ABB industrial drives

Application guide
Application programming for ACS880 drives

List of related manuals

Drive application and firmware manuals and guides Code (English)
Application programming guide for ACS880 drives 3AUA0000127808
ACS880 primary control program firmware manual 3AUA0000085967
Drive composer start-up and maintenance PC tool user’s 3AUA0000094606
manual

AC500 Control Builder PS501 Complete English 3ADR025078M02xX

documentation

You can find manuals and other product documents in PDF format on the Internet. See section Document
library on the Internet on the inside of the back cover. For manuals not available in the Document library,

contact your local ABB representative.

Application guide

Application programming for ACS880 drives

3AUA0000127808 Rev
EN

© 2013 ABB Oy. All Rights Reserved

Table of contents

Introduction to the manual

What this Chapter CONTAINS.oviiiiiiiiiiiie et
(@] o] o =1 1] o 11 Y20
S Fo = AT 1] (0 o] 1] U
JLIE= 0 1] 8= T8 Lo 1= o o] TSRS
Purpose of the ManuUal...............ooi i e
Contents Of the MANUAL............oi i e e e et e e e et eeeees
R F= 1= To I (o ToTU [=T o) P
Terms and abbreVIatioNSoouuiiiiiiii e e e e e e a e e aaaae

Drive IEC programming

What this chapter CONLAINS.............uuiiii e e e e eeaaee
Drive’s embedded PLC e
Programming languages and MOUUIES............uuuiiiiiiiii s
LIDTAIIES . a e
PrOQram EXECