

ROBOTICS

Product specification

IRB 120

Trace back information: Workspace 23A version a7 Checked in 2023-03-09 Skribenta version 5.5.019

Product specification IRB 120

IRC5

Document ID: 3HAC035960-001

Revision: W

The information in this manual is subject to change without notice and should not be construed as a commitment by ABB. ABB assumes no responsibility for any errors that may appear in this manual.

Except as may be expressly stated anywhere in this manual, nothing herein shall be construed as any kind of guarantee or warranty by ABB for losses, damage to persons or property, fitness for a specific purpose or the like.

In no event shall ABB be liable for incidental or consequential damages arising from use of this manual and products described herein.

This manual and parts thereof must not be reproduced or copied without ABB's written permission.

Keep for future reference.

Additional copies of this manual may be obtained from ABB.

Original instructions.

© Copyright 2010-2023 ABB. All rights reserved. Specifications subject to change without notice.

Table of contents

	Over	view of this specification	′		
1	Desc	ription	11		
	1.1	Structure	11		
		1.1.1 Introduction to structure	11		
		1.1.2 The robot	13		
	1.2	Standards	15		
		1.2.1 Applicable standards	15		
	1.3	Installation	16		
		1.3.1 Operating requirements	17		
		1.3.2 Mounting the manipulator	18		
	1.4	Load diagram	21		
		1.4.1 Introduction to load diagrams	21		
		1.4.2 Load diagrams	22		
		1.4.3 Maximum load and moment of inertia for full and limited axis 5 (center line down)			
		movement	24		
	1.5	Mounting of equipment	26		
		1.5.1 Holes for mounting extra equipment	27		
	1.6	Calibration	30		
		1.6.1 Calibration methods	30		
		1.6.2 Fine calibration	31		
	1.7	Maintenance and trouble shooting	32		
		1.7.1 Introduction to maintenance and trouble shooting	32		
	1.8	Robot motion	33		
		1.8.1 Working range and type of motion	33		
		1.8.2 Performance according to ISO 9283	35		
		1.8.3 Velocity	36		
		1.8.4 Robot stopping distances and times	37		
	1.9	Customer connections	38		
		1.9.1 Introduction to customer connections	38		
2	Spec	ification of variants and options	39		
	2.1	Manipulator	39		
	2.2	Floor cables	42		
3		ssories	43		
	3.1	Introduction to accessories	43		
Ind	ndex				

Overview of this specification

About this product specification

It describes the performance of the manipulator or a complete family of manipulators in terms of:

- · The structure and dimensional prints
- · The fulfilment of standards, safety and operating requirements
- The load diagrams, mounting of extra equipment, the motion and the robot reach
- The specification of variants and options available

Usage

Product specifications are used to find data and performance about the product, for example to decide which product to buy. How to handle the product is described in the product manual.

Users

It is intended for:

- · Product managers and product personnel
- · Sales and marketing personnel
- Order and customer service personnel

References

Reference	Document ID
Product specification - Controller IRC5 IRC5 with main computer DSQC1000.	3HAC047400-001
Product specification - Controller software IRC5 IRC5 with main computer DSQC1000 and RobotWare 5.6x.	3HAC050945-001
Product specification - Controller software IRC5 IRC5 with main computer DSQC1000 and RobotWare 6.	3HAC050945-001
Product specification - Robot stopping distances according to ISO 10218-	3HAC048645-001
Product manual - IRB 120	3HAC035728-001
Operating manual - IRC5 with FlexPendant	3HAC050941-001
Product specification - Robot user documentation, IRC5 with RobotWare 6	3HAC052355-001

Revisions

Revision	Description	
-	New product specification	
Α	Options 431-1 and 239-1 added	
B Standards updated, minor corrections		
C Size of washer for mounting the manipulator adjusted		

Continues on next page

Continued

Revision	Description	
D	Table for ambient temperature is adjusted	
E	Clean Room option added	
	Machinery directive updated	
F	New robot variant added	
_	General corrections Added data for extended range of movement of axis 6	
G	 Added data for extended range of movement of axis 6. Changed the illustration that shows the mounting surface of the tool flange. 	
Н	Minor corrections and updates	
J	Minor corrections and updates	
К	Text for ISO test adjusted	
	 Robot stopping distances and times for category 0 and category 1 stops are moved to a separate document, Product specification - Robot stopping distances according to ISO 10218-1. 	
L	 The list of applicable safety standards is updated. The IRB 120 does not comply with the CSA/UL standards, see Applicable standards on page 15. 	
	Minor corrections/update	
М	Minor corrections/update	
N	Clean Room option added	
	Food grade lubrication option added Axis Calibration method added	
P	Published in release R17.1. The following updates are done in this revision: • Minor corrections/update • Restriction of Load diagram added • Add options of Connection of parallell communication	
Q	Published in release R17.2. The following updates are done in this revision: Change the drawing of Load diagrams. Updated list of applicable standards.	
R	Published in release R18.2. The following updates are done in this revision: • Update customer connector description.	
S	Published in release R19B. The following updates are done in this revision: • 435-109 IRB 120T-3/0.6 phased out. • Updated information about <i>Absolute Accuracy</i> .	
Т	Published in release R19C. The following updates are done in this revision: Minor change in Ambient temperature section. Note added about need to calibrate if the robot is other than floor mounted.	
U	Published in release R20D. The following updates are done in this revision: Remove section Absolute Accuracy. Warranty section updated.	

