$) produces the set point range configured in the slave controllers.
The controller output is not displayed on the master controller.
Operating modes available:
Open cascade with

- Manual operation in both slave controllers or
- one slave controller in manual and one in automatic mode or
- both slave controllers in automatic mode

Closed cascade with

- both slave controllers in automatic mode
- just one slave controller in automatic mode

Important

When the first slave controller is switched to cascade the controller is switched to manual. At first the output signal altered, but this can be done manually.
Where there is a large difference between set points following message is displayed before switching over (Fig. 3-25).
A set point jump can be avoided by:

- Resetting: first set both controllers to automatic mode and then adjust set points to equal.
- Defining a set point ramp

As long as one slave controller is still set to automatic, when the master controller is switched to automatic the following message is issued (Fig. 3-26).

After this message is acknowledged by pressing
<Enter>, the intended switchover is performed. The master controller then operates on only one slave controller.
When slave controllers are reset from cascade to automatic the master controller retains its operating mode as long as one slave controller remains in cascade.

Operating modes

Loop 1: Slave controller 1	Loop 2: Slave controller 2	Loop 3: Master controller
Manual	Manual	Track
Automatic	Manual	Track following slave controller 1
Manual	Automatic	Track following slave controller 2
Automatic	Automatic	Track average
Cascade	Manual or Automatic	Manual or Automatic
Manual or Automatic	Cascade	Manual or Automatic
Cascade	Cascade	Manual or Automatic

Table 3-2 Track following slave controller: The slave controller's setpoint sychronises the master controller Track average: The master controller is synchronised to the average of the slave controller's setpoints.

Cascade with two slave controllers and ratio station (not P100)

Fig. 3-27 Example:
Loop 3 temperature controller
Loop 2 air flow rate controller Loop 1 gas flow rate controller

Fig. 3-28
(z-19027)

Fig. 3-29
(z-19023)

A ratio station is connected between the master controller and the slave controllers. Using an adjustable ratio, this distributes the master controller's output signal to the two slave controllers as set points.

Operating modes available:
Open cascade with

- Manual operation in both slave controllers or
- one slave controller in manual and one in automatic mode or
- both slave controllers in automatic mode

Closed cascade with

- both slave controllers in automatic mode
- just one slave controller in automatic mode

The ratio station is always in automatic mode, and the input signal apportioned to both outputs.

Important
When the first slave controller is switched to cascade the master controller is switched to manual. At first the output signal is not altered, but this can be done manually.

If the set point total is $>100 \%$, before actually switching over the system issues the message: Fig. 3-28.

A set point jump can be avoided by:

- Resetting: first set both controllers to automatic mode and then adjust set points to equal.
- Defining a set point ramp

As long as one slave controller is still set to automatic, when the master controller is switched to automatic the following message is issued: Fig. 3-29.
After this message is acknowledged by pressing <Enter>, the intended switchover is performed. The master controller then operates on only one slave controller.
When slave controllers are reset from cascade to automatic the master controller retains its operating mode as long as one slave controller remains in cascade.

Operating modes

Loop 1: Slave controller 1	Loop 2: Slave controller 2	Loop 3: Master controller
Manual	Manual	Track not alterable
Automatic: SP = SP1i	Manual	Track: SP1i/SR
Manual	Automatic: SP = SP2i	Track: SP2i/(1-SR)
Automatic: SP = SP1i	Automatic: SP = SP2i	Track: SP1i + SP2i <100 \%
Cascade	Manual or Automatic	Manual or Automatic
Manual or Automatic	Cascade	Manual or Automatic
Cascade	Cascade	Manual or Automatic

Table 3-3
SP1i = current set point on controller 1
SP2i = current set point on controller 2
Track SP1i/SR:
The master controller's output is synchronised to the value of SP1i/SR as long as this value is less than 100 \%.
Track SP2i/(1-V):
The master controller's output is synchronised to the value of SP2/(1-SR) as long as this value is less than 100%.
Track SP1i +SP2i < 100\%
The master controller's output is synchronised to the value of SP1i + SP2 as long as this value is less than 100 \%.

3.10.3 Combustion control (not P100)

(Load control)
Load control ensures that as the load changes, a
shortage of air is never allowed to occur.
Operating modes available:
Open cascade with
$-\quad$ Manual operation in both slave controllers or
-
one slave controller in manual and one in auto-
matic mode or
both slave controllers in automatic mode

Operating modes

Loop 1: Slave controller 1	Loop 2: Slave controller 2	Loop 3: Master controller
Manual	Manual	Track
Automatic: Fixed value A, SP= SP1i	Manual	Track: SP1i/SR
Manual	Automatic: Fixed value G, SP= SP2i	Track: SP2i
Automatic: Fixed value A, SP= SP1i	Automatic: Fixed value G, SP= SP2i	Track: A/R
Cascade	Automatic	Manual
Automatic	Cascade	Manual
Cascade	Cascade	Manual or Automatic

Table 3-4 Track:
Controller is locked in Track mode.
Track A/R:
The controller output is synchronised to the air/ratio value
A = Air
$\mathrm{G}=\mathrm{Gas}$ (fuel)
$\mathrm{R}=$ Ratio

3.11 Override-control

(Limiting control)

Fig. 3-33 1 Override controller
Override control of pressure P
Primary controlled variable: flow F
In override control one primary controlled variable is managed. One or more additional controllers make sure that the (limiting) set points are neither over- nor under-stepped. All the controllers here access a single final control element.

Example (Fig. 3-32):
Primary controlled variable: Flow
Limitation of: Pressure
Temperature
Current drain by the compressor drive

Operating modes available:
The mode selector switches only ever affects loop 1. Every time there is a mode change the system switches automatically to loop 1.

The operation of the limiting controllers is restricted to setting set points.

Manual operation (M)
The main controller is in manual mode, the limiting controller(s) is/are in automatic mode.
The limiting controllers can't be switched to manual.
Manual operation is carried out only through loop 1. The limiting controllers are not involved.

Automatic (A)
The main controller is in automatic and is the only unit working on the final control element. The limiting controllers are not involved.

Cascade (C)
The main controller and limiting controllers are engaged.

If a limiting controller should become temporarily inoperative its set point must be altered to the limit of the range and thus rendered inoperative.

3．12 DDC－Control（Direct Digital Control）

With DDC control a supervisory computer provides for control．In case of a computer failure the Digitric controller bumplessly takes over control via interface RS 485 （MODBUS RTU）or PROFIBUS DP．
The superimposed computer writes via the bus on the variables Lx＿YCOMPUTER of the respective loop X and，thus，determines the controller output．In case the superimposed computer should fail，the con－ troller itself bumplessly takes
Possible operating modes
－LED is off
－LED is flashing with 0,5 to 1 Hz
$\otimes \quad$ LED is flashing with 2 Hz
LED is on
CR The computer is ready，i．e．there is regular data traffic via the serial interface．
M，A，C LEDs to the side of button 19 on the front panel（Fig．3－1）

DDC configuration with manual backup mode

Operating mode	LED			CR
	M	A	C	
Manual	涘	－	\bigcirc	0
Automatic	\bullet	察	\bullet	0
DDC	disabled			0
Manual	茭	\bigcirc	\odot	1
Automatic	－	为	\odot	1
DDC	嫁	\bigcirc	湤	1
Backup mode				
M－backup	嫁	\bullet	\otimes	0
M－backup	资	\bullet	－	1

DDC configuration with automatic backup mode

Operating mode	LED			CR
	M	A	C	
Manual	泬	\bigcirc	\bigcirc	0
Automatic	\bullet	楽	\bullet	0
DDC	disabled			0
Manual	湤	\bigcirc	\odot	1
Automatic	\bullet	洮	\odot	1
DDC	\bullet	为	荌	1
Backup mode				
M－backup	\bullet	次	\otimes	0
M－backup	\bullet	为	\odot	1

DDC configuration

with cascade backup mode

Operating mode	LED			
	M	A	c	CR
Manual	效	－	\bullet	0
Automatic	\bullet	济	\bullet	0
Cascade	\bullet	\bullet	苑	0
DDC	disabled			0
Manual	湤	\bullet	\odot	1
Automatic	\bullet	菏	\odot	1
Cascade	\bullet	\odot	资	1
DDC	\bullet	峧	摂	1
Backup mode				
M－backup	\bullet	\otimes	为	0
M－backup	\bullet	\odot	资	1

