LOW VOLTAGE DC DRIVES

ABB industrial drives

DCS880-A enclosed converters 80 to 9800 A / 19600 A

Table of contents

Creating a safer environment 4
DCS880-A, cabinet-built DC drives 6
Description of DCS880-A Enclosed converters 7
Environmental conditions 8
DCS880-A Enclosed Converter unit types 10
Dimensions DCS880 converter cabinet (SACE Emax 2.2 design) 11
Overview Enclosed converter DCS880-A 12
Air circuit breaker options H7/H8 31
DCS880-A General options 32
DCS880-A Mechanical options 34
DCS880-A Electrical options 39
DCS880-A +S745 3-phase field exciters in a separate cabinet 44
DCS880-A50 Incomings 45
DCS880-A Basic circuit diagram 51
DCS880-A External supply options circuit diagram 52
Safety functions offering 53
Functional safety modules 54
Cabinet based safety functions - Configurations 55
Cabinet based safety functions - Available plus codes 56
Disclaimer for customer-specific functional safety circuits 57
Type code 58
Plus codes 59
Appendix 60

Creating a safer environment

without compromising productivity

The all-compatible drives are designed to provide customers across industries and applications with unprecedented levels of compatibility and flexibility.

DC drives

Our DCS880 industrial drives are customized to meet the precise needs of industries such as oil and gas, mining, metals, cement, non motoric, material handling, pulp and paper, rubber and plastics, marine, water and wastewater, food and beverage and automotive. They control a wide range of applications such as cranes, extruders, winches, winders, conveyors, mixers, millstands, centrifuges, test benches, elevators, electrolysis, kiln.

DC motor control

ABB's motor control technology provides precise speed and torque control for all applications.

Adaptive programming

Adaptive programming is ideal for creating simple control programs for various applications.
It does not require expertise in programming and is offered as a standard in all-compatible drives.

Removable memory unit

Stores all the firmware and parameter configurations in an easily replaceable and simple-to-install module.

All typical DC configurations

DCS880 standard firmware supports all standard configurations present in DC drive applications such as 6 -pulse, 12-pulse parallel, serial and serial sequential, 24-pulse, M3, M6 and field reversal.

Remote monitoring

With a built-in web server, NETA-21 makes worldwide access easy for industry applications.

Drive-to-drive link (D2D)
Allows fast communication between drives including master-follower configurations as standard.

Drive application programming

Customizable to meet the precise application needs based on IEC 61131-3. Uses the same programming environment and is also easy to integrate with other ABB components such as PLCs and HMIs.

Safety

DCS880 offers safe torque off (STO) built in as a standard. It can be used in safety functions up to SIL3 /PLe enabling you to achieve every safety requirement.

Drives going mobile

We offer several smartphone applications to ease and enhance the use of ABB drives. These tools provide a user-friendly and easy-to-use approach for the commissioning, servicing and operation of $A B B$ drives.

Intuitive human-machine interface

User-friendly, high-contrast and high-resolution display enabling easy navigation in multiple languages. Allows USB and Bluetooth connection.

Startup and maintenance tool

Drive composer PC tool for drive startup, configuration and daily use and process tuning. PC tool is connected to the drive via Ethernet or USB interface.

Communication with all major automation networks

Fieldbus adapters enable connectivity with all major automation networks.

Flexible product configurations

Drives are built to order with a wide range of options. Ready made cabinets with or without transformer are available up to 20 MW .

Extended connectivity

In addition to the standard interfaces, the drive has three built-in slots for additional input/output extension modules and speed feedback interfaces.

DCS880-A, cabinet-built DC drives

DCS880-A enclosed converters

DCS880-A enclosed converters are available as 6- / 12-pulse and in 2- or 4-quadrant, with current ranges from 80 to 9800/19600 A and supply voltages of 230 ... 990 (1200) V_{AC}. A selection of options is available to provide the user with a system meeting the most demanding technical requirements and performance expectations. Common control electronics throughout the product range reduce spare parts inventory and training requirements.

DCS880-A enclosed converters (size H 1 to H 6) with rated DC current from 80 A up to 1850 A are available in two different layouts:

- Single drive configuration without horizontal busbars therefore AC cable connection
- Group drive configuration with horizontal busbars (size-depending on rated amps)

Group drives from sizes H 7 and H 8 on request.

The drives comply with IEC 61800 standard.
The basic design is made for 65 kA short circuit rating. Different IP protection classes are available to meet environmental condition on site.

Standard color is light grey RAL7035. Outside color of a cabinet can be chosen freely according to RAL standard. Special colors on request.

DCS880-A Concept

- A single drive control technology is available for a wide power range to reduce training costs and meet the requirements of various applications.
- Common AC busbar designs for group drives are available for the most cost-efficient and functional system structure.
- Incoming supply section for group drives can be equipped with air circuit breakers or isolation switches.
- Control cubicles offer various I/O solutions in combination with ABB controls e.g. AC800M
- Approval for many application specific standards (e.g. IEC, UL, CSA) can be ordered as option
- Flexible design of power cable entry provide simple installation and minimum down time especially for upgrades.

What is a DCS880 DC drive?

The DCS880 DC Drive is simple to install, easy to configure and handle and therefore saving considerable time.

- Precise delivery
- Quick installation
- Rapid start-up

The drive has common user and process interface with fieldbus, common software tools for sizing, commissioning, maintenance and common spare parts.

Where can it be used?
DCS880 can be used in the wide range of all industrial application of

- Metals
- Vessels
- Pulp \& Paper
- Material handling
- Automotive
- Food \& Beverage
- Printing
- Plastic \& Rubber

DCS880 DC drive promises

The drive meet the requirement of all demanding drive application like

- Testrig
- Mine hoist
- Rolling mill
as well as non motoric applications like:
- Electrolysis \& hydrogen production
- Magnetics
- Battery charger

AC DC

Single Drive
e.g. DCS880-A0x-0090-04X1

Group Drive
e. g. DCS880-A0x-0090-04X2

Description of DCS880-A Enclosed converters

0090 A ... 0350 A (H1/H2/H3-350)

0900 A ... 2000 A (H6 with breaker Emax 2.2)

1900 A ... 3000 (H7 with breaker Emax 2.2)

1900 A ... 3000 A (H7 without breaker +0S775)

Mechanics

The robust and strong frame body of the cabinets is made from steel with a thickness of 2.5 mm and all metal sheets are softline design to avoid accidents and are 1.5 mm thick. Protection against corrosion is given by a hot zinc galvanisation of all metal work. The standard height is 2120 mm (height is including detachable hood (120 mm)) with various widths (200/400/600/ 800/1200 mm) and depth (600 mm) depending on the power and the size of the converter.

All dimensions in mm.

Environmental conditions

System connection	
Voltage, 3-phase:	230 to 1000 V acc. to IEC 60038
Voltage deviation:	± 10 \% continuous; ± 15 \% short-time *
Rated frequency:	50 Hz or 60 Hz
Static frequency deviation:	$50 \mathrm{~Hz} \pm 2$ \%; $60 \mathrm{~Hz} \pm 2$ \%
Dynamic: frequency range:	$50 \mathrm{~Hz}: \pm 5 \mathrm{~Hz} ; 60 \mathrm{~Hz}: \pm 5 \mathrm{~Hz}$
df/dt:	17 \% / s
* $=0.5$ to 30 cycles.	
Please note: Special consideration must be taken for voltage deviation in regenerative mode.	
Degree of protection	
Converter module and options (line chokes, fuse holder, field supply unit, etc.):	
Enclosed converters:	IP 21/42/54
Paint finish	
Converter module:	Body RAL 7012; Cover RAL 9017 \& RAL 9002
Enclosed converter	Front, light grey RAL 7035 Side, traffic black RAL 9017

Sound pressure level

Size	Sound pressure level L_{p} (1 m distance)		Vibrations
	as module	enclosed conv.	as module
H1	55 dBA	68 dBA	
H2	55 dBA	72 dBA	
H3	60 dBA	78 dBA	$1 \mathrm{~g}, 9 \ldots 200 \mathrm{~Hz}$
H4	66 ... 70 dBA , depending on fan	77 dBA	
H5	75 dBA		
H6	73 dBA	78 dBA	$0,075 \mathrm{~mm}, 10 \ldots 57 \mathrm{~Hz}$
H7	75 dBA	73 dBA	$1 \mathrm{~g}, 57 \ldots 150 \mathrm{~Hz}$
H8	82 dBA	80 dBA	

[^0]| Environmental limit values | |
| :--- | ---: |
| Permissible cooling air temperature | 0 to $+55^{\circ} \mathrm{C}$ |
| \cdot at converter module air inlet: | 0 to $+40^{\circ} \mathrm{C}$ |
| with rated DC current: | +30 to $+55^{\circ} \mathrm{C}$ |
| with different DC current: | 0 to $+40^{\circ} \mathrm{C}$ |
| - Options: | 5 to 95%, no condensation |
| Relative humidity (at $5 \ldots+40^{\circ} \mathrm{C}$): | 5 to 50%, no condensation |
| Relative humidity (at $0 \ldots+5^{\circ} \mathrm{C}$): | $<0.5^{\circ} \mathrm{C} /$ minute |
| Change of the ambient temp.: | -40 to $+55^{\circ} \mathrm{C}$ |
| Storage temperature: | -40 to $+70^{\circ} \mathrm{C}$ |
| Transport temperature: | 2 |
| Pollution degree (IEC $60664-1$, | |
| IEC $60439-1$): | |
| Site elevation | |
| $<1000 \mathrm{~m}$ above M.S.L.: | |
| $>1000 \mathrm{~m}$ above M.S.L.: | with current reduction |

Current reduction to \% of nominal converter current

North American Standards

In North America the system components fulfil the requirements of the table below.

DCS880-S01/S02 module sizes H1 ... H8

	US	Canada
Standard	UL 61800-5-1	CSA 22.2 No. 274-17
Certificate no.	(TÜV-SÜD) U8 045204 0008	

Field exciter DCF803/804-0016,-0035, -0050, -0060 and FEX-425
Overvoltage protection DCF505/506

	US	Canada
Standard	UL 61800-5-1	CSA 22.2 No. 274-17
Certificate no.	(TÜV-SÜD) U8V 045204 0011	

DCS880-A01/A02 cabinet sizes H1 ... H8P, Incomings \& Empty cabinets

	US	Canada
Standard	on request	
Certificate no.		

UK Legislation - UKCA

In UK the system components fulfil the following regulations

DCS880-S01/S02 module sizes H1 ... H8	
Electrical Equipment (Safety) Regulations	2016 UK Safety
Electromagnetic Compatibility Regulations	2016 UK EMC
Supply of Machinery (Safety) Regulations	2008 UK Machinery
Restriction of the Use of Certain Hazardous	2012 UK RoHS
Substances Regulations	

Regulatory compliance

The converter module and enclosed converter components are designed for use in industrial environments. In EEA countries, the components fulfil the requirements of the EU directives, see table below.

European union directive	Manufacturer's assurance	Harmonized standards	Converter module	Enclosed converter
Machine Directive				
2006/42/EU	Declaration of Conformity	EN 61800-5-2:2017	x	
		EN 62061: 2005 + A1:2013	x	
		EN ISO 13849-1:2015 + A1:2015	x	
		EN ISO 13849-2:2012	x	
		IEC 61508-2:2010	x	
		EN 60204-1:2018	x	x
		EN ISO 14118: 2018	x	
Low Voltage Directive				
2014/35/EU	Declaration of Conformity	EN 61800-5-1:2017	x	x
EMC Directive				
2014/30/EU	Declaration of Conformity	EN 61800-3:2018	x	x
RoHS \& WEEE				
2011/65/EU \& 2012/19/EU	Declaration of Conformity		x	x
Relevant standards for DC				
	Declaration of Conformity	EN 61800-1:1998	x	x
		EN 60146-1-1:2010	x	x

DCS880-A Enclosed Converter unit types

Dimensions DCS880 converter cabinet (SACE Emax 2.2 design)

Table 2: Dimensions of the DCS880-A series.

[^1](1) Height is including detachable hood (+120 mm), IP54, 300 mm additional / total height 2300 mm .
(2) With circuit breaker or contactor.
(3) Without circuit breaker or contactor
(4) DCS880-A with AC supply voltage $3 \times 990 \mathrm{~V} \ldots 1190 \mathrm{~V}$ or current $\geq 3300 \mathrm{~A}$ are generally without circuit breaker.
(5) At $600 \mathrm{~V}(6)$ and $690 \mathrm{~V}(7)$ only available as $2-Q$ converter
(6) z: Weight for busbars: $1000 \mathrm{~A} / 2000 \mathrm{~A}=35 \mathrm{~kg} / \mathrm{m} ; 3000 \mathrm{~A}=70 \mathrm{~kg} / \mathrm{m}$.
(7) The air circuit breaker stands out of the line-up's front. Thus 78 mm have to be added to the total depth of the line-up. (8) Listed width for cable connection reduced width for busbar connection on request.
(9) All weights are related to incoming cabinets with breaker DCS880-A50- \qquad - 07A2.