Continues on next page

Continued

Revision	Description
V	Published in release 21B. The following updates are done in this revision: • Modified the air hose diameter description. • Text regarding fastener quality is updated. • Removed Axis resolution.
W	Published in release 23A. The following updates are done in this revision: • Add RAL code in manipulator color. • Minor changes.

1 Description

1.1 Structure

1.1.1 Introduction to structure

General

The IRB 120 is one of ABB Robotics latest generation of 6-axis industrial robot, with a payload of 3 kg, designed specifically for manufacturing industries that use flexible robot-based automation, e.g. 3C industry.

The robot has an open structure that is especially adapted for flexible use, and can communicate extensively with external systems.

Clean room robots

xx1100000959

Particle emission from the robot fulfill Clean room class 5 standard according to DIN EN ISO 14644-1.

Clean room robots are specially designed to work in a clean room environment. According to IPA test result, the robot IRB 120 is suitable for use in Clean Room environment.

Clean room robots are designed in order to prevent from particle emission from the robot. For example is, frequent maintenance work possible to perform without cracking the paint. The robot is painted with four layers of polyurethane paint. The last layer being a varnish over labels in order to simplify cleaning. The paint has been tested regarding outgassing of Volatile Organic Compounds (VOC) and been classified in accordance with ISO 14644-8.

Classification of airborne molecular contamination, see below:

Parameter			Outgassing amount			
Area (m ²)	Test duration (s)	Temp (°C)	Performed test	Total detected (ng)	Normed based on 1m ² and 1s(g)	Classification in accordance to ISO 14644-8
4.5E-03	3600	23	TVOC	2848	1.7E-07	-6.8
4.5E-03	60	90	TVOC	46524	1.7E-04	-3.8

Classification results in accordance with ISO 14644-8 at different test temperatures.

Food grade lubrication

The robot has food grade lubrication (NSF H1) as an option. The protection type for robots with food grade lubrication is Clean Room.

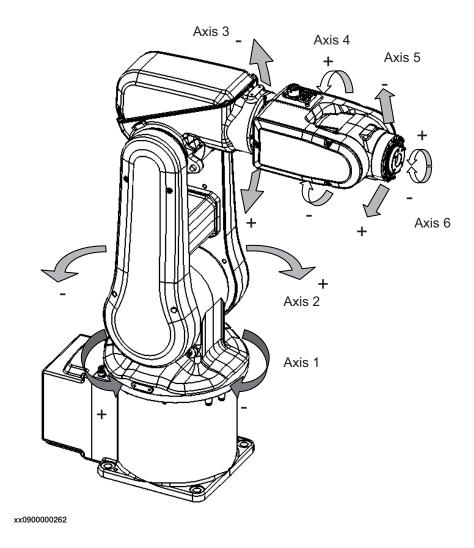
Continues on next page

1.1.1 Introduction to structure

Continued

Operating system

The robot is equipped with the IRC5 Compact or IRC5 (Single cabinet) controller and robot control software, RobotWare. RobotWare supports every aspect of the robot system, such as motion control, development and execution of application programs, communication etc. See *Product specification - Controller IRC5 with FlexPendant* and *Product specification - Controller software IRC5*.


Safety

Safety standards valid for complete robot, manipulator and controller.

Additional functionality

For additional functionality, the robot can be equipped with optional software for application support - for example gluing and welding, communication features - network communication - and advanced functions such as multitasking, sensor control etc. For a complete description on optional software, see *Product specification - Controller software IRC5*.

Manipulator axes

1.1.2 The robot

1.1.2 The robot

General

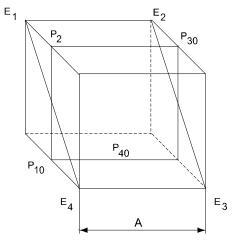
The IRB 120-3/0.6 is available in two versions and both can be mounted on floor, inverted or on wall in any angle (tilted around X or Y axis).

Robot type	Handling capacity (kg)	Reach (m)
IRB 120	3 kg	0.58 m

Manipulator weight

Data	Weight
IRB 120-3/0.6	25 kg

Other technical data

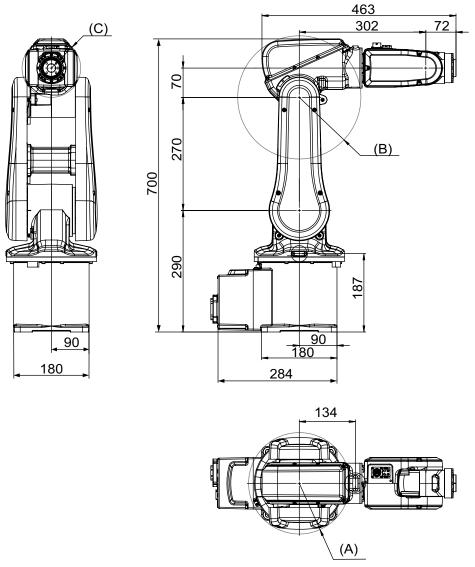

Data	Description	Note
Airborne noise level		< 70 dB (A) Leq (acc. to the working space Machinery directive 2006/42/EG)

Power consumption

Path E1-E2-E3-E4 in the ISO Cube, maximum load.