No computer ready signal $(\mathbf{C R}=0)$
As long as no computer ready（CR）signal is available，the controller cannot be switched to DDC mode．
Computer ready（ $\mathbf{C R}=1$ ）
The changeover to DDC operation is enabled．In＂manual＂mode LED A flashes with low frequency．In ＂automatic＂backup mode LED M flashes with low frequency．
It is possible to switch from DDC operation to manual or automatic mode at any time．

Computer not ready

If the CR signal is not received any longer，the controller takes over control in the configured mode． In backup mode＂manual＂LED A flashes with increased frequency．
In backup mode＂automatic＂LED M flashes with increased frequency．
It is not possible to switch over to another mode（non－DDC）．
The LED of the disabled mode flashes．The LED of the active mode is lighted permanently．

3.13 Stations

3.13.1 Manual station

3.13.2 Setpoint station

3.13.3 Ratio station

3.13.4 Positioner

The positioner is a motorized valve controller (step controller) which tracks the actuator position (valve position) to an external setpoint. This task requires position feedback.
The returned position is indicated on the controller as the process value PV and the position feedback OUT.

3.14 Remote control (Profibus or Modbus)

Only remote control	The [Rem] indicator is active. The control buttons on the controller front panel are disabled, with some exceptions. Possible operator actions <Ind> Permits to switch over the display <Menu> Accesses the configuration menu, among other reasons to start remote control.
Fig. 3-38 $\mathrm{z-19035}$ Remote control is active	Press <Menu> to switch to the menu level from which remote control can be disabled.

4 Error information on the display

Operating notes	Meaning	Configuration
locked by BI	Access to parameterization, configuration, service, and supervisor level is blocked through a binary input.	I-B02-Q01 I-B02-Q02
generate	After configuration the instrument is busy with the program generation.	
locked for ST	Self-tuning is blocked for this control loop. It can only be released via the configuration.	L1- B01-Q05
no adjustment possible	The selected input has not been activated for the type intended for the adjustment (e. g. no Pt100 input). This message is displayed for mA position feedback or remote transmitters fed with con- stant current, if the difference between start and end value is smaller than 10\%.	
no adjustment	The configured module does not permit an adjustment respectively does not require an ad- justment.	
local only	The instrument has only been configured for local operation. It cannot be switched to ex- clusive remote operation.	I-B04-Q01
remote only	The instrument has been configured for remote operation. For local operation it must be enabled via menu "Operate 2" or via the configuration.	I-B04-Q01

Table 4-1 Error information

Error message	Cause	Remedy
Error xxxx	An error occurred while processing the pro- gram. The number is intended as help for the ser- vice.	If this message does not disappear within a few seconds you can try to initiate a restart by switching off the supply voltage for ap- proximately 60 s. If the error persists, the factory settings must be restored via the "supervisor" menu or the configuration must be reloaded via IBIS_R.
IP stopped!	Processing has been temporarily stopped. This error occurs during downloading.	If this message does not disappear within a few seconds after downloading you can try to initiate a restart by switching off the supply voltage for approximately 60 s. If the error persists, the factory settings must be restored via the "supervisor" menu or the configuration must be reloaded via IBIS-R .
Slot X!	When downloading a configuration the configu- ration request a module that is located in the in- strument.	Insert the correct module in slot Xand register the module (I-B11-Q01 = 1). Note: X = 1 to 4
invalid response	The response entered may be incompati- ble with other existing settings. Enter is activated together with this mes- sage.	Get the invalid response on the display with <Enter> and change it.
Card fault	There was an attempt to read or write the configuration on a defective memory card.	Try again. If fault persits, use another memory card. No M-card There was an attempt to read or write the configuration of a memory card which is not available. Push memory card into the terminal provided on device.
Confi. incomplete	The configuration stored on the memory card is incomplete.	There was an attempt to write the configu- ration on a write-protected memory card.
write protection		

Table 4-2 Error information

5 Menu structure

Fig. 5-1 Menu structure
1 Confirm selection, go down one menu level
2 Change or confirm input, go down one menu level
Go up one menu level without change(press $3 \mathrm{~s} \rightarrow$ main operating level)
From main operating level to menu
Move sideways within one menu level

Indication 2

In this menu you can view all parameters, measuring values, and settings of the controller, but you cannot change them (see also chapter 5.1 "Indication 2" on page 26).