Notes:

All dimensions are in mm .
Please add for each end panel 15 mm and for a door (without buttons) 20 mm .
Max length of a shipping split is 3.40 m . If the line-up width is longer than 3.40 m busbar joining cabinets are required.

Overview Enclosed converter DCS880-A

Overview Enclosed converter DCS880-A0x-0090 ... 0350 (H1/H2/H3-350)

DCS880-A0x-0020 ... 0350 (H1/H2/H3-350)
single drive connection standard group drive

DCS880-A0x-0020 ... 0350 single drive with selected options (shaded) (H1/H2/H3-350)

```
Component list (standard)
Degree of protection IP 21
Armature converter module U1
Isolation switch with semiconductor fuses Q1
Main contactor K1
Line reactor L1
Internal excitation OnBoard 6-15 A A22
Process terminals X1/X6/X7
Aux. supply voltage transformer T2
Aux. supply voltage fuses F2
Electrical disconnect relay K16*
Power supply 24 Voc / 5 A G1
Horizontal busbars for group drives B1**
```

Note 1: OnBoard field exciter keeps main contactor ON during field heating
Note 2: * Wiring see section Basic circuit diagrams.

```
Component list (options)
Excitation unit DCF803/804 U3 (+S711 ... S719)
    Excitation contactor K3
    Excitation line reactor L3
    Excitation fuse F3
Excitation autotransformer T3 (+S615 ... S624)
Motor fan starter (+M600 ... M653)
    Motor fan starter contactor K6
    Motor fan starter thermal overload F60
    Motor fan starter fuses F6
115 V / 230 V (24 V) extra 3 x DI + 2 x RO (+L512)
    1x FDIO+ FEA extension+ FDCO included
PT100 interface on FAIO dual channel (+L529)
    Use free slot of FEA extension (+L512)
```

Note 3: Not all options are shown.
For more options see section mechanical options and electrical options!

DCS880-A0x-0020 ... 0350 dimensions group and single drive ($\mathrm{H} 1 / \mathrm{H} 2 / \mathrm{H} 3-350$)

DCS880-A0x-0020 ... 0350 single line diagram group and single drive (H1/H2/H3-350)

DCS880-A0x-0470 ... 1000 standard group drive (H3/H4)

DCS880-A0x-0470 ... 1000 group drive with selected options (shaded) (H3/H4)

Component list (standard)

Degree of protection IP 21
Armature converter module U1
Isolation switch with semiconductor fuses Q1
Main contactor K1
Line reactor L1
Internal excitation OnBoard 20-25A A22
Process terminals X1/X6/X7
Aux. supply voltage transformer T2
Aux. supply voltage fuses F2
Electrical disconnect relay K16*
Power supply $24 \mathrm{~V}_{\mathrm{DC}} / 5 \mathrm{~A}$ G1
Horizontal busbars for group drives B1**

Note 1: OnBoard field exciter keeps main contactor ON during field heating
Note 2: * Wiring see section Basic circuit diagrams.

```
Component list (options)
Excitation unit DCF803/804 U3 (+S711 ... S719)
    Excitation contactor K3
    Excitation line reactor L3
    Excitation fuse F3
Excitation autotransformer T3 (+S615 ... S624)
Motor fan starter (+M600 ... M653)
    Motor fan starter contactor K6
    Motor fan starter thermal overload F60
    Motor fan starter fuses F6
115 V / 230 V (24 V) extra 3 x DI + 2 x RO (+L512)
    1\timesFDIO+FEA extension+ FDCO included
PT100 interface on FAIO dual channel (+L529)
    Use free slot of FEA extension (+L512)
```

Note 3: Not all options are shown.
For more options see section mechanical options and electrical options!

DCS880-A0x-0470 ... 1000 dimensions group and single drive (H3/H4)

DCS880-A0x-0470 ... 1000 single line diagram group and single drive ($\mathrm{H} 3 / \mathrm{H} 4$)

Cables for control, field, AC and DC connection

Note 4: For more details (e.g. losses and weight) see tables on page 10 and page 11.
Note 5: ** Most enclosed converters are available as group and single drives. Group drive require the option horizontal busbars.

Overview Enclosed converter DCS880-A0x-0900 ... 2000 (H6)

Component list (standard)

Degree of protection IP 21
Armature converter module U1
Circuit breaker Q1
Isolation switch with fuses for aux. supply
voltage Q10
Line reactor L1
Process terminals X1/X6/X7
Aux. supply voltage transformer T2
Aux. supply voltage fuses F2
Converter fan fuse F8*
Converter fan relay K8*
Auxiliary circuit fuse F5*
Electrical disconnect relay K16*
Power supply 24 V $\mathrm{DC} / 5 \mathrm{~A}$ G1
Horizontal busbars for group drives B1**

Note 1: This standard list does not include any options or the excitation! Please choose the excitation from the options list.
Note 2: * Wiring see section Basic circuit diagrams.

DCS880-A0x-0900 ... 2000 group drive with selected options (shaded) (H6)

DCS880-A0x-0900 ... 2000 dimensions group and single drive (H6)

DCS880-A0x-0900 ... 2000 single line diagram group and single drive (H6)

Note 4: For more details (e.g. losses and weight) see tables on page 10 and page 11.
Note 5: ** Most enclosed converters are available as group and single drives. Group drive require the option horizontal busbars.
Note 6: For easy cable connection an additional incoming cabinet can be used (see section Incoming DCS880-A50-x000-07z2).

DCS880-A0x-1900 ... 3000 standard single drive (left hand connection) (H7)

[^2]
Component list (standard)

Degree of protection IP 21
Armature converter module U1
Circuit breaker Q1
Isolation switch with fuses for aux. supply voltage Q10
Auxiliary relay K10
Process terminals X1/X6/X7
Aux. supply voltage transformer T2
Aux. supply voltage fuses F2
Auxiliary circuit fuse F5*
Converter fan fuse F8*
Converter fan relay K8*
E-Stop relay K15*
Electrical disconnect relay K16*
Horizontal busbars for group drives B1**

Note 1: This standard list does not include any options or the excitation! Please choose the excitation from the options list.
Note 2: * Wiring see section Basic circuit diagrams.

```
Component list (options)
Excitation unit DCF803/804 U3 (+S711 ...
S719)
    or
DCS880-S01/S02; 25 ... 350 U3 (+S721 ... S741)
    DCF506 - Overvoltage protection U5
    Excitation contactor K3
    Excitation line reactor L3
    Excitation fuse F3
Excitation autotransformer T3
(+S615 ... +S624)
Converter fan transf. T8** (+S610 ... +S612)
Motor fan starter (+M600 ... M653)
    Motor fan starter contactor K6
    Motor fan starter thermal overload F60
    Motor fan starter fuses F6
Insulation monitor A90 (+Q954)
Galvanic isolated voltage measurement
(+S798)
    Isolated DC transducer A92
    Isolated transformer T90
```

Note 3: Not all options are shown.
For more options see section mechanical options and electrical options!

Overview Enclosed converter DCS880-A0x-1900 ... 3000 (H7, without breaker +0S775)

DCS880-A0x-1900 ... 3000 standard single drive (left hand connection) (H7 +OS775)

DCS880-A0x-1900 ... 3000 standard single drive (left hand connection) (H7 + OS775)

Component list (standard)

Degree of protection IP 21
Armature converter module U1
Without circuit breaker Q1 (+0S775)
Isolation switch with fuses for aux. -supply
voltage Q10
Auxiliary relay K10
Process terminals $\mathbf{X 1 / X 6 / X 7}$
Aux. supply voltage transformer ($\leq 690 \mathrm{~V}$) T2
Aux. supply voltage fuses F2
Auxiliary circuit fuse F5*
Converter fan fuse F8*
Converter fan relay K8*
E-Stop relay K15*
Electrical disconnect relay K16*
Horizontal busbars for group drives B1**
Note 1: This standard list does not include any options or the excitation!
Please choose the excitation from the options list.
Note 2: * Wiring see section Basic circuit diagrams.

Component list (options)
Excitation unit DCF803/804 U3 (+S711 ... S719)
or
DCS880-S01/S02; 25 ... 350 U3 (+S721 ... S741)
DCF506 - Overvoltage protection U5
Excitation contactor K3
Excitation line reactor L3
Excitation fuse $\mathbf{F 3}$
Excitation autotransformer T3 (+S615 ... +S624)
Converter fan transf. T8** (+S610 ... +S612)
Motor fan starter (+M600 ... M653)
Motor fan starter contactor K6
Motor fan starter thermal overload F60
Motor fan starter fuses F6
Insulation monitor A90 (+Q954)
Galvanic isolated voltage measurement (+S798)
Isolated DC transducer A92
Isolated transformer T90

Note 3: Not all options are shown.
For more options see section mechanical options and electrical options!

DCS880-A0x-1900 ... 3000 dimensions single drive (left hand connection) (H7+0S775)

Single line diagram DCS880-A0x-1900 ... 3000 without breaker;
dedicated transformer and without excitation (H7, +OS775) example aux. supply with 460 V / 60 Hz

Note 4: Drive without line choke L1. Designed to be connected to dedicated transformers.
Note 5: ** Most enclosed converters are available as group and single drives. Group drive require the option horizontal busbars.

DCS880-A0x-2050 ... 3300 standard single drive (left hand connection) (H8)

Component list (standard)

Degree of protection IP 21
Armature converter module U1
Isolation switch with fuses for aux.-supply voltage Q10
Auxiliary relay K10
Process terminals X1/X6/X7
Aux. supply voltage transformer $\mathbf{T} \mathbf{2}$
Aux. supply voltage fuses F2
Auxiliary circuit fuse F5*
Converter fan fuse F8*
Converter fan relay K8*
E-Stop relay K15*
Electrical disconnect relay K16*
Note 1: This standard list does not include any options or the excitation! Please choose the excitation from the options list.
Note 2: * Wiring see section Basic circuit diagrams.
Component list (options)
Excitation unit DCF803/804 U3
(+S711 ... S719)
or
DCS880-S01/S02; $25 \ldots 350$ A U3 (+S721 ... S741)
DCF506 - Overvoltage protection U5
Excitation contactor K3
Excitation line reactor L3
Excitation fuse F3
Excitation autotransformer T3 (+S615 ... +S624)
Converter fan transf. T8** (+S610 ... +S612)
Air circuit breaker Q1 (+S773)
Motor fan starter (+M600 ... M653)
Motor fan starter contactor K6
Motor fan starter thermal overload F60
Motor fan starter fuses F6
Insulation monitor A90 (+Q954)
Galvanic isolated voltage measurement (+S798)
Isolated DC transducer A92
Isolated transformer T90

Note 3: Not all options are shown.
For more options see section mechanical
options and electrical options!

DCS880-A0x-2050 ... 3300 dimensions single drive (left hand connection) (H8)

Single line diagram DCS880-A0x-2050 ... 3300 without breaker and without excitation (H8) example auxiliary supply with $400 \mathrm{~V} / 50 \mathrm{~Hz}$

Note 4: Drive without line choke L1. Designed to be connected to dedicated transformers.

DCS880-A0x-4000 ... 5200 standard single drive (right hand connection) (H8)

DCS880-A0x-4000 ... 5200 standard single drive (right hand connection) (H8)

Component list (standard)

Degree of protection IP 21
Armature converter module U1
Isolation switch with fuses for aux.- supply voltage Q10
Auxiliary relay K10
Process terminals X1/X6/X7
Aux. supply voltage transformer $\mathbf{T 2}$
Aux. supply voltage fuses F2
Auxiliary circuit fuse F5*
Converter fan fuse F8*
Converter fan relay K8*
E-Stop relay K15*
Electrical disconnect relay K16*
Note 1: This standard list does not include any options or the excitation! Please choose the excitation from the options list.
Note 2: * Wiring see section Basic circuit diagrams

```
Component list (options)
Excitation unit DCF803/804 U3 (+5711 ... S719)
    or
DCS880-S01/S02; 25 ... 350 A U3 (+S721 ... S741)
    DCF506 - Overvoltage protection U5
    Excitation contactor K3
    Excitation line reactor L3
    Excitation fuse F3
Excitation autotransformer T3
(+S615 ... +S624)
Converter fan transf. T8** (+S610 ... +S612)
Air circuit breaker Q1 (+S773)
Motor fan starter (+M600 ... M653)
    Motor fan starter contactor K6
    Motor fan starter thermal overload F60
    Motor fan starter fuses F6
Insulation monitor A90 (+Q954)
Galvanic isolated voltage measurement (+S798)
    Isolated DC transducer A92
    Isolated transformer T90
```

Note 3: Not all options are shown.
For more options see section mechanical options and electrical options!