Type of movement	Power consumption (kW)	
ISO Cube Max. velocity	0.24 kW	

Robot in 0 degree position	IRB 120
Brakes engaged	0.095 kW
Brakes disengaged	0.173 kW


xx0900000265

Position	Description
A	250 mm

Continues on next page

1.1.2 The robot *Continued*

Dimensions IRB 120-3/0.6

xx0900000256

Position	Description	
Α	Minimum turning radius axis 1 R=121 mm	
В	Minimum turning radius axis 3 R=147 mm	
С	Minimum turning radius axis 4 R=70 mm	

1.2.1 Applicable standards

1.2 Standards

1.2.1 Applicable standards

Note

The listed standards are valid at the time of the release of this document. Phased out or replaced standards are removed from the list when needed.

General

The product is designed in accordance with ISO 10218-1:2011, Robots for industrial environments - Safety requirements -Part 1 Robots, and applicable parts in the normative references, as referred to from ISO 10218-1:2011. In case of deviations from ISO 10218-1:2011, these are listed in the declaration of incorporation which is part of the product delivery.

Normative standards as referred to from ISO 10218-1

Standard	Description
ISO 9283:1998	Manipulating industrial robots - Performance criteria and related test methods
ISO 10218-2	Robots and robotic devices - Safety requirements for industrial robots - Part 2: Robot systems and integration
ISO 12100	Safety of machinery - General principles for design - Risk assessment and risk reduction
ISO 13849-1:2006	Safety of machinery - Safety related parts of control systems - Part 1: General principles for design
ISO 13850	Safety of machinery - Emergency stop - Principles for design
IEC 60204-1	Safety of machinery - Electrical equipment of machines - Part 1: General requirements

Other standards used in design

Standard	Description
ISO 9787:2013	Robots and robotic devices Coordinate systems and motion nomenclatures
IEC 61000-6-2	Electromagnetic compatibility (EMC) – Part 6-2: Generic standards – Immunity standard for industrial environments
IEC 61000-6-4	Electromagnetic compatibility (EMC) – Part 6-4: Generic standards – Emission standard for industrial environments
ISO 13732-1:2006	Ergonomics of the thermal environment - Part 1
IEC 60974-1:2012 ⁱ	Arc welding equipment - Part 1: Welding power sources
IEC 60974-10:2014 ⁱ	Arc welding equipment - Part 10: EMC requirements
ISO 14644-1:2015 ⁱⁱ	Classification of air cleanliness
IEC 60529:1989 + A2:2013	Degrees of protection provided by enclosures (IP code)

Only valid for arc welding robots. Replaces IEC 61000-6-4 for arc welding robots.

ii Only robots with protection Clean Room.

1 Description

1.3 Installation

1.3 Installation

General

IRB 120 is adapted for normal industrial environment. An end effector, weighing a maximum of 3 kg, including payload, can be mounted on the robot's mounting flange (axis 6). Other equipment, weighing a maximum of 0.3 kg, can be mounted on the upper arm. For more information about mounting of extra equipment, see Figure on next page.

1.3.1 Operating requirements

1.3.1 Operating requirements

Protection standard

Protection standard	IEC529
All variants, manipulator	IP30

Explosive environments

The robot must not be located or operated in an explosive environment.

Working range limitations

It is not possible to select EPS together with IRC5 Compact. No mechanical limitation.

Ambient temperature

Description	Protection class	Temperature
Manipulator during operation	Standard	+ 5°C ⁱ (41°F) to + 45°C (113°F)
Manipulator with food grade lubrication during operation	Option	+ 5°C ⁱ (41°F) to + 35°C ⁱⁱ (95°F)
For the controller	Standard/Option	Product specification - Controller IRC5 with FlexPendant
Complete robot during transportation and storage	Standard	- 25°C (-13°F) to + 55°C (131°F)
For short periods (not exceeding 24 hours)	Standard	up to + 70°C (158°F)

At low environmental temperature < 10°C is, as with any other machine, a warm-up phase recommended to be run with the robot. Otherwise there is a risk that the robot stops or run with lower performance due to temperature dependent oil and grease viscosity.

Relative humidity

Description	Relative humidity
Complete robot during operation, transportation and storage	Max. 95% at constant temperature

ii For robots with food grade lubrication, if environment temperature > 35°C, contact ABB for further information.

1.3.2 Mounting the manipulator

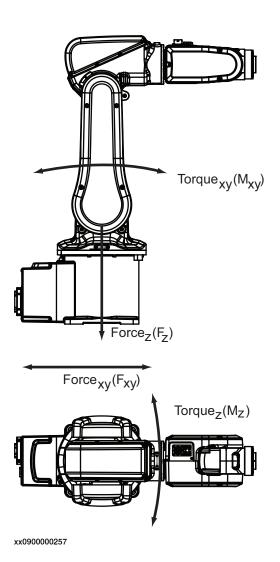
1.3.2 Mounting the manipulator

Maximum load

Maximum load in relation to the base coordination system. See Figure below.

Floor Mounted

Force	Endurance load (in operation)	Max. load (emergency stop)
Force xy	±265 N	±515 N
Force z	-265 ±200 N	-265 ±365 N
Torque xy	±195 Nm	±400 Nm
Torque z	±85 Nm	±155 Nm

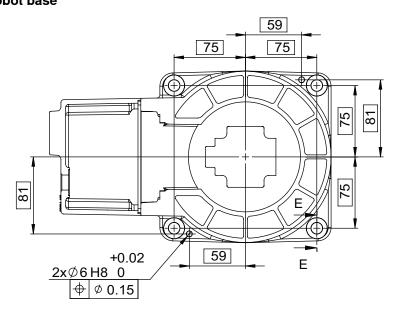

Wall Mounted

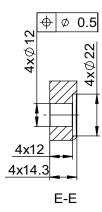
Force	Endurance load (in operation)	Max. load (emergency stop)
Force xy	±470 N	±735 N
Force z	0 ±200 N	0 ±630 N
Torque xy	±240 Nm	±450 Nm
Torque z	±90 Nm	±175 Nm