Operate 2
In this menu you can toggle between local and remote operation.
(See also chapter 5.2 "Operate 2" on page 28.)

Selftune

Self-tuning is enabled in the configuration menu under
CONFI / LOOP1 / B01 / Q05

After enabling it can be used without knowing a password .
(See Configuration Instruction 42/62-50012.)

Parameter

This menu contains the settings of the parameters required for the configured functionality. During parameterization the control action stays on. (See Configuration Instruction 42/62-50012.)

Configuration

This menu contains sub-menus for instrument function definition (e. g. actuator output type). During configuration the control action is switched off (actuator outputs are frozen).
(See Configuration Instruction 42/62-50012.)

Service

This menu contains sub-menus for calibration, Adjustment, etc. (see also „Configuration Instruction" 42/ 62-50012)
Calibration is only required in exceptional cases. If it is not executed in an expert manner, the instrument is rendered unusable.

Supervisor

This menu contains the sub-menus: Master reset, Plausibility, and Template. (See „Configuration Instruction" 42/62-50012.)

5.1 Indication 2

Example navigation in menu „Indication 2"

Fig. 5-2 Navigation in menu "Indication 2"

5.1.1 Inputs/outputs

Fig. 5-3 z-19081		In this menu you can display all binary and analog inputs and outputs used in the application. Press <Enter> to switch to the next menu level. The value of analog input AI01 is displayed in the first line of the selected scale.
	Start menu for displaying inputs and outputs	The bottom line shows the PV. In simple control
		tasks with only one measuring value both values are identical, possibly with different decimal point position. Press $<\boldsymbol{\Delta}>$ and $<\boldsymbol{\nabla}>$ to select the desired input or output.
Fig. 5-4 z-19082	Analog input AIO1 $=250,5 \mathrm{mbar}$	Currently, binary input BI01 has the value logical "1".
	\qquad	
Fig. 5-5 z-19083	Binary input BIE01 = 1	

5.1.2 Parameter display

5.1.3 Effective PID parameter

5.1.4 Identification

Fig. 5-8 The display shows an example of the z-19065 information when called from Loop 1.

5.1.5 Library identification

5.1.6 Version display

5.2 Operate 2

6 Password protection

Cancelling the password input

Cancel with<Esc>

Forgotten password

If a password is no longer known, the password can be reset by temporarily rearranging a jumper within the instrument. For this action the control loop must be switched off.

7 Index

Seite
A
Alarm handling 11
Automatic mode 11
C
Cascade control 16
Cascade with one slave controller 16
Cascade with several slave controllers 17
Cascade with two slave controllers and ratio station 18
Channel switching 11
Combustion contro 19
D
DDC-Control 21
Direct Digital Control 21
Display color switchover 10
E
Effective PID parameter 27
Error information on the display 24
FForgotten password29
IIdentification27
Indication 2 25, 26
Inputs/outputs 26
L
LC-Display 10
Library identification 27
Limiting control 20
Load control 19
M
Manual mode 12
Manual station 22
Menu structure 25
N
navigation in menu „Indication 2" 26
0
Operate 2 25, 28
Operating elements 9
Operating modes 18
Operation 9
Override-control 20
P
Parameter display 27
Password protection 29
Positioner 23
Programmer 14
R
Ratio controller 13
Ratio station 23
Remote control 23SSelftune25
Service 25
Setpoint station 22
Stations 22
Supervisor 25
Symbols 6
V
Version display 28

The Industrial ${ }^{1 T}$ wordmark and all mentioned product names in the form $X X X X X X^{\top}$ are registered or pending trademarks of $A B B$.

ABB has Sales \& Customer Support
expertise in over 100 countries worldwide.
© ABB 2003
www.abb.com

ABB Automation Products GmbH
Hoeseler Platz 2
42579 Heiligenhaus
Germany
Tel: +49 2056 12-5181
Fax: +49 2056 12-5081
The Company's policy is one of continuous product mprovement and the right is reserved to modify the information contained herein without notice.

Printed in the Fed. Rep. of Germany (07.03)
© ABB 2003

[^0]: + operative, can be changed, - inoperative in this operating mode