DCS880-A0x-4000 ... 5200 dimensions single drive (left hand connection) (H8)

Single line diagram DCS880-A0x-4000 ... 5200 without breaker and without excitation (H8) example auxiliary supply with $600 \mathrm{~V} / 50 \mathrm{~Hz}$

Note 4: Drive without line choke L1. Designed to be connected to dedicated transformers
Note 5: ** Due to converter fan ratings a converter fan transformer (T8) for this single line diagram example $(600 \mathrm{~V} / 50 \mathrm{~Hz})$ is required.

Component list (standard)

Degree of protection IP 21
Armature converter module U1
Isolation switch with fuses for aux.- supply
voltage Q10
Auxiliary relay K10
Process terminals X1/X6/X7
Aux. supply voltage transformer T2
Aux. supply voltage fuses F2
Auxiliary circuit fuse F5*
Converter fan fuse F8*
Converter fan relay K8*
E-Stop relay K15*
Electrical disconnect relay K16*

Note 1: This standard list does not include any options or the excitation! Please choose the excitation from the options list.
Note 2: * Wiring see section Basic circuit diagrams

```
Component list (options)
Excitation unit DCF803/804 U3 (+S711 ... S719)
    or
DCS880-S01/S02; 25 ... 350 A U3 (+S721 ... S741)
    DCF506 - Overvoltage protection U5
    Excitation contactor K3
    Excitation line reactor L3
    Excitation fuse F3
Excitation autotransformer T3
(+S615 ... +S624)
Converter fan transf. T8** (+S610 ... +S612)
Air circuit breaker Q1 (+S773)
Motor fan starter (+M600 ... M653)
    Motor fan starter contactor K6
    Motor fan starter thermal overload F60
    Motor fan starter fuses F6
Insulation monitor A90 (+Q954)
Galvanic isolated voltage measurement (+S798)
    Isolated DC transducer A92
    Isolated transformer T90
```

Note 3: Not all options are shown.
For more options see section mechanical options and electrical options!

DCS880-A0x-4000 ... 5200 dimensions single drive (left hand connection) (H8)

Master drive right side

Note 4: Drive without line choke L1. Designed to be connected to dedicated transformers
Note 5: ** Due to converter fan ratings a converter fan transformer (T8) for different auxiliary supply is required $(400 \mathrm{~V}, 50 \mathrm{HZ}$ or $460 \mathrm{~V}, 60 \mathrm{~Hz}$).

DCS880-A0x-8000 ... 9999 master drive right side and slave drive left side (H8P)

Component list (standard)

Degree of protection IP 21
Armature converter module U1
Isolation switch with fuses for aux.- supply
voltage Q10
Auxiliary relay K10
Process terminals $\mathbf{X 1 / X 6 / X 7}$
Aux. supply voltage transformer T2
Aux. supply voltage fuses F2
Auxiliary circuit fuse F5*
Converter fan fuse F8*
Converter fan relay K8*
E-Stop relay K15*
Electrical disconnect relay K16*

Note 1: This standard list does not include any options or the excitation! Please choose the excitation from the options list.
Note 2: * Wiring see section Basic circuit diagrams

Component list (options)
Excitation unit DCF803/804 U3 (+S711 ... S719)
or
DCS880-S01/S02; 25 ... 350 A U3 (+S721 ... S741)
DCF506 - Overvoltage protection U5
Excitation contactor K3
Excitation line reactor L3
Excitation fuse F3
Excitation autotransformer T3
(+S615 ... +S624)
Converter fan transf. T8** (+S610 ... +S612)
Air circuit breaker Q1 (+S773)
Motor fan starter (+M600 ... M653)
Motor fan starter contactor K6
Motor fan starter thermal overload F60
Motor fan starter fuses F6
Insulation monitor A90 (+Q954)
Galvanic isolated voltage measurement (+S798)
Isolated DC transducer A92
Isolated transformer T90

Note 3: Not all options are shown.
For more options see section mechanical options and electrical options!

Note 4: Drive without line choke L1. Designed to be connected to dedicated transformers
Note 5: ** Due to converter fan ratings a converter fan transformer (T8) for different auxiliary supply is required $(400 \mathrm{~V}, 50 \mathrm{HZ}$ or $460 \mathrm{~V}, 60 \mathrm{~Hz})$.

Overview Enclosed converter Series H8P in 12-pulse configurations

Configuration of 12-pulse parallel (12-pulse master and follower) in combination with hard paralle (paralleling master and slave)

[^3]
Air circuit breaker options H7/H8

Air circuit breaker options for $\mathbf{H 7}$

H7 standard design is with air circuit breaker (SACE Emax 2.2)
The standard design provides the circuit breaker on the connection side (left/right). The circuit breaker can be placed directly next to the converter module (+S870).
H7 drives are also available without air circuit breaker (+0S775).

DCS880-A0x-1900 ... 3000 standard single drive (left hand connection + circuit breaker next to module) (H7 +S870)

Air circuit breaker options for H8

H8 standard design of the converter is without air circuit breaker. H 8 and H8P converters are switched typically on medium voltage side of dedicated transformer.
Air circuit breaker size E4.2 (SACE Emax 4.2) is optional for drives size H 8 from 3300 A and 4800 A with 400 ... $800 \mathrm{~V}_{\mathrm{AC}}$ for IEC standard (+S773). The Air circuit breaker option requires:

- H8 3300 A - additional 800 mm cabinet (total length 2600 mm)
- H8 4000 A/4800 A - extended 200 mm cabinet (total length 2600 mm)

DCS880-A0x-3300 standard single drive (left hand connection +
circuit breaker SACE Emax 4.2) (H8 +S773)

DCS880-A0x-3300 standard single drive (right hand connection + circuit breaker SACE Emax 4.2 (H8 +S773)

Air circuit breaker size E6.2 (SACE Emax 6.2) is optional for drives size H 8 up to 5200 A and 400 ... 800 VAC for IEC standard via plus code +S774.

Air circuit breaker options for H8P

Air circuit breaker for hard parallel drives size H8P are not available.

DCS880-A General options

CE mark

Requires options of EMC regulation

- EMC procedure according to part list check for converters 25 A up to 5200 A.
The DCS880-A converters and their options do not require an EMC-modified cabinet.
Note: see also Technical Guide 3ADW000163

CTO or ETO

CTO: Configured-to-Order
Several standard options are available to offer a drive cabinet which meets the most frequent technical requirements and performance expectations. The standard option for each DCS880-A enclosed converter can be selected via plus codes which are listed in the plus code list on page 52.

For DCS880-A cabinets configured via the standard plus code options no explicit technical clarification phase is foreseen and therefore, no engineering consulting is included.

ETO: Engineered-to-Order
For projects or enclosed converters with customized design adaptations the additional option code +P902 - customized options basic fee (ETO - Engineered-to-order) is available. This plus code is required for any enclosed converter with - special non-listed items / non-standard options

- group drive line-ups
- mechanical design modifications
and on each project which requires additional consulting.

Included into the customized options basic fee are 2 additional revisions of the circuit diagrams and a dedicated technical clarification phase with a project manager to specifically meet all customer requirements.
Also, milestones will be defined and communicated to track all important project phases.

The following table shows the differences between CTO (Configured to order) and ETO (Engineered to order +P902) support:

	Configured-to-Order	Engineered-to-Order
Project Manager involved	No	Yes
Number of revisions for circuit diagrams	Only the initial version $=$ "generated" version	2 additional revisions
Technical clarification phase	Clarification phase is not foreseen. Design freeze 5 days after submission of the circuit diagrams.	Clarification phase is foreseen. Design period minimum three weeks. Design period: Design freeze date - date drawings submission
Milestones	Only delivery date is communicated	Project milestones are defined and communicated
Customized design adaptations	Not foreseen	In case non-listed items are ordered consulting is included
Leadtime	Standard	Standard +3 weeks

Built according to UL 61800-5-1 / CSA 22.2 No. 274-17

For the plus code option "Built according to UL" (+C129) not all components in the cabinet provide UL certificates. Cables [AWG] are available in black and orange.
The table shows the components which are available in
UL/UR design and will be replaced by selection of the plus code +C129.
For cabinets $\mathrm{H} 1 \ldots \mathrm{H} 7+\mathrm{C} 129$ is available up to $600 \mathrm{~V}_{\mathrm{AC}}$ and for H 8 cabinets (without ACB) the plus code $+\mathbf{C} 129$ is available up to $990 / 1000 \mathrm{~V}_{\mathrm{Ac}}$.

Name	Device	UL/CSA	IEC
U1	Converter	$\bullet(1)$	\bullet
K1	Contactor	$\bullet(2)$	\bullet
Q1	Air circuit breaker	$\bullet(3)$	\bullet
F2/F3/F6	Motor fan-/exciter-/aux. fuses	$\bullet(2)$	\bullet
L1	Line reactor	$\bullet(4)$	\bullet
T2	Isolation transformer aux. supply		\bullet
T3	Autotransformer exciter T3.01 \ldots T3.16		
T8/T8.7	Autotransformer fan supply U1 (size H7/H8)	\bullet	
U5	Overvoltage protection	\bullet	
T90	Galvanic isolation measurement	\bullet	\bullet
A90	Bender isolation monitor ISO685	\bullet	

(1) max. converter supply voltage for UL is 1000 V
(2) max. supply voltage for UL is 600 V
(3) max. supply voltage for UL is 690 V
(4) only UR (UL Recognized)

Note: $\mathrm{H} 6 \ldots \mathrm{H} 7,690 \mathrm{~V}_{\mathrm{AC}}$ cabinets with +C 129 are only available on request, $A C B E 4.2$ is required.

Cable markings

- Class A2 plus standard cable marking.

This cable marking complies with standard EN 60204 for CE marking.
Conductors between

- converter module and
- apparatus (e.g. contactor, switch) are marked with terminal numbers

The marking is done for long conductors and short non-obvious conductors.

- Class B1 option (+G341)

The cable marking B1 provides in addition the information of the apparatus symbol.

DCS880-A Mechanical options

Protection class

IP21 is standard design
Air inlet 8 mm longitudinal slots, air outlet same as air inlet plus an air ventilation hood on the top of the cabinet (2120 mm total height).

Air inlet filters IP42 option (+B054)
Air input IP42, air output with insect screens to clean the incoming air in dirty environment. Additional water preventing louvers are build in the cabinet door. Only in combination with the option gland plate and bottom plate. Air inlet filters reduce the rated current of the enclosed converters.

Protection class IP54 option (+B055)

IP54 option is available for converter size H 1 ... H 4 and H 6 Air entry is equipped with grids, filters and water protective louvers.

Air exit is equipped with extra de-ventilation.
Size H1 ... H4 = $1 \times$ ventilation; $850 \mathrm{~m}^{3} / \mathrm{h}$
Size H6 $=2 x$ ventilation; $5000 \mathrm{~m}^{3} / \mathrm{h}$
The extra de-ventilation requires 180 mm additional height, thus the total height of converter is 2300 mm .
For further information see DCS880-A installation manual

For higher protection classes than IP21 a current derating needs to be considered:

Protection class current derating

Size	Protection class		
IP21	IP42	IP54	
H2/H3	-	5%	3%
H4	-	7%	3%
H6	-	5%	3%

Protection class	Door	Roof	Frame	Note
IP21	Air inlet - 8 mm longitudinal slots	Air outlet - 8 mm longitudinal slots and air ventilation hood from front to rear (120 mm additional cabinet hight)		100 mm distance between the wall and the converter cabinet is required (200 mm back to back).
IP42	Air inlet with IP42 mesh (insect screen) and water preventing louvers	Air outlet - 8 mm longitudinal slots an IP42 mesh (insect screen) and a short air ventilation hood (120 mm additional cabinet hight) (1)		Back to back, wall alignment or wall mounting is possible. Wall alignment 100 mm distance, back to back direct possible.
IP54	Air inlet with IP54 S folded filter and water preventing louvers	Roof cooling fan box - with water preventing louvers and fan box filter	Protection class seals for frame connections, bottom-, roof- and side- plates	100 mm distance between the wall and the converter cabinet is required (200 mm back to back).

[^4] on the top is build with IP22 air outlet duct and the ventilation hood.

Customer connection

The standard for customer connection is from bottom with cables.
The standard design is with an open frame on the bottom side of the cabinet.
A bottom plate (without cable holes) can be ordered with (+S780). The cable holes must be drilled by the customer. Gland plate and bottom plate are available via (+S781).
Cable glands for control-, field- and AC cables located in the bottom plate.

Example cable glands for DC or AC connection from top

Control cable connection

Bottom connection is standard and is included in converter basic design.Top connection on request.

Connections from top for DC and AC cables or busbars are available according to the table and can be selected via plus codes:

DC Drive size	Cable connection			Busbar connection	
	AC*	DC	AC*	DC	
$\mathrm{H} 1 \ldots \mathrm{H} 4$	+H 351	$+\mathrm{H} 353+\mathrm{H} 362$	-	-	
H 6	$+\mathrm{H} 351+\mathrm{S} 800$	$+\mathrm{H} 353+\mathrm{H} 362$	-	-	
H 7	+H 351	+H 353	+H 355	+H 356	
H 8	+H 351	+H 353	+H 355	+H 356	

Note: * AC connection from top is only available for single drives
Busbar from top for AC (+ H 355) and DC (+ H 356) connection is available for H 7 and H 8 .