Suspended

Force	Endurance load (in operation)	Max. load (emergency stop)
Force xy	±265 N	±515 N
Force z	265 ±200 N	265 ±365 N
Torque xy	±195 Nm	±400 Nm
Torque z	±85 Nm	±155 Nm

1.3.2 Mounting the manipulator Continued




Note regarding $\mathbf{M}_{\mathbf{x}\mathbf{y}}$ and $\mathbf{F}_{\mathbf{x}\mathbf{y}}$

The bending torque (M_{xy}) can occur in any direction in the XY-plane of the base coordinate system. The same applies to the transverse force (F_{xy}) .

1.3.2 Mounting the manipulator *Continued*

Fastening holes robot base

xx0900000258

Attachment bolts, specification

The table below specifies required bolts and washers for securing the robot at installation site.

Specification	Description
Attachment bolts, 4 pcs	M10 x 25 (installation directly on foundation)
Guide pins, 2 pcs	D=6x20
Washers, 4 pcs	10.5 x 20 x 2
Quality	Quality 8.8
Tightening torque	47 Nm

1.4.1 Introduction to load diagrams

1.4 Load diagram

1.4.1 Introduction to load diagrams

Information

WARNING

It is very important to always define correct actual load data and correct payload of the robot. Incorrect definitions of load data can result in overloading of the robot.

If incorrect load data is used, and/or if loads outside the load diagram are used, the following parts can be damaged due to overload:

- · motors
- gearboxes
- · mechanical structure

WARNING

In RobotWare, the service routine LoadIdentify can be used to determine correct load parameters. The routine automatically defines the tool and the load.

See Operating manual - IRC5 with FlexPendant, for detailed information.

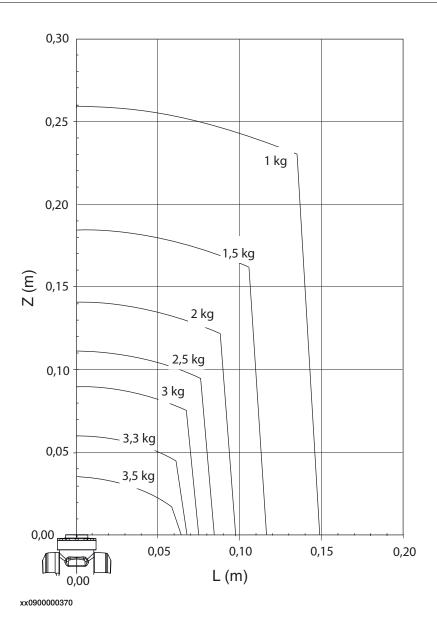
WARNING

Robots running with incorrect load data and/or with loads outside the load diagram, will not be covered by robot warranty.

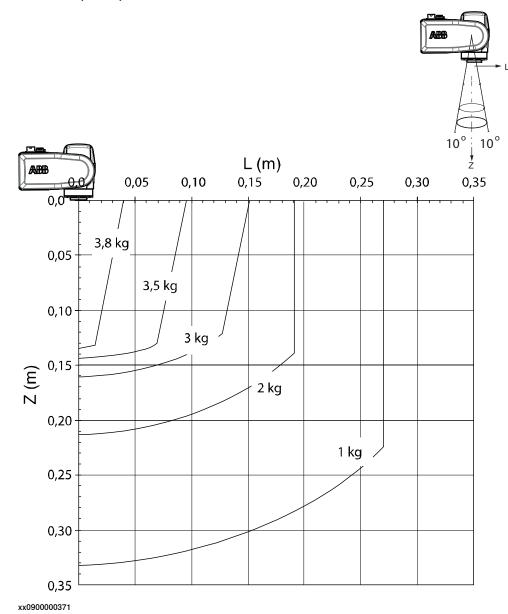
General

The load diagram includes a nominal pay load inertia, J_0 of 0.012 kgm² and an extra load of 0.3 kg at the upper arm housing. At different moment of inertia the load diagram will be changed. For robots that are allowed tilted, wall or inverted mounted, the load diagrams as given are valid and thus it is also possible to use RobotLoad within those tilt and axis limits.

Control of load case with RobotLoad


To verify a specific load case, use the RobotStudio add-in RobotLoad.

The result from RobotLoad is only valid within the maximum loads and tilt angles. There is no warning if the maximum permitted arm load is exceeded. For over-load cases and special applications, contact ABB for further analysis.


1.4.2 Load diagrams

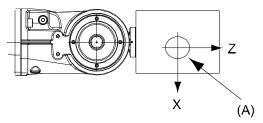
1.4.2 Load diagrams

IRB 120 - 3/0.6

IRB 120 - 3/0.6 "Vertical wrist" (± 10°)

	Description
Max load	4.2 kg
Z _{max}	0.119 m
L _{max}	0.022 m

1.4.3 Maximum load and moment of inertia for full and limited axis 5 (center line down) movement


1.4.3 Maximum load and moment of inertia for full and limited axis 5 (center line down) movement

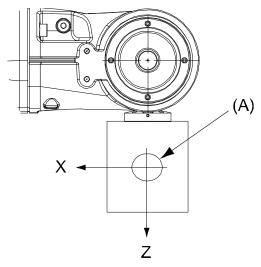
General

Total load given as: Mass in kg, center of gravity (Z and L) in m and moment of inertia (J_{ox} , J_{oy} , J_{ox}) in kgm². L= $\sqrt{(\chi_2 + \chi_2)}$, see Figure 8.

Full movement of axis 5 (±115°)

Axis	Robot Type	Max. value
5	IRB 120(T)-3/0.6	$J_5 = \text{Mass x } ((\text{Z} + 0.072)^2 + \text{L}^2) + \text{max } (J_{ox}, J_{oy}) \leq 0.175 \text{ kgm}^2$
6	IRB 120(T)-3/0.6	J_6 = Mass x L ² + $J_{0Z} \le 0.085 \text{ kgm}^2$

xx0800000458


Pos	Description
Α	Center of gravity

	Description	
J_{ox}, J_{oy}, J_{oz}	Max. moment of inertia around the X, Y and Z axes at center of gravity.	

Limited axis 5, center line down

Axis	Robot Type	Max. value
5	IRB 120(T)-3/0.6	$J_5 = \text{Mass x } ((\text{Z} + 0.072)^2 + \text{L}^2) + \text{max } (J_{\text{ox}}, J_{\text{oy}}) \leq 0.175 \text{ kgm}^2$
6	IRB 120(T)-3/0.6	J_6 = Mass x L ² + $J_{0Z} \le 0.085 \text{ kgm}^2$

1.4.3 Maximum load and moment of inertia for full and limited axis 5 (center line down) movement Continued

xx0800000459

Position	Description
Α	Center of gravity

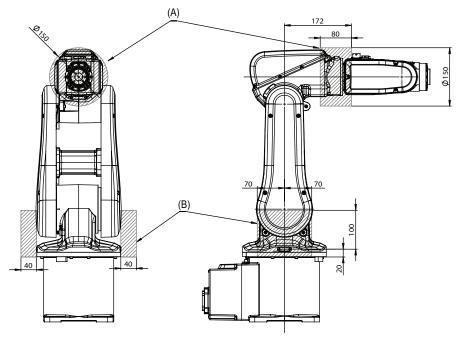
	Description	
J_{ox} , J_{oy} , J_{oz}	Max. moment of inertia around the X, Y and Z axes at center of gravity.	

Wrist torque

The table below shows the maximum permissible torque due to payload.

Note

The values are for reference only, and should not be used for calculating permitted load offset (position of center of gravity) within the load diagram, since those also are limited by main axes torques as well as dynamic loads. Also arm loads will influence the permitted load diagram, please contact your local ABB organization.

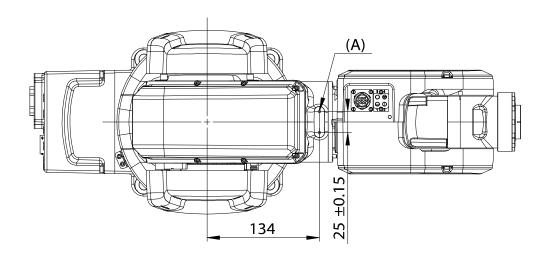

Robot type	Max wrist torque axis 4 and 5	Max wrist torque axis 6	Max torque valid at load
IRB 120(T)-3/0.6	4.8 Nm	2.2 Nm	3 kg

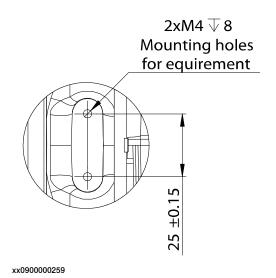
1.5 Mounting of equipment

1.5 Mounting of equipment

General

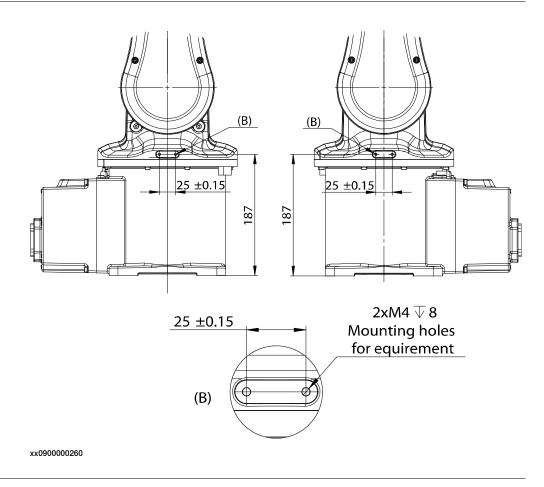
Extra loads can be mounted on to the upper arm and frame. Definitions of load areas and permitted load are shown in Figure 10. The center of gravity of the extra load shall be within the marked load areas. The robot is supplied with holes for mounting of extra equipment. (See figures in *Holes for mounting extra equipment on page 27*.)

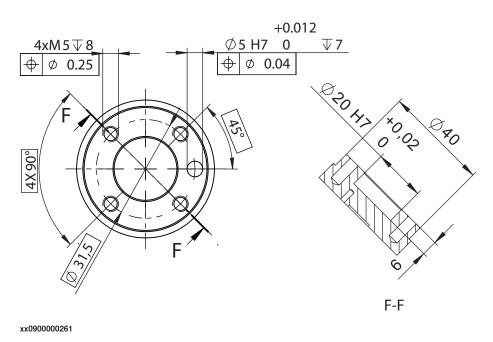



xx0900000369

Load area	Max load	
	A	В
IRB 120-3/0.6	0.3 kg	0.5 (x2) kg

1.5.1 Holes for mounting extra equipment


Upper arm



1.5.1 Holes for mounting extra equipment *Continued*

Frame

Robot tool flange

Continues on next page

1.5.1 Holes for mounting extra equipment Continued

Fastener quality

When fitting tools on the tool flange, only use screws with quality 12.9. For other equipment use suitable screws and tightening torque for your application.