[^5]For busbar connection from top a top plate (according to the picture) will be installed. Busbars from top are just available with a protection class derating to IP20.
DC connection from top with cables can be selected with plus code (+ H 353). For $\mathrm{H} 1 \ldots \mathrm{H} 6$ design with DC connection from top an additional cabinet (400 mm), to handle the cables inside of the cabinet, is needed (+H362).
The cabinets with cable connection from top will be equipped with cable gland plates (IP21).

Example H 4 with AC cable connection from top (+H 351) and DC cable connection (+H351) + additional 400 mm cabinet (+H362) with meggering solution on request

Meggering solution for $\mathrm{H} 1 \ldots \mathrm{H} 6$ drives is available for the DC cable connection from top on request only.

Example: 400 mm additional cabinet for DC cable connection from top with meggering busbars

AC connection from top with cables can be added to a cabinet with plus code (+ $\mathbf{H} 351$).
AC connection from top is only available for single drives.
H6 single drive design with AC cable connection from top needs a cabinet depth of 800 mm (+S800).

Air exit flange

Converter size H7, H8, H8P can be equipped with a flange as air exit instead of the hood. The air exit flange option (+C130) is used to guide the hot air output of the converter out of the cabinet. A closed loop air cooling system or a heat exchanger can be connected to the air duct.
Back pressure in the air duct is not allowed.

Example air duct option on a converter cabinet

Horizontal AC busbars option for group drives

Horizontal busbars are used to feed the entire line-up from the incoming supply section.
Tin plated copper busbars inside the cabinet are optional.

- without AC busbars => single drive
- copper, $1000 \mathrm{~A}_{\mathrm{AC}}$ (+S820), tin plated (+S825)
- copper, $2000 \mathrm{~A}_{\mathrm{AC}}$ (+S821), tin plated (+S826)
- copper, $3000 \mathrm{~A}_{\mathrm{AC}}$ (+S823), tin plated (+S827)

Current rating should be selected accord the needed power. Maximum current is 3000 A for horizontal AC-busbars. 4000 A incoming sections should be placed in the middle of a line up, in order to distribute the AC-current to left and right side (horizontal busbars up to 3000 A can stretch to both sides of such incomer).

Busbars of the converter cabinet

Inside of the converter cabinet equipped with tin plated busbars. Available for converters with a current > 350 ADC (+G312).
Note: For group drives - tin plated horizontal busbars must be selected separately.
For further information see DCS880-A installation manual (3ADW000627).

Door equipment

The control panel of the DCS880 converter module is located in the "control" door of the enclosed cabinet.
A bluetooth control panel can be selected via (+J429).
All cabinet doors are equipped with a triangular key lock

- a safety key lock is an option (+S705).

The control door can be configured with

- Electrical disconnect push button (Black) (+G332)
- STO reset button in door (+Q956)
- Fault pilot light (+G392)

E-Stop push button in door (Red)

- Control from remote e. g. from safety PLC (+G331)
- Control from local (safety-relay) (+S331)

The buttons and pilot lights are located in a separate device panel.

Meters also can be installed into the control door of the enclosed converter cabinets. One armature current- and one voltmeter are installed with (+S777).
It is possible to equip a door with a maximum of 4 meters. Additional meters (third meter) can be selected with
(+S776). Due to limited standard IOs a fourth meter requires additional engineering (+P902).

Empty cabinets and joining cabinets

Empty cabinets are always equipped with mounting plates. Customer can install individual own control circuits (dyn. brake control, PLC circuit, safety circuit ...).
Two different designs are available:

- Without horizontal busbars
e.g DCS880-A50-0000-0081 = 800 mm width inside 500 mm free depth space in combination with single drives or at the end of group drive line up
- With horizontal busbars e.g. DCS880-A50-0000-0082 $=800 \mathrm{~mm}$ width inside 300 mm free depth space location in the middle or at the end of group drive line up

Joining cabinets

Maximum length of one transportation segment is 3.40 m . Splitting long group drive line up is made by one or more empty cabinets in combination with a joining cabinet KIT (+S818):

DCS880-A50-0000-00x2 +S818

Horizontal busbars located on the rear side of line up. Joining cabinet give access to the horizontal busbar from front and give the option to join horizontal busbars from front.

[^6]
EMC-Filters for drives cabinets

- Located in separate cabinet next to drive cabinet. Separate cabinet (on request, + P902 is required).

Cabinet alignment

A back to back alignment for the cabinet sizes $\mathrm{H} 7, \mathrm{H} 8$ and H8P can be selected for IP42 with plus code (+C160). This will provide a cabinet depth with 1200 mm (2 x 600 mm).

12-pulse Configuration parallel, serial, sequential
The converters can be ordered with connection between 12-pulse master and 12-pulse follower.
For the 12-pulse serial emergency short circuit busbars are available.
12-pulse parallel configuration (+S751) available for: 1900 A ... 5200 A, 230 ... 1000 (1190) VAC from H7 to H8P.

12-pulse serial and sequential configuration (+S752) available for:
2050 A ... 5200 A, 230 ... $600 \mathrm{~V}_{\mathrm{AC}}$ per H7, H8 converter and $350 \mathrm{~V}_{\mathrm{AC}}$ per H 6 converter.

Serial sandwich configuration available for: 1900 A ... 3000 A, $230 \mathrm{~V}_{\mathrm{AC}} \ldots 800 \mathrm{~V}_{\mathrm{AC}}$ per H 7 converter. Note: see also manual for 12-pulse operation 3ADW000533.

Layout of DCS880-A0x-9600-xxP1 + three-phase field exciter (as option)

DCS880-A Electrical options

Field exciter options

Each motor requires an exciter circuit.
Converter size H1 ... H4 offer OnBoard exciters which are always included.
Size H1 (400 V / 500 V) - 12 A field current.
Size H2 (400 V / 500 V) - 18 A field current.
Size H3 (400 V / 500 V) - 25 A field current.
Size H4 (400 V / 500 V) - 30 A field current.

Size $\mathrm{H} 1 \ldots \mathrm{H} 4(600 \mathrm{~V})$ require always separate exciters.

Size H1 ... H4 can be ordered without OnBoard field exciter (+OS163).

The bigger drives can be configured according the

- Rated field voltage
- Rated field current
- Single phase excitation circuit
- Three phase excitation circuit
- Supply voltage of excitation circuit.

For single phase excitation circuits autotransformer can be selected to match supply voltage and rated field voltage. Following excitation devices are available (as separate 1Q exciters). For AC supply voltage see the table below:

- DCF803-0016, $16 \mathrm{~A}_{\mathrm{DC}}$, single phase or three phase (+S711)
- DCF803-0035, $35 \mathrm{~A}_{\mathrm{DC}}$, single phase or three phase (+S713)
- DCF803-0050, $50 \mathrm{~A}_{\mathrm{DC}}$, single phase (+S715)
- DCF803-0060, $60 \mathrm{~A}_{\mathrm{DC}}$, single phase (+S716)

FEX-425-Int $25 A_{D C}$ single phase or three phase, is a special design to be located inside H6 converter module (+S164).

For field reversal (4Q armature bridge) following types are available:

- DCF804-0050-50 $A_{D C}$, single phase (+S718)
- DCF804-0060-60 ADC , single phase (+S719)

Please note:

Field reversal can only be used for none demanding application, running typically in one direction (propulsion, extrusion, kiln ...).

| Unit type | Output
 current lcc | AC field supply
 voltage | T3
 avail. |
| :--- | :---: | ---: | ---: | ---: |
| DCF803-0016 | $0.3 \ldots 16 \mathrm{~A}$ | $110 \mathrm{~V}-15 \% \ldots 500 \mathrm{~V} / 1-\mathrm{ph}+10 \%$ | |
| single-phase | | | |\quad •

Options for single-phase field exciters

For field supply voltage $>500 \mathrm{~V}$ and a field exciter module DCF80x or FEX-425 an autotransformer (T3) is needed.

- Autotransformers (T3.xx) ratings are $400 \mathrm{~V} . . .690 \mathrm{~V}$ and are available for single-phase exciters.
- The maximum (auto-) transformer input voltage of DCF803-0050/0060 and DCF804-0050/0060 is 690 V. Higher input voltages or three phase field exciters require an isolation transformer. Therefore external field supply is a possible option (+S650) to use an existing transformer outside of the cabinet.
Note: An autotransformer is recommended for single phase DCF803, if the rated field voltage of the motor is lower than 60 \% of the rated field AC supply voltage.

Two different sizes available (7 A ... 57 A):

- Transformer 3.0x; AC input 400 ... 500 V (+S615 ... +S618) Transformer 3.1x; AC input 525 ... 690 V (+S620 ... +S624) The autotransformer is selected according to the customer specification of the AC field supply voltage.

* External field supply option (+S650)

Example 1 phase field exciter circuit with T3.0x (500V)

DCSLink communication module

Converter sizes H1 ... H4 can be equipped with a DCSLink board (+S521) to control external (none OnBoard) field exciters.
Converter sizes H6 ... H8P are already equipped with a DCSLink board.

Large field exciter DCS880-S0x... for H7, H8 and H8P Bigger DCS880 drives size $\mathrm{H} 7, \mathrm{H} 8$ and H 8 P can be equipped with three phase exciters and independent excitation supply.
A DCS880 converter module as exciter is combined with DCF506 overvoltage protection and controlled via DCSLink. Converter size $\mathrm{H} 7, \mathrm{H} 8$ and H 8 P can contain following exciter units inside DCS880-A enclosure (control section):

Single bridge converter for single direction field current Q2:

- DCS880-S01-0090-05X0 for $70 \mathrm{~A}_{D C}$ field (+S728)
- DCS880-S01-0270-05X0 for 210 A $_{\text {dc }}$ field (+S729)
- DCS880-S01-0315-05X0 for 250 Adc field (+S730)

Double bridge converter for field reversal Q4:

- DCS880-S02-0100-05X0 for 80 Aoc field (+S739)
- DCS880-S02-0300-05X0 for 240 A dc field (+5740)
- DCS880-S02-0350-05X0 for 265 A D field (+S741)

The selectable converter modules as 3 phase field exciter are limited to a supply voltage of 500 V .
For specific field supply voltages, separate input terminals are needed.

For higher field currents up to 520 A complete DCS880-A enclosed converters are used as field exciters, see +S745 on page 45.

Please note:

Field reversal can only be used for none demanding application, running typically in one direction (propulsion, extrusion, kiln ...).

Fieldbus interface

The field bus interface hardware is made by F-type adapters which are always located in one slot inside DCS880 control unit.

DCS880 can handle up to two F-type field bus adapters Example:

- Slot1 (F-adapter number 1) = Profibus for Control
- Slot2 (F-adapter number 2) = Ethernet for Drive Composer connection or Remote monitoring (NETA-21 module).
Fieldbus adapter list and plus code see technical appendix. The Ethernet network can be built by Ethernet switch (+K480).

AC800M ABB PLC connection

The ABB PLC can be connected by optical DDCS protocol. The FDCO-01 adapter (+L503) is equipped with $2 \times 10 \mathrm{Mbd}$ optical channels which also allows to perform a masterfollower configuration.
The branching unit NDBU95 (+S782) is the optical splitter and used to create the optical DDCS network for control purpose.
NDBU95 is typically located in separate (empty) cabinet.

Hardware IO extension

The DCS880 control board is equipped with

- ($7 \times$ DI, 24 V) digital input
- 4 x relay output hardware interface.

Most of these IO's are typically used for internal purpose. e.g. (Digital input: K1 ack, E-Stop, Off2 command, air cooling feedback ...)
e.g. (relay output: K1 command, K3 command, K6 command ...)
Typically, 2 x DIO, 24 V Hardware interface are free. If application requires (e.g. On and Start command) additional hardware IO resources, then FIO modules are used. Following IO-extensions can be ordered:

Option	Option code	Connections
FIO-01	+L 501	$4 \times \mathrm{DIO}(24 \mathrm{~V}), 2 \times \mathrm{RO}$
FIO-11	+L 500	$3 \times \mathrm{AI}(\mathrm{mA} / \mathrm{V}), 1 \times \mathrm{AO}(\mathrm{mA}), 2 \times \mathrm{DIO}$
FAIO-01	+L 525	$2 \times \mathrm{AI}(\mathrm{mA} / \mathrm{V}), 2 \times \mathrm{AO}(\mathrm{mA})$
FDIO-01	+L 526	$3 \times \mathrm{DI}(24 \mathrm{~V}, 115 \mathrm{~V}, 230 \mathrm{~V}), 2 \times \mathrm{RO}$

The IO module can located on FEA-03 extension adapter and connected via FDCO module inside DCS880.