1.6.1 Calibration methods

1.6 Calibration

1.6.1 Calibration methods

Overview

This section specifies the different types of calibration and the calibration methods that are supplied by ABB.

The original calibration data delivered with the robot is generated when the robot is floor mounted. If the robot is not floor mounted, then the robot accuracy could be affected. The robot needs to be calibrated after it is mounted.

More information is available in the product manual.

Types of calibration

Type of calibration	Description	Calibration method
Standard calibration	The calibrated robot is positioned at calibration position.	Axis Calibration or manual calibration i
	Standard calibration data is found on the SMB (serial measurement board) or EIB in the robot.	
	For robots with RobotWare 5.04 or older, the calibration data is delivered in a file, calib.cfg, supplied with the robot at delivery. The file identifies the correct resolver/motor position corresponding to the robot home position.	

ⁱ The robot is calibrated by either manual calibration or Axis Calibration at factory. Always use the same calibration method as used at the factory.

Information about valid calibration method is found on the calibration label or in the calibration menu on the FlexPendant.

If no data is found related to standard calibration, manual calibration is used as default.

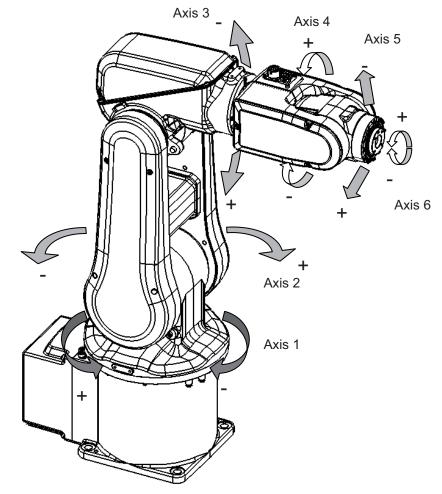
Brief description of calibration methods

Axis Calibration method

Axis Calibration is a standard calibration method for calibration of IRB 120. It is the recommended method in order to achieve proper performance.

The following routines are available for the Axis Calibration method:

- · Fine calibration
- · Update revolution counters


The calibration equipment for Axis Calibration is delivered as a toolkit.

The actual instructions of how to perform the calibration procedure and what to do at each step is given on the FlexPendant. You will be guided through the calibration procedure, step by step.

1.6.2 Fine calibration

General

Fine calibration is made using the Axis Calibration method (from RobotWare 6.03.01). For detailed information on calibration of the robot see *Product manual - IRB 120*.

xx0900000262

Calibration	Position
Calibration of all axes	All axes in zero position
Calibration of axis 1 and 2	Axis 1 and 2 in zero position Axis 3 to 6 in any position
Calibration of axis 1	Axis 1 in zero position Axis 2 to 6 in any position

1.7.1 Introduction to maintenance and trouble shooting

1.7 Maintenance and trouble shooting

1.7.1 Introduction to maintenance and trouble shooting

General

The robot requires only a minimum of maintenance during operation. It has been designed to make it as easy to service as possible:

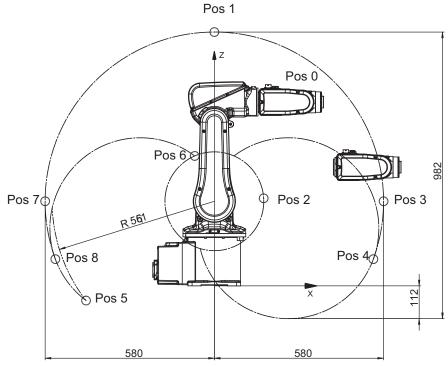
- · Maintenance-free AC motors are used.
- · Grease used for all gearboxes.
- The cabling is routed for longevity, and in the unlikely event of a failure, its modular design makes it easy to change.

Maintenance

The maintenance intervals depend on the use of the robot, the required maintenance activities also depends on selected options. For detailed information on maintenance procedures, see *Maintenance* section in the *Product Manual - IRB 120*.

1.8 Robot motion

1.8.1 Working range and type of motion


Working range

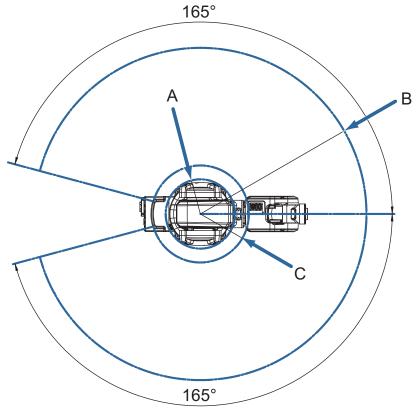
The figures show the working ranges of the robot.

The extreme positions of the robot arm are specified at the wrist center (dimensions in mm).

Working range

The illustration shows the unrestricted working range of the robot.

xx0900000263


Posi- tion	Position at wrist center (mm)		Angle (degre	Angle (degrees)	
	X	z	Axis 2	Axis 3	
Α	302 mm	630 mm	0°	0°	
В	0 mm	870 mm	0°	-77°	
С	169 mm	300 mm	0°	+70°	
D	580 mm	270 mm	+90°	-77°	
Е	545 mm	91 mm	+110°	-77°	
F	-440 mm	-50 mm	-110°	-110°	
G	-67 mm	445 mm	-110°	+70°	
Н	-580 mm	270 mm	-90°	-77°	
J	-545 mm	91 mm	-110°	-77°	

Continues on next page

1.8.1 Working range and type of motion *Continued*

Turning radius

The turning radius of robot is shown in the figure.

xx0900000157

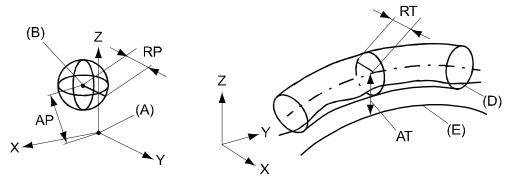
Robot variant	Pos. A	Pos. B	Pos. C
IRB 120-3/0.6	R121 ⁱ	R580	R169.4

Minimum turning radius axis 1.

Robot motion

The table specifies the types and ranges of motion in every axes.

Location of motion	Type of motion	Range of movement
Axis 1	Rotation motion	+165° to -165°
Axis 2	Arm motion	+110° to -110°
Axis 3	Arm motion	+70° to -110°
Axis 4	Wrist motion	+160° to -160°
Axis 5	Bend motion	+120° to -120°
Axis 6	Turn motion	+400° to -400° (default) +242 revolutions to -242 re- volutions maximum ⁱ


The default working range for axis 6 can be extended by changing parameter values in the software. Option 610-1 Independent axis can be used for resetting the revolution counter after the axis has been rotated (no need for "rewinding" the axis).

1.8.2 Performance according to ISO 9283

General

At rated maximum load, maximum offset and 1.6 m/s velocity on the inclined ISO test plane, with all six axes in motion. Values in the table below are the average result of measurements on a small number of robots. The result may differ depending on where in the working range the robot is positioning, velocity, arm configuration, from which direction the position is approached, the load direction of the arm system. Backlashes in gearboxes also affect the result.

The figures for AP, RP, AT and RT are measured according to figure below.

xx0800000424

Position	Description	Position	Description		
Α	Programmed position	E	Programmed path		
В	Mean position at program execution	D	Actual path at program execution		
AP	Mean distance from pro- grammed position	AT	Max deviation from E to average path		
RP	Tolerance of position B at repeated positioning	RT	Tolerance of the path at repeated program execution		

Description	Values			
IRB	120 - 3/0.6			
Pose repeatability, RP (mm)	0.01			
Pose accuracy, AP ⁱ (mm)	0.02			
Linear path repeatability, RT (mm)	0.07-0.16			
Linear path accuracy, AT (mm)	0.21-0.38			
Pose stabilization time, Pst (s) within 0.2 mm of the position	0.03			

AP according to the ISO test above, is the difference between the teached position (position manually modified in the cell) and the average position obtained during program execution.

The above values are the range of average test results from a number of robots

1 Description

1.8.3 Velocity

1.8.3 Velocity

General

Robot type	Axis 1	Axis 2	Axis 3	Axis 4	Axis 5	Axis 6
IRB 120 - 3/0.6	250 °/s	250 °/s	250 °/s	320 °/s	320 °/s	420 °/s

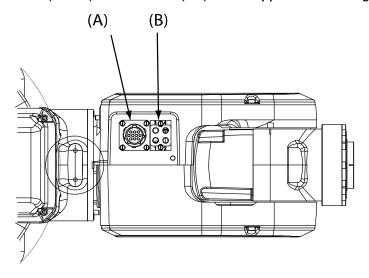
Supervision is required to prevent overheating in applications with intensive and frequent movements.

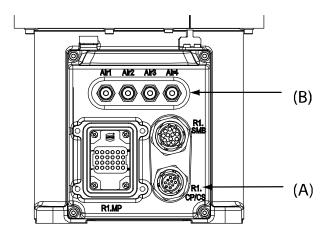
1.8.4 Robot stopping distances and times

1.8.4 Robot stopping distances and times

Introduction

The stopping distances and times for category 0 and category 1 stops, as required by EN ISO 10218-1 Annex B, are listed in *Product specification - Robot stopping distances according to ISO 10218-1 (3HAC048645-001)*.


1.9.1 Introduction to customer connections


1.9 Customer connections

1.9.1 Introduction to customer connections

General

The cables are integrated in the robot and the connectors are placed on the upper arm housing and one at the base. One connector R3.CP/CS on the upper arm housing. Corresponding connector R1.CP/CS is located at the base. Hose for compressed air is also integrated into the manipulator. There are 4 inlets at the base (R 1/8") and 4 outlets (M5) on the upper arm housing.

xx0900000264

Position	Connection	Description	Number	Value
Α	(R1)R3.CP/CS	Customer power/signal	10	49 V, 500 mA
В	Air	Max. 5 bar	4	Outer diameter of air hose: 4 mm

2 Specification of variants and options

2.1 Manipulator

General

The different variants and options for the IRB 1200 are described in the following sections. The same option numbers are used here as in the specification form.

The variants and options related to the robot controller are described in the product specification for the controller.

Manipulator variant [435]

The IRB 120T is a high speed variant, provides further reduced cycle time. All variants can be mounted on floor, inverted or on wall in any angle.

- No option requried for the different mounting positions.
- The parameter "gravity beta" specifies the robot's mounting angle in radians.
- It is calculated in the following way for a mounting angle of 45°.
- Gravity beta = 45° x 3.141593/180 = 0.785398 radians.