The option package (+L512) offer 115 V or $230 \mathrm{~V}(24 \mathrm{~V})$

- extra 3 x digital input
- 2 x relay output

Implemented with $1 \times$ FDIO-01 + FEA-03 extension (installed on the bottom left, inside of the cabinet + FDCO-01) as free customer interface.
In this configuration the FEA-03 offers one free slot, which can be used for

- second FDIO-01 extension module (+L526)
- FEN-01 or FEN-31 encoder speed feedback adapter
- FAIO PT100 temperature measurement function (two channels) (+L529).
- other IO-modules

If one FEA-03 adapter is not enough then a second FEA-03 adapter (+L515) can be selected and connected.

Note: The firmware can only handle max 3 of analog / digital extension modules (FDIO-01, FAIO-01, FIO-x1).

Speed measurement

DCS880 control board is equipped with analog tacho input and (grounded) encoder input for TTL (5 V) and HTL (24 V) encoders. The encoder cable can be extended and routed to a separate terminal block (+L504).

If isolated encoder interface is required (e.g. very long cable ...), then

- FEN-01 (TTL) (+L517)
- FEN-31 (HTL) (+L502)
can be used. They are typically located on FEA-03 extension adapter which is located at the left bottom inside the control cabinet.
If encoder signal also needed for PLC, then splitter OM3-3A can be used and one output be conceded to DCS880 OnBoard encoder interface (XENC).

Electrical accessories

Anticondensation heater of cabinet

50 W heater per cabinet to prevent condensation. Supplied by $230 \mathrm{~V}_{\mathrm{Ac}}$ from customer via terminals (X19) (+G300).

Lighting of the cabinet

LED lighting, including door contact. Supplied by 230 VAC / $115 \mathrm{~V}_{\mathrm{Ac}}$ from customer via terminals (X19) (+G301).

Plug socket

The plug socket is wired to $230 \mathrm{~V}_{\mathrm{AC}}$ customer terminal (X19) and the housing is according to German standard (+S790) or US (+G324).

Aux. transformer (T2)

All converter cabinets are equipped with a transformer (T2). Standard configuration is $230 \mathrm{~V}_{\mathrm{AC}}$ output for IEC - $115 \mathrm{~V}_{\mathrm{AC}}$ output aux. supply voltage can be selected (+G304). The transformer T2 is connected to the main contacts by default and is available for typical voltages $\leq 690 \mathrm{~V}$. For higher or special main supply voltages the transformer needs an external power supply (+S651).
A cabinet without transformer T2 can be selected with (+G307) - aux. supply $230 \mathrm{~V}_{\mathrm{AC}} / 115 \mathrm{~V}_{\mathrm{AC}}$ provided directly by customer.

Interface to external UPS

Separate $230 \mathrm{~V}_{\mathrm{Ac}}$ input terminal to supply all necessary components for serial communication (including monitoring network (Drive composer), branching unit NDBU), if the DCS880-A cabinet is switched off. $230 \mathrm{~V}_{\mathrm{AC}}$ UPS performed by customer (+G429).

DC fuses
For DCS880-A02... (4Q) drives from size H1 ... H4
semiconductor fuses for DC output can be selected to protect the motor (+F291). Due to limited space inside the drive cabinet this option is only available for group drives. For single drives with 2 anti-parallel bridges an additional 400 mm cabinet is required.

Example DC semiconductor fuses for Q4 drives with micro-switch Motor fan starter with optional external supply

Monitoring

Remote condition monitoring
The drive remote condition monitoring transfers typical operation and drive data to cloud.
Cloud function can display drive operation and support optimization. Further information please see: https://ability.abb.com/

The gateway to internet is the NETA-21 (+K484) hardware. It requires Ethernet connection to the drive / to the drives.

Temperature monitoring

Two different relays can be included for temperature monitoring of the motor:

- PT100 relay ABB CM-TCS. $13 \mathrm{~S}\left(0^{\circ} \mathrm{C}-200^{\circ} \mathrm{C}\right)$.

Up to three relays can be configured (+L506,+2L506,+3L506).
Each relay is equipped with one PT100 channel and operated completely independent of drive function.

- PTC thermistor relay ABB CM-MSS.23S (+L505).

Insulation monitor

Insulation monitor Bender Isometer ISO685 (A90) earth fault detection for isolated (IT) networks.
An insulation monitor device can be used to continuously measure the insulation status in an unearthed network. The insulation monitor is installed between mains and protective earth (PE). If the insulation resistance is below adjusted values output relays are activated.
For detection of earth faults in both AC and DC circuits. The option isolation monitor (+Q954) is available for converter sizes H6, H7, H8 and H8P and also for the incoming units DCS880-A50-0000-00xx.

Motor fan starter

Motor fan starter is an additional control and protection circuit for motor cooling fan.
This option contains

- Fusing (F6)
- Contactor and control (K6)
- Thermal overload relay (F60).

The supply can be taken from main input of converter. Very often fan motor voltage does not fit to converter supply voltage. Because fan motors are typically built and manufactured for standard voltages, which is more dedicated to typical auxiliary supplies ($400 \mathrm{~V}, 500 \mathrm{~V} / 525 \mathrm{~V}$, $50 \mathrm{~Hz} ; 460 \mathrm{~V}, 60 \mathrm{~Hz}$).
Therefore, the technical appendix requires the input for the auxiliary supply. If needed separate input terminals, for external supply of the fan starter, are added (+M633). Available ratings are 1 ... 24 A, 400 V, 500 V, 600 V, 690 V (+M600...+M659).
For more information see plus code list at technical appendix.

Converter fan supply and transformer

DCS880 converter fan size H7, H8 and H8P are equipped with three phase fans. The supply voltage is designed for typical auxiliary voltages
Size H7: $\quad 400$ V, $50 \mathrm{~Hz} / 525 \mathrm{~V}, 50 \mathrm{~Hz}$ and $460 \mathrm{~V}, 60 \mathrm{~Hz}$.
Size H8, H8P: 400 V, 50 Hz and $460 \mathrm{~V}, 60 \mathrm{~Hz}$.
These converter fans can not be supplied from main converter supply, because the dedicated transformer voltage does not fit.
It is strongly recommended to fill in the aux. voltage and frequency in the technical appendix. The converter will be equipped with additional input terminals for aux. supply to feed the three phase fan.
If the voltage does not fit anyway, then a transformer T8 must be selected.
T8 (auto-) transformer option

- Size H7 input voltage 600 V / 690 V (+S610)
- Size H8 input voltage 525 V / 600 V (+S611)
- Full engineered isolation transformer (+S612)

3 phase converter fan examples H7

Galvanic isolated voltage measurement
Local standards sometimes require galvanic isolated voltage measurement, if supply voltage is higher than 690 V .
DCS880-A enclosed converters from size H7 ... H8P measure the actual voltage by means of high ohmic resistors. This measurement is according the IEC standard (2 Mohm for voltages starting at 790 V).
The option galvanic isolation (+S798) for converters size H 7 , H8 and H8P is a complete isolation of AC and DC voltage measurement.
This isolation is performed by a transformer (T90) for the AC voltage and a galvanically isolated transducer (A92) for the DC voltage.
This option could also be required for 12-pulse serial / sequential above $2 \times 345 \mathrm{~V}_{\mathrm{Ac}}$.

DCS880-A Crane design

General

This cabinet solution is intended to supply crane applications with shared motion requirement. In shared motion, there are 2 motors using one DC converter. The crane cabinets are equipped with one DCS880-S02 converter module size H 6 with internal FEX-425 field exciter and an additional second field exciter as option. Furthermore instead of a ACB a contactor and a MCCB is installed.

The following H6 modules in crane design are available:

DCS880-A02-xxxx-0xC2

400 V	DCS880-A02-1200-05C2 (IEC/UL)
	DCS880-A02-1500-05C2 (IEC/UL)
	DCS880-A02-2000-05C2 (IEC/UL)
525 V	DCS880-A02-0900-06C2 (IEC/UL)
	DCS880-A02-1500-06C2 (IEC/UL)
690 V	DCS880-A02-0900-07C2 (IEC)
	DCS880-A02-1500-07C2 (IEC)

Please note that standard crane cabinet is in group drive design which requires a incoming unit or +H 351 - top entry AC cable connection (800 mm cabinet depth - see also page 36).

Options

The internal field exciter FEX-425 is mendatory and has to be selected via +S164. For the second field circuit the following field exciters are available as option:

Unit type	Output current Icc	AC field supply voltage	Plus code
DCF803-0016	0.3 ... 16 A	110 V-15 \% ... $500 \mathrm{~V} / 1-\mathrm{ph}+10$ \%	+S711
		single-phase	
		three-phase	
DCF803-0035	0.3 ... 35 A	110 V -15 \% ... $500 \mathrm{~V} / 1-\mathrm{ph}+10 \%$	+S713
		single-phase	
		three-phase	
DCF803-0050	0.3... 50 A	$110 \mathrm{~V}-15$ \% ... $500 \mathrm{~V} / 1-\mathrm{ph}+10 \%$	+S715

All other options are available as for the standard enclosed converters.
To have all crance functionalities available an additional application program is required. A memory unit with DCC crane software can be ordered via +S214.

Note: Also see autotransformer options for the supply of the field exciter circuit. All applicable plus codes for the crane design are listed in the technical appendix.
DC connection top is selectable via +H351 in combination with +H 362 (see page 35).

DCS880-A +S745 3-phase field exciters in a separate cabinet

DCS880-A0x-xxxx-04/05X1 +S745

These converters are intended to supply high inductive loads like motor fields or chokes. They are equipped with three phase DCS880-S01 or DCS880-S02 converter modules plus DCF506 over voltage protection.
All available 3-phase field exciter cabinets (+S745) are 600 mm in width and 600 mm in depth.

Options

Auto- and insulating transformers

An autotransformer is used to have a suitable supply voltage level for a field exciter and to reduce voltage ripple. For each 3-phase field exciter an autotransformer is dimensioned individually.
For dimensioning please contact ABB Motion DC Drives, Germany.
Higher input voltages (> $600 \mathrm{~V} / 690 \mathrm{~V}$) require an insulating transformer.
All available 3-phase field exciter cabinets (+S745) are 600 mm in width and 600 mm in depth.

Single line diagram of Field exciter DCS880-A0x-xxxx-04/05X1 +S745

Enclosed 3-phase Field exciters

Unit type	DC I	Power loss	Size
525 V	[A]	[kW]	
DCS880-A01-0090-04/05X1 +S745	70	0.85	H1
DCS880-A02-0100-04/05X1 + S745	80	0.85	
DCS880-A01-0270-04/05X1 +S745	210	1.40	H2
DCS880-A02-0300-04/05X1 + S745	240	1.40	
DCS880-A01-0315-04/05X1 + S745	250	1.89	H3
DCS880-A02-0350-04/05X1 + S745	265	1.89	
DCS880-A01-0405-04/05X1 +S745	300	2.40	
DCS880-A02-0450-04/05X1 + S745	345	2.40	
DCS880-A01-0610-04/05X1 +S745	520	3.00	H4
DCS880-A02-0680-04/05X1 +S745	520	3.00	

Note 1: Limited to $520 A_{D C}$ field current due to the overvoltage protection.
Note 1: All values are valid for IP21 cabinte designs, for IP42 and IP54 a current derating needs to be considered.

Field exciter in a separate cabinet

Component list (standard)
Degree of protection IP 21
Converter module U1
Line reactor L1
Transformer T2 only if required
Overvolt. protect. DCF506
Fuses auxiliary supply F2
Auxiliary relays K8, K15, K16
Isolation switch Q1
Main contactor K1

DCS880-A50 Incomings

Incoming Supply Sections for Line-ups DCS880-A50

Group drive are supplied by horizontal busbars.
The incoming is the common supply connection for the horizontal busbars.
Four different construction types are available. The design is visible on diagrams next page.

DCS880-A50-xxxx-0702 Incoming, no breaker, no switch DCS880-A50-xxxx-07S2 Incoming with isolation switch DCS880-A50-xxxx-07A2 Incoming with circuit breaker DCS880-A50-xxxx-07H2 Incoming pure horizontal busbar connection, no breaker, no switch, no options

The connection to the AC supply can be made by cables or busbars. The cable / busbar entry is at the bottom of the incoming supply section.

Cable connection for 1000 A to 4000 A is standard.
Busbar connection is on request,
The cabinets standard protection class is IP 21.

Basic design

Rated voltage:
Rated frequency:
Rated current:
Short circuit ratings:

400 V, 500 V, 600 V, 690 V
50 Hz or 60 Hz
1000 A, 2000 A, 3000 A, 4000 A
65 kA (1 sec.)

Note: AC horizontal busbars for 4000 A are not available. The 4000 A incoming sections should be placed in the middle of a line up, in order to distribute the AC-current to left and right side (horizontal busbars up to 3000 A can stretch to both sides of such incomer).

Top connection for Incomings

All cabinets (-A50-xxxx--0702/-07S2/-07A2/-07H2) can be equipped with busbars for power supply from the top. Cable connections from the top are just available for ...-07H2 cabinets.

EMC filters

EMC filters are not included in the Incoming If EMC filters are required, then they are located in cabinet next to Incoming - DCS880-A50-xxxx-04/05/06/07E2.

EMC Filters are available for

- 400 ... $500 \mathrm{~V}_{\mathrm{AC}}, 320$... $600 \mathrm{~A}_{\mathrm{AC}}$
- 600 ... $690 \mathrm{~V}_{\mathrm{AC}}, 600$... $2500 \mathrm{~A}_{\mathrm{AC}}$ Please select size of filters according to sum of all rated converter currents minus 10%. The current mentioned above is the nominal current (Irms) on the line side.
- Instead of EMC filters a dedicated transformer can be used.

Insulation monitor

Insulation monitor Bender Isometer ISO685 (A90) earth fault detection for isolated (IT) networks.
An insulation monitor device can be used to continuously measure the insulation status in an unearthed network. The insulation monitor is installed between mains and protective earth (PE). If the insulation resistance is below adjusted values output relays are activated.
For detection of earth faults in both AC and DC circuits.
The option isolation monitor (+Q954) can be mounted inside the cabinet or at the door
(DCS880-A50-xxxx-0702, -07S2, -07A2).

AC voltage measurement (+G334)

- Meter and a switch

All three phases are monitored by means of a switch and a meter. Location of the switch and the meter is in the door in the incoming supply section. No transformers are used.

- With voltage transformers

Voltage transformers are included for AC voltages above 690 V.

AC current measurement (+G335)

- 3-phase (meters and current transformers) All three phases are monitored by means of current transformers and meters. Location of the meters is in the door of the incoming supply section.

Arc detecting (+G336)

- An arc detecting relay is used to supervise the AC bus bars. The type TVOC can handle up to 9 detectors.

- Detecting elements with fibre optic cable lengths of 2 to 20 m are available. It is possible to supervise several spots in one line-up.
Location in separate 400 mm empty cabinet for
 DCS880-A50-xxxx-07S2 and DCS880-A50-xxxx-07A2.

Earthing switch (+F259)

available for 1000 A, 2000 A, 3000 A supply

- Switch

An earthing switch can be used to ground the AC busbars to earth for safety reasons when work must be done in the line-up. Earthing switches are available up to 3000 A and $\mathrm{SCCR}_{\max }=50 \mathrm{KA}$.

Earthing switch

- Electrical interlocking It is possible to have an electrical interlocking between an earthing switch and a supply side isolating switch or circuit breaker. Therefore the earthing switch needs an interlocking coil.

Interlocking coil Earthing switches are available up to 3000 A and $\mathrm{SCCR}_{\max }=50 \mathrm{KA}$.

Branching unit NDBU-95 (+S782)

The branching unit for DriveWindow and channel 0 optical networks can be located inside the incoming supply
DCS880-A50-xxxx-0702, -07S2, -07A2 (max. 2).

- NDBU-95
- NPSM-01, $24 \mathrm{~V}_{\mathrm{DC}}$ power supply is required

Note: The Incoming options are only available for Incoming types DCS880-A50-xxxx-0702/-07S2/-07A2

Incoming DCS880-A50-xxxx-0702 (without switch)

Incoming DCS880-A50-2000-0702 as an example

Single line diagram Incoming DCS880-A50-xxxx-0702

Note 1: Dimensions see table 2, section Dimensions Converter cabinet
Note 2: Available in $1000 \mathrm{~A}_{A C}, 2000 \mathrm{~A}_{\mathrm{AC}}$, $3000 \mathrm{~A}_{A C}$ and $4000 \mathrm{~A}_{A C}$

Incoming DCS880-A50-2000-07S2 as an example

Note 1: Dimensions see table 2, section Dimensions Converter cabinet
Note 2: Available in 1000 A $_{A C}$ and 2000 A $_{A C}$

Incoming DCS880-A50-xxxx-07A2 (circuit breaker)

Incoming DCS880-A50-3000-07A2 as an example

Single line diagram Incoming DCS880-A50-xxxx-07A2

[^7]

Circuit breaker option

(for DCS880-A50-xxxx-07A2)

- The circuit breaker is equipped with
- Overcurrent detection
- Undervoltage detection
- Auxiliary contacts (2 NC, 2 NO)

Note 1: Dimensions see table 2, section Dimensions Converter cabinet
Note 2: Available in $1000 A_{A C}, 2000 A_{A C}$, $3000 \mathrm{~A}_{A C}$ and $4000 \mathrm{~A}_{A C}$

Incoming DCS880-A50-2000-07H2 as an example

Single line diagram Incoming DCS880-A50-xxxx-07H2

Note 1: Dimensions see table 2, section Dimensions Converter cabinet
Note 2: Available in 1000 A $_{\text {AC }}, 2000$ A $_{A C}$ and $3000 A_{A C}$

DCS880-A Basic circuit diagram

DCS880-A External supply options circuit diagram

Safety functions offering

Integrated safety simplifies configuration

Integrated safety reduces the need
 for external safety components. Thus, simplifying configuration and reducing installation space. DCS880 converters offer safe torque off (STO) built in as a standard. STO is used to prevent unexpected startup (POUS) and in stopping-related functions, e.g. E-Stop, enabling safe machine operation and maintenance. With safe torque off activated, the drive will not provide current and thus no torque at the shaft.
The functional safety of the drive is designed in accordance with EN/UL/IEC 61800-5-2 and complies with the requirements of the European Union Machinery Directive 2006/42/EC

Scalable safety according to your requirements

The safety functionality can be scaled from basic wired E-Stop and POUS functionality, to a complete safety system with PROFIsafe and a safety PLC (such as the AC500-S). The more elaborate safety functions such as safely limited speed (SLS) or Safe direction (SDI) are available using the FSO-21 option module.

Emergency Stop (E-Stop) cat. 0 (option)

Emergency stop, cat. 0 schematic
Cat. 0 means stopping by immediate removal of torque to the machine actuators (i.e. coast stop).

For this, the STO function of the drive is used. This function corresponds to an uncontrolled stop in accordance with stop category 0 of EN 60204-1.

Emergency Stop (E-Stop) cat. 1 (option)

Emergency stop, cat. 1 schematic
Cat. 1 means a controlled stop (ramp down the speed) with power available to the machine actuators to achieve the stop and then removal of torque when the stop is achieved (STO). This can be realized with SS1-t (time controlled) function or SS1 function.

Prevention of unexpected start-up (POUS)

The Prevention of unexpected start-up function prevents the drive from generating torque. The POUS function activates the STO function of the drive. By using this function, short-time operations can be performed without switching off and disconnecting the drive. Examples are loading or unloading, cleaning and maintenance work on the non-electrical parts of the machinery.

Safely limited speed (SLS)

Safely limited speed, schematic
The safely-limited speed (SLS) function ensures that the specified speed limit is not exceeded. The SLS safety function can automatically decelerate to a speed below the defined speed limit when it is activated. Both time and ramp monitoring can be used during the deceleration. The SLS function is suitable to ensure that the machine does not exceed a predefined speed e.g. during maintenance or cleaning operations.

Functional safety modules

FSPS-21 PROFIsafe safety module

The FSPS-21 PROFIsafe safety option module enables a safe ethernet connection between drive and safety PLC using PROFIsafe over PROFINET IO.

FSPS-21
With the FSPS-21 module, the following safety functions are supported (with a safety level up to SIL3 / PL e):

- Safe torque off (STO), i.e. coast stop
- Safe Stop 1 (SS1-t), i.e. ramp stop
- POUS (Prevention of unexpected start-up)

FSO-21 safety module

The FSO-21 module provides various safety functions with a safety level up to SIL 3 / PL e.
The safe speed estimate functionality is not available for DCS880. Therefore, an FSE-31 module must be used together with a safe encoder to provide safe speed, direction and position information to the module.

Available safety functions

The following safety functions are supported (with a safety level up to SIL3 / PL e (Cat. 3)):

- STO, with or without SBC (Safe brake control)
- STO with speed limit activated SBC
- SS1 (Safe stop 1)
- POUS (Prevention of unexpected start-up)
- SSE (Safe stop emergency)
- SLS (Safely limited speed)
- varSLS (Variable SLS) ${ }^{1)}$
- SMS (Safe maximum speed)
- SSM (Safe speed monitor)
- SDI (Safe direction)

1) Requires PROFIsafe connection

FSO-21 safety functions can be activated using wired inputs or a PROFIsafe connection. In the latter case, an additional PROFINET IO fieldbus module (e.g. FPNO-21) is needed to connect the drive to the safety PLC.

FSO-21, FSE-31

Integrated safety simplifies configuration

 Easy configurationConfiguring the safety functions module is easy thanks to the graphical user interface of the Drive Composer pro PC tool.

TÜV-certified safety design tool The FSDT-01 functional design safety design tool can be used to design complete safety circuits.
It helps to increase the safety of users in the vicinity of machines. You can perform functional safety modeling, design, calculation and verification for machine functional safety.

Ordering information:

Option	Ordering code
FSPS-21	+Q986
FSO-21	+ Q972 $^{2)}$
FSE-31 (HTL only)	+ L521 $^{2)}$
FPNO-21 (PROFInet)	+ K492
PROFIsafe using FSO-21 ${ }^{\text {3) }}$	+Q982 ${ }^{2)}$

2) For availability please check with your local ABB.
3) For PROFIsafe with FSO-21 (+Q982) also FSE-31 (+L521) and PROFInet fieldbus adapter option FENA-21 (+K475) or FPNO-21 (+K492) is required

Cabinet based safety functions - Configurations

The basic E-Stop-options according to cat. 0 (STO) and cat. 1 (SS1-t) and the POUS safety function can also be realized using safety relays and wired connections. The following pages show typical configurations as examples and illustrate, where the safety relays and the X25 safety bus terminals are located and help to identify the required plus codes and their total number.

	Figure		Incoming	Drive	Drive	Drive	POUS	On	ti	pp	able	Gro	p	泣es
							$\begin{aligned} & \text { Non } \\ & \text { ón } \\ & + \end{aligned}$	$\begin{aligned} & \text { in } \\ & \stackrel{1}{\circ} \\ & + \end{aligned}$	$\begin{aligned} & \text { Ñ } \\ & \text { ก̈ } \\ & \text { + } \end{aligned}$	$\begin{aligned} & \text { M } \\ & \text { O} \\ & \underset{+}{+} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { + } \\ & \stackrel{0}{\circ} \\ & \underset{+}{+} \end{aligned}$	$\begin{aligned} & \text { N్ } \\ & \text { N } \\ & + \end{aligned}$	$\begin{aligned} & \text { O } \\ & \text { N } \\ & + \end{aligned}$	N N +
Single drive, each drive one E-Stop each drive one POUS	1			$\begin{gathered} \hline \text { E-Stop } \\ \text { POUS } \end{gathered}$	$\begin{array}{r} \hline \text { E-Stop } \\ \text { POUS } \end{array}$	$\begin{array}{r} \hline \text { E-Stop } \\ \text { POUS } \end{array}$	n	n	n	n	n			
Group drive, one E-Stop for all each drive one POUS	2		E-Stop	$\begin{array}{r} \mathrm{X} 25 \\ \text { POUS } \end{array}$	$\begin{array}{r} \mathrm{X} 25 \\ \text { POUS } \end{array}$	$\begin{array}{r} \mathrm{X} 25 \\ \text { POUS } \end{array}$	n	x	x	x	x	n		
Group drive, one E-Stop for all, one POUS for all	3		$\begin{array}{r} \text { E-Stop } \\ \text { POUS } \end{array}$	$\begin{aligned} & \text { X25 } \\ & \times 25 \end{aligned}$	$\begin{aligned} & \mathrm{x} 25 \\ & \mathrm{x} 25 \end{aligned}$	$\begin{aligned} & \mathrm{X} 25 \\ & \mathrm{X} 25 \end{aligned}$	x	x	x	x	x	n		
Two line-ups, one E-Stop for all, one POUS for all	4	Line-up 1	$\begin{array}{r} \text { E-Stop } \\ \text { POUS } \\ \text { ransmitter } \end{array}$	$\begin{aligned} & \mathrm{x} 25 \\ & \times 25 \end{aligned}$	$\begin{array}{r} \mathrm{X} 25 \\ \times 25 \end{array}$	$\begin{array}{r} \mathrm{X} 25 \\ \mathrm{X} 25 \end{array}$	x	x	x	x	x	n	x	
		Line-up 2	Receiver	$\begin{array}{r} \mathrm{X} 25 \\ \times 25 \\ \hline \end{array}$	$\begin{array}{r} \times 25 \\ \times 25 \\ \hline \end{array}$	$\begin{array}{r} \times 25 \\ \times 25 \\ \hline \end{array}$	*	*	*	*	*	n		x

n : needed n times, $\mathrm{n}=$ number of drives.
x : needed once

* Not needed, logic for feature in line-up 1

Figure 1

Incoming	$\begin{gathered} \quad \text { Drive } \\ \hline \text { ESTOP } \end{gathered}$	Drive	\ldots	Drive
		$0=$ ESTOP	OESTOP	
	Of pous	θ pous		Pous

Figure 2

Figure 3

Figure 4

x option +S925,
$1 \times$ option + S926,
$1 \times$ option + S927.