Option	Handling capacity (kg) / Reach (m)
435-100	IRB 120-3/0.6

Manipulator color

Option	Color	RAL code ⁱ
209-1	ABB Orange	NCS 2070-Y60R
209-2	ABB White	RAL 9003
209-202	ABB Graphite White (Standard color)	RAL 7035
209	RAL code should be specified (ABB none standard colors)	

ⁱ The colors can differ depending on supplier and the material on which the paint is applied.

Note

Notice that delivery time for painted spare parts will increase for ABB none standard colors.

Protection [287]

Clean Room [287-1]

The Clean Room classification ISO 14644-1 is according to IPA.

Clean room robots are designed in order to prevent from particle emission from the robot. For example is, frequent maintenance work possible to perform without cracking the paint. The robot is painted with four layers of polyurethane paint. The last layer being a varnish over labels in order to simplify cleaning. The paint has

Continues on next page

2.1 Manipulator Continued

been tested regarding outgassing of Volatile Organic Compounds (VOC) and been classified in accordance with ISO 14644-8.

- Class 3 according to ISO 14644-1, when operated at a capacity of 50%.
- Class 2 according to ISO 14644-1, when operated at a capacity of 100%.
- · Clean Room always in white color.

xx1100000959

Standard [287-4]

Standard protection IP30.

Warranty

Description

For the selected period of time, ABB will provide spare parts and labour to repair or replace the non-conforming portion of the equipment without additional charges. During that period, it is required to have a yearly Preventative Maintenance according to ABB manuals to be performed by ABB. If due to customer restrains no data can be analyzed in the ABB Ability service *Condition Monitoring & Diagnostics* for robots with OmniCore controllers, and ABB has to travel to site, travel expenses are not covered. The Extended Warranty period always starts on the day of warranty expiration. Warranty Conditions apply as defined in the Terms & Conditions.

Note

This description above is not applicable for option Stock warranty [438-8]

Option	Туре	Description
438-1	Standard warranty	Standard warranty is 12 months from <i>Customer Delivery Date</i> or latest 18 months after <i>Factory Shipment Date</i> , whichever occurs first. Warranty terms and conditions apply.
438-2	Standard warranty + 12 months	Standard warranty extended with 12 months from end date of the standard warranty. Warranty terms and conditions apply. Contact Customer Service in case of other requirements.
438-4	Standard warranty + 18 months	Standard warranty extended with 18 months from end date of the standard warranty. Warranty terms and conditions apply. Contact Customer Service in case of other requirements.
438-5	Standard warranty + 24 months	Standard warranty extended with 24 months from end date of the standard warranty. Warranty terms and conditions apply. Contact Customer Service in case of other requirements.

Continues on next page

2.1 Manipulator Continued

Option	Туре	Description
438-6	Standard warranty + 6 months	Standard warranty extended with 6 months from end date of the standard warranty. Warranty terms and conditions apply.
438-7	Standard warranty + 30 months	Standard warranty extended with 30 months from end date of the standard warranty. Warranty terms and conditions apply.
438-8	Stock warranty	Maximum 6 months postponed start of standard warranty, starting from factory shipment date. Note that no claims will be accepted for warranties that occurred before the end of stock warranty. Standard warranty commences automatically after 6 months from <i>Factory Shipment Date</i> or from activation date of standard warranty in WebConfig.
		Note Special conditions are applicable, see Robotics Warranty Directives.

2.2 Floor cables

2.2 Floor cables

Manipulator cable length [210]

Option	Lengths
210-1	3 m
210-2	7 m
210-3	15 m
210-4	22 m
210-5	30 m

Application interface [16-1]

The signals CP/CS are connected to 12-pole screw terminals, Phoenix MSTB 2.5/12-ST-5.08, in the controller. The cable between R1.CP/CS and the controller is supplied. For information about the limited number of signals available, see Type H.

The signals are connected to 12-pole screw terminals, Phoenix MSTB 2.5/12-ST-5.08, to the Control Module. Not together with option 17-6 Integrated wire feed cabling.

Connection of Parallel Communication [94]

Option	Lengths
94-1	7 m
94-2	15 m
94-4	30 m

3.1 Introduction to accessories

3 Accessories

3.1 Introduction to accessories

General

There is a range of tools and equipment available.

Basic software and software options for robot and PC

For more information, see *Product specification - Controller IRC5* and *Application manual - Controller software IRC5*.

Robot peripherals

Motor Units¹

¹ Not applicable for IRC5 Compact controller.

Index

accessories, 43

calibration standard type, 30 category 0 stop, 37 category 1 stop, 37 Ρ

product standards, 15

safety standards, 15 standards, 15 EN IEC, 15 EN ISO, 15 stopping distances, 37 stopping times, 37

ABB AB

Robotics & Discrete Automation S-721 68 VÄSTERÅS, Sweden Telephone +46 (0) 21 344 400

ABB AS

Robotics & Discrete Automation

Nordlysvegen 7, N-4340 BRYNE, Norway Box 265, N-4349 BRYNE, Norway Telephone: +47 22 87 2000

ABB Engineering (Shanghai) Ltd.

Robotics & Discrete Automation No. 4528 Kangxin Highway PuDong New District SHANGHAI 201319, China Telephone: +86 21 6105 6666

ABB Inc.

Robotics & Discrete Automation

1250 Brown Road Auburn Hills, MI 48326 USA

Telephone: +1 248 391 9000

abb.com/robotics