Cabinet based safety functions - Available plus codes

The following list helps choosing the correct plus codes for a (group) drive according to the configurations on the previous page. The desired E-Stop and / or POUS options must be chosen once for each single drive (figure 1) or each group drive (figure 2 ... 4). With a configuration according to figure 2, the POUS option must be chosen for each drive as well. Options +Q957 (POUS), +S925, +S926 and +S927 are defined by the configuration on the previous page.

	Classic Electrical Stop non safety related using delayed opening contactor	
$\begin{aligned} & + \text { Q951 } \\ & 1 \mathrm{x} \end{aligned}$	Emergency Stop cat. 0 with opening the Main contactor according EN 60204-1	
	The mains contactor is opened off after STO ist achieved.	
$\square \mathrm{x}$	Response time:	520 ms or less (from input to the safety relay until safe torque off)
	Safety integrity level (SIL):	3
	Performance level (PL):	e
	Category:	3
	according EN 60204-1	
$\square 1 \mathrm{x}$ $\square \mathrm{x}$	The mains contactor is opened off after STO ist achieved.	
$\square \square \mathrm{x}$	Configurable ramp time:	0 to 999s
	Response time:	30 ms or less from input to the safety relay to trigger the 0 to 999 s (as set by safety timer relay) for ramp stop; $540 \mathrm{~ms}+$ Emergency stop deceleration ramp time or less (from input to the safety relay until safe torque off)
	Safety integrity level (SIL):	3
	Performance level (PL):	e
	Category:	3
+Q963	Emergency Stop cat. 0 without opening the Main contactor	
$\square 1 \mathrm{x}$	according EN 60204-1	
	The mains contactor is not opened off after STO ist achieved.	
$\square \mathrm{x}$	Response time:	520 ms or less
		(from input to the safety relay until safe torque off) 3
	Performance level (PL):	e
	Category:	3
+Q964		
$\square 1 \mathrm{x}$	according EN 60204-1	
	The mains contactor is not opened off after STO ist achieved.	
$\square \mathrm{x}$	Configurable ramp time:	0 to 999s
	Response time:	30 ms or less from input to the safety relay to trigger the 0 to 999 s (as set by safety timer relay) for ramped stop; $520 \mathrm{~ms}+$ Emergency stop deceleration ramp time or less (from input to the safety relay until safe torque off)
	Safety integrity level (SIL):	3
	Performance level (PL):	e
	Category:	3
+Q957	Prevention of unexpected start-up	
1 x	according EN ISO 14118	
	The mains contactor is not opened off after STO ist achieved.	
x	Response time:	520 ms or less (from input to the safety relay until safe torque off)
	Safety integrity level (SIL):	3
	Performance level (PL):	e
	Category:	3
x + S925	Terminal X25 for safety options in group drive incl. engineering fee used as an interface to the drive for common SS1-t, STO, MC open command and feedback loops.	
$1 \mathrm{x}+\mathrm{S} 926$	Safety transmitter - group drive	
	Transmitting interface to up to 2 other line-ups with same E-Stop / POUS group	
	Safety integrity level (SIL): 3	3
	Performance level (PL):	e
$1 \mathrm{x}+\mathrm{S} 927$	Safety receiver - group drive Receiving interface with same E-Stop / POUS group; provides information for next terminal X25.	
	Additional response time:	+S926 and +S927 increase the response time of the group safety functions (SS1-t, STO and MC open command) in the receiving line-up by 40 ms in total.
	Safety integrity level (SIL):	
	Performance level (PL):	e
	Category:	3

Disclaimer for customer-specific functional safety circuits

DCS880-A enclosed converters offer a wide variety of functional safety (FS) circuits (+Q951, +Q952, +Q963, +Q964, +Q957) and combinations of these.

These options have been thoroughly developed and tested. They are built according to the machine directive (CE marking) and have been approved by 3rd party FS authority (TÜV Süd). Any modification of the circuit will void the FS approval If nevertheless a customer decides to use different FS circuits or functions which are NOT according to the standard configurations, we will implement that under following pre-conditions:

- Customer-specific FS circuits are not approved and will not be tested during the factory development process.
- Customer-specific FS circuits are not part of the routine test of the DCS880 drive system. The customer needs to ensure proper testing after the delivery of the enclosed converters on site
- FS of the DCS880-A enclosed converter and the drive system/machine is in customer's responsibility.
- The customer will prepare a component list of the customer-specific FS circuit.
- The customer will prepare circuit diagrams of the customer-specific FS circuit.
- The customer will prepare a routine test specification for the customer-specific FS circuit.
- The customer specific circuit diagrams must be implemented into the project. The customer has to approve the DCS880-A enclosed converters circuit diagrams and their implementation. Any delay of approval will delay the delivery date.
- The use of the customer-specific FS circuit is at customer's own risk. Full responsibility and legal liability for the FS circuit is up to the customer. The factory declines any responsibility.
- The factory delivers only standard manuals with standard test instructions (acceptance test) and the FS calculation of the standard circuit. The customer must adapt these documents to comply with the FS standards. Any changes to the FS circuits on site must be documented in the machine logbook.
- Actual costs will be charged (material, labor and engineering). A minimum fee as per price list applies.

I herewith declare, that I have read and understood above conditions and agree with them. I also acknowledge that the use of the customer-specific FS circuit is at customer's own risk. Full responsibility and legal liability for the FS circuit is up to the customer.

Please fill in:

Company name and legal address: \qquad
\qquad
\qquad

Name, position:

Date, place:

Signature:

Type code

Plus codes

Option	Description
0 OS163	No OnBoard field exciter
OS775	W/o ACB for D6/H7 (2050 A ... 3000 A) 500 V ... 690 V
B054	IP42 (air inlet filter)
B055	IP54
C129	Built according to UL/CSA standard
C130	Air outlet duct connection
C160	Back to back cabinet alignment
F259	Earthing switch - only for incoming units
F291	Fuses in DC output
G300	Anticondensation heater
G301	Cabinet lighting
G304	Transformer T2 and Hardware I/O set to 115 V AC
G307	Terminals for 230 V aux. supply
G312	Tin plated busbars (inside the module for >350 ADc and $\leq 1000 A_{\text {dc }}$)
G324	Plug socket (USA standard); interface to external UPS
G331	E-Stop push button in door (Red)
G332	Electrical disconnect push button on door (Black)
G334	$1 \times$ AC volt meter with phase selector switch (DCS880-A50)
G335	$3 \times$ current meter incl. current transformer (DCS880-A50)
G336	Arc monitoring, TVOC
G341	Cable markings, class B1
G392	Fault pilot light (red)
G429	Interface to external UPS
H351	AC top connection for cabinets - cable connection
H353	DC top connection for cabinets - cable connection
H355	AC top connection for cabinets - busbar connection
H356	DC top connection for cabinets - busbar connection
H362	DC top connection for cables $\mathbf{- 4 0 0} \mathbf{m m}$ additional connection cabinet
J429	Control bluetooth panel ACS-AP-W, instead of ACS-AP-I
K451	FDNA-01, DeviceNet fieldbus adapter
K454	FPBA-01, Profibus DP-Vx fieldbus adapter
K457	FCAN-01, CANopen fieldbus adapter
K458	FSCA-01, Modbus RTU fieldbus adapter
K469	FECA-01, EtherCAT fieldbus adapter
K470	FEPL-02, Ethernet POWERLINK fieldbus adapter
K475	FENA-21, Two-port adapter - Ethernet/IP, Modbus TCP, Profinet IO
K480	Ethernet switch - 8 ports
K484	NETA-21, requires Ethernet interface for the drive
K490	FEIP-21, Two-port Ethernet/IP fieldbus adapter
K491	FMBT-21, Two-port Modbus/TCP fieldbus adapter
K492	FPNO-21, Two-port Profinet IO fieldbus adapter
L500	FIO-11, Analog I/O extension adapter ($3 \times \mathrm{AI} / 1 \times \mathrm{AO} / 2 \times \mathrm{DIO}$)
L501	FIO-01, Digital I/O extension adapter ($4 \times$ DIO $/ 2 \times \mathrm{RO}$)
L502	FEN-31, HTL encoder interface
L503	FDCO-01, DDCS communication 10/10 MBd
L504	OnBoard encoder terminal block
L505	PTC thermistor relay
L506	$1 \times$ PT100 relay
2 L 506	$2 \times$ PT100 relay
3L506	$3 \times$ PT100 relay
L512	$1 \times$ FDIO + FEA-03 extension (bottom left) + FDCO
L515	FEA-03, F-extension adapter for 2 additional slots
L516	FEN-21, Resolver interface
L517	FEN-01, TTL encoder interface
L525	FAIO-01, Analog I/O extension adapter ($2 \times \mathrm{Al} / 2 \times \mathrm{AO}$)
L526	FDIO-01, Digital I/O enxtension adapter ($3 \times$ DI $24 \mathrm{~V}_{\mathrm{DC}}$ or $230 \mathrm{~V}_{\mathrm{AC}}$ / $2 \times \mathrm{RO}$)
L529	PT100 interface on FAIO dual channel
M600	1 ... 1.6 A Starter for motor fan
M601	1.6 ... 2.5 A Starter for motor fan
M604	7.6 ... 10.0 A Starter for motor fan
M633	Supply terminals for motor fan starter
M638	2.3 ... 3.1 A Starter for motor fan
M639	3.1 ... 4.2 A Starter for motor fan
M640	4.2 ... 5.7 A Starter for motor fan
M641	5.7 ... 7.6 A Starter for motor fan
M650	10... 13.0 A Starter for motor fan
M651	13.0 ... 16.0 A Starter for motor fan
M652	16.0 ... 20.0 A Starter for motor fan
M653	20.0 ... 24.0 A Starter for motor fan
M659	Starter unknown (400 V ... 690 V)
P902	Customized options basic fee
P904	Extended warranty 24/30
P909	Extended warranty 30/42
P912	Seaworthy packaging

Option	Description
Q951	Emergency stop cat. O with opening the main contactor
Q952	Emergency stop cat. 1 with opening the main contactor
Q954	Insulation monitor inside for IT net (isolated mains)
Q956	STO reset button in door
Q957	Prevention of unexpected start-up according EN ISO 14118
Q963	Emergency stop cat. 0 without opening the mains contactor
Q964	Emergency stop cat. 1 without opening the mains contactor
Q986	FSPS-21, Two-port Profisafe fieldbus adapter
S164	FEX-425-INT no transformer
S175	SDCS-CMA-02, Current measurement
S186	SCDC-SUB-4, Voltage measurement adaptation board
S521	SDCS-DSL-H10 ($1 \times$ DSL)
S523	SDCS-DSL-H14 (1 x DSL / $4 \times$ optical powerlink)
S551	Memory unit incl. IEC prog. licence (DCS880)
S604	$1 \times \mathrm{DC} / \mathrm{DC}$ transducer $4 / 20 \mathrm{~mA} / 0-10 \mathrm{~V}$
$2 \mathrm{S604}$	$2 \times \mathrm{DC} / \mathrm{DC}$ transducer $4 / 20 \mathrm{~mA} / 0-10 \mathrm{~V}$
S610...	T8 fan auto transformer option
S612	
S615...	Auto transformer T3.0 x $400 \ldots 500 \mathrm{~V}_{\text {AC }}$
S618	
S620...	Auto transformer $\mathrm{T} 3.1 \times 525 \ldots 690 \mathrm{~V}_{\text {AC }}$
S624	
S650	External field supply - supply terminals for customer
S651	External aux. supply - supply terminals for customer
S705	Door key lock, safety key
S711	DCF803-0016 exciter 1Q-16 A
S713	DCF803-0035 exciter 1Q-35 A
S715	DCF803-0050 exciter 1Q-50 A
S716	DCF803-0060 exciter 1Q-60 A
S718	DCF804-0050 exciter 4Q-50 A
S719	DCF804-0060 exciter 4Q-60 A
S721	Mounting fee for 1-ph autotransformer
S728	DCS880-S01-0090-05X0 for 84 Adc field
S729	DCS880-S01-0270-05X0 for 160 Adc field
S730	DCS880-S01-0315-05X0 for 285 Adc field
S739	DCS880-S02-0100-05X0 for 90 Adc field
S740	DCS880-S02-0300-05X0 for 180 Adc field
S741	DCS880-S02-0350-05X0 for 300 Adc field
S745	As Idc stand-alone field exciter ($90 . . .520 \mathrm{~A}$)
S751	Cabinet configuration for DCS880-A parallel, H7 ... H8P
S752	Cabinet configuration for DCS880-A serial/sequent. H7 ... H8P
S755	"Emergency short circuit busbar for DCS880-A, 12-pulse serial/ sequent. H8"
S773	ACB E4.2 for H 83300 ... 4800 A
S774	ACB E6.2 for H85200 A
S776	3rd additional meter
S777	Armature current- and volt-meter
S779	DCS880 Control panel door mounted
S780	Bottom plate
S781	Gland plate and bottom plate
S782	NDBU95 branching unit
S783	ND17 line choke positioning below breaker-2200 ADC (size H7)
S785	Second single phase field exciter
S790	Plug socket (german standard)
S798	Galvanic isolation for voltage measurement
S799	Crane: contactor plus $\mathrm{T}_{\text {max }}$
S800	Cabinet depth 800 mm
S818	Joining cabinet KIT - Connection for horizontal busbars
S820...	Horizontal AC busbars, $1000 \mathrm{~A}_{\text {Ac }} \ldots . .3000 \mathrm{~A}_{\text {Ac }}$, copper
S823	Horizontal AC busbars, $1000 \mathrm{~A}_{\text {AC }} \ldots .3000 \mathrm{~A}_{\text {Ac }}$, tin plated
S827	
S870	ACB Emax next to module (size H7)
S925	Terminal X25 for safety options in group drive incl. Engineering fee
5926	Safety transmitter - group drive
S927	Safety receiver - group drive
S958	Emergency stop control circuit
S990	Recommended spare part list
S991	Mechanical drawings as layout (2D AUTOCAD - DWG format)
S992	Visual inspection in the factory - FAT
S993	Function test for 12-pulse configurations
S994	Circuit diagrams - EPLAN format

An extended List of all plus codes with explanation is available in DCS880, DCT880 and DCS800 plus code list.

Appendix

Description	Plus code	H1 ... H4	H6	H7	H8	H8P	Inc.		Crane
Two-Port EtherNet/IP Adapter	K490	\square	\square	\square	\square	\square			\square
FMBT-21 Two-Port Modbus/TCP Adapter	K491	\square	\square	\square	\square	\square			\square
FPNO-21 Two-Port PROFINET IO Adapter	K492	\square	\square	\square	\square	\square			\square
FEPL-02 Ethernet POWERLINK fieldbus adapter (built in)	K470	\square	\square	\square	\square	\square			\square
FPBA-01 PROFIBUS DP-Vx fieldbus adapter (built in)	K454	\square	\square	\square	\square	\square			\square
FSCA-01 Modbus RTU fieldbus adapter (built in)	K458	\square	\square	\square	\square	\square			\square
Functional safety modules									
FSPS-21 PROFISAFE adapter (built in)	Q986	\square	\square	\square	\square	\square			\square
1/O Option									
FIO-01 Digital I/O extension: $4 \times$ DIO; $2 \times$ RO (built in)	L501	\square	\square	\square	\square	\square			\square
FIO-11 Analog I/O extension: $3 \times \mathrm{Al} ; 1 \times \mathrm{AO} ; 2 \times \mathrm{DIO}$ (built in)	L500	\square	\square	\square	\square	\square			\square
FAIO-01 Analog I/O extension $2: 2 \times \mathrm{Al} ; 2 \times \mathrm{AO}$ (built in)	L525	\square	\square	\square	\square	\square			\square
FDIO-01 Digital I/O extension 2: $3 \times \mathrm{DI} 24 \mathrm{~V}_{\mathrm{DC}}$ or $110 \mathrm{~V} / 230 \mathrm{~V}_{\mathrm{AC}}+2 \times \mathrm{RO}$	L526	\square	\square	\square	\square	\square			\square
FEN-01 TTL Encoder Interface TTL Encoder Interface	L517	\square	\square	\square	\square	\square			\square
FEN-21 Resolver Interface Resolver Interface	L516	\square	\square	\square	\square	\square			\square
FEN-31 HTL Encoder Interface HTL Encoder Interface	L502	\square	\square	\square	\square	\square			\square
OnBoard encoder terminal block Cable extension to XENC bottom left	L504	\square	\square	\square	\square	\square			\square
$115 \mathrm{~V} ; 230 \mathrm{~V}(24 \mathrm{~V}$) extra $3 \times$ digital input $1 \times$ FDIO + FEA extension (bottom left) + FDCO	L512	\square	\square	\square	\square	\square			\square
FEA-03 F-extension adapter, $2 \times$ slot	L515	\square	\square	\square	\square	\square			\square
FDCO-01, DDCS communication 10/10 MBd Optical DDCS communication 10/10 MBd	L503	\square	\square	\square	\square	\square			\square
PT100 interface on FAIO dual channel Use free slot of L512 bottom left	L529	\square	\square	\square	\square	\square			\square
SDCS-DSL-H10 (1 x DSL) Peer-to-Peer interface for DCSLink; (already included in H5 ... H8)	S521	\square							
DC/DC transducer $4 . . .20 \mathrm{~mA} / 0 . . .10 \mathrm{~V}$	S604	\square	\square	\square	\square	\square			\square
Memory unit									
Memory unit incl. IEC prog. licence (DCS880) "Programming licence pre-loaded (built in) not in combination with other application software"	S551	\square	\square	\square	\square	\square			\square
DCC crane software	S214								\square
Door accessories									
Door key lock, safety key Price per door, not complete converter	S705	\square							
Additional third meter on cabinet door	S706	\square	\square	\square	\square	\square	\square		
Armature current and voltmeter Installed on (control) cabinet door	S776	\square	\square	\square	\square	\square	\square		\square
$1 \times$ AC voltmeter with phase selector switch Incoming option	S777	\square	\square	\square	\square	\square	\square		\square
$3 \times$ current meter incl current transformer Incoming option	G392	\square	\square	\square	\square	\square	\square		\square
Fault pilot light (red) e.g. E-Stop, tripped, ...	S779	\square	\square	\square	\square	\square	\square		
Red E-stop button in door (E-stop control from remote)	G331	\square	\square	\square	\square	\square	\square		\square
Electrical disconnect push button on door (Black) Push button black latching, turn to release	G332	\square	\square	\square	\square	\square			\square
Red E-stop button in door (E-Stop control from local)	S331	\square	\square	\square	\square	\square	\square		\square
STO reset button in door - Automatic restart is not allowed	Q956	\square	\square	\square	\square	\square	\square		\square
Monitoring									
NETA-21 Ethernet interface on drive required	K484	\square							
PT100 relay ABB CM-TCS.13S, $1 \times$ channel ($0 . . .200^{\circ}$)	L506	\square	\square	\square	\square	\square			\square
PTC thermistor relay ABB CM-MSS.23S, $1 \times$ channel									
Insulation monitor inside for IT net (isolated mains) Bender ISO-685, incl. detection and alarm circuit	Q954		\square	\square	\square	\square	\square		\square
POUS single + group drive									
Prevention of unexpected start-up according EN 60204-1 STO including indication lamp in door	Q957	\square							
Single drive functional safety									
Emergency Stop cat. 0 with opening the Main contactor STO (coast stop)	Q951	\square	\square	\square	\square	\square		\square	\square
Emergency Stop cat. 1 with opening the Main contactor SS1-t (ramp stop+STO)	Q952	\square	\square	\square	\square	\square		\square	\square
Emergency Stop cat. 0 without opening the Main contactor STO (coast stop)	Q963	\square	\square	\square	\square	\square		\square	\square
Emergency Stop cat. 1 without opening the Main contactor SS1-t (ramp stop+STO)	Q964	\square	\square	\square	\square	\square		\square	\square
Emergency stop control circuit According customer specification, no approval	S958	\square	\square	\square	\square	\square			\square
Group drive \& master-follower functional safety options									
Terminal X25 for Safety Options in Group drive incl. engineering fee interface for common SS1-t and STO command+ feedback loop	S925	\square	\square	\square	\square			\square	\square
Starter for motor fan (max one)									
External supply terminals for motor fan starter	M633	\square	\square	\square	\square	\square			\square
1... 1.6 A Starter (IEC) 1 pc for one motor fan; 400 V ... 690 V	M600	\square	\square	\square	\square	\square			\square
1.6 ... 2.5 A Starter 1 pc for one motor fan; 400 V ... 690 V	M601	\square	\square	\square	\square	\square			\square
2.3 ... 3.1 A Starter 1 pc for one motor fan; 400 V ... 690 V	M638	\square	\square	\square	\square	\square			\square
3.1 ... 4.2 A Starter 1 pc for one motor fan; 400 V ... 690 V	M639	\square	\square	\square	\square	\square			\square
4.2 ... 5.7 A Starter 1 pc for one motor fan; 400 V ... 690 V	M640	\square	\square	\square	\square	\square			\square
5.7 ... 7.6 A Starter 1 pc for one motor fan; 400 V ... 690 V	M641	\square	\square	\square	\square	\square			\square
7.6 ... 10.0 A Starter 1 pc for one motor fan; 400 V ... 690 V	M604	\square	\square	\square	\square	\square			\square

Description	Plus code	H1 ... H4	H6	H7	H8	H8P	Inc.		Crane
10 ... 13.0 A Starter 1 pc for one motor fan; 400 V ... 690 V	M650	\square	\square	\square	\square	\square			\square
13.0 ... 16.0 A Starter 1 pc for one motor fan; 400 V ... 690 V	M651	\square	\square	\square	\square	\square			\square
16.0 ... 20.0 A Starter 1 pc for one motor fan; 400 V ... 690 V	M652	\square	\square	\square	\square	\square			\square
20.0 ... 24.0 A Starter 1 pc for one motor fan; 400 V ... 690 V	M653	\square	\square	\square	\square	\square			\square
Group drive options									
Horizontal AC busbars, $1000 \mathrm{~A}_{\text {AC }}$, Copper Group drives connection with Incomer	5820	\square	\square	\square			\square	\square	\square
Horizontal AC busbars, 2000 A $_{\text {AC }}$, Copper Group drives connection with Incomer	S821	\square	\square	\square			\square	\square	\square
Horizontal AC busbars, $3000 \mathrm{~A}_{\text {AC }}$, Copper Group drives connection with Incomer	S823	\square	\square	\square			\square	\square	\square
Horizontal AC busbars, $1000 \mathrm{~A}_{\text {AC }}$, tin plated Group drives connection with Incomer	S825	\square	\square	\square			\square	\square	\square
Horizontal AC busbars, $2000 \mathrm{~A}_{\text {AC }}$, tin plated Group drives connection with Incomer	S826	\square	\square	\square			\square	\square	\square
Horizontal AC busbars, $3000 \mathrm{~A}_{\text {AC }}$, tin plated Group drives connection with Incomer	S827	\square	\square	\square			\square	\square	\square
POUS single + group drive, Incoming + empty cabinet DCS880 A05 ...									
Prevention of unexpected start-up according EN 60204-1 STO including indication lamp in door	Q957	\square							
Engineered									
Customized options basic fee (ETO - Engineered to order)	P902	\square	\square	\square	\square	\square	\square		\square

Documentation Options

Description	Plus code	available
Bill of materials - PDF Format	\square	
Layout Drawings - mechanical dimensions - PDF Format	\square	
Circuit Diagrams - PDF Format		\square
Partlist of electrical components as EXCEL file	$\mathbf{S 9 9 0}$	\square
Mechanical Drawings as layout - 2D AUTOCAD - DWG Format	$\mathbf{S 9 9 1}$	\square
Circuit Diagrams - EPLAN Format	$\mathbf{S 9 9 4}$	\square

\square standard
\square available option
(\square) option partly available
www.abb.com/dc-drives
www.abb.com/drivespartners
© Copyright 2023 ABB. All rights reserved.

[^0]: Current reduction to \% of nominal converter current

[^1]: Explanations to the table
 $x=\mathbf{1} \Rightarrow 2$-Q converter
 $x=\mathbf{2} \Rightarrow 4-Q$ converter
 $y=\mathbf{1} \Rightarrow$ single drive
 $\mathrm{y}=\mathbf{2} \Rightarrow$ group drive
 $\mathrm{z}=\mathbf{0} \Rightarrow$ incoming, no breaker, no switch
 $z=\mathbf{S} \Rightarrow$ incoming with isolation switch
 $z=\mathbf{A} \Rightarrow$ incoming with circuit breaker
 $z=\mathbf{H} \Rightarrow$ incoming, no breaker, no switch, no options
 $\mathbf{P} \Rightarrow$ hard parallel (two conv. mod. in parallel)
 Voltage class:
 see left side

[^2]: DCS880-A0x-1900 ... 3000 standard single drive (left hand connection) (H7)

[^3]: Layout of DCS880-A0x-9600-xxP1 + three-phase field exciter (as option)

[^4]: (1) For H 7 and H 8 enclosed converter (only for the converter cabinet) the air outlet is build without IP42 mesh. Instead the converter cabinet air outlet

[^5]: Example busbars for DC from top

[^6]: Empty cabinet as Group Drive (example: $600 \mathrm{~mm} . .$.)

[^7]: Single line diagram Incoming DCS880-A50-xxxx-07A2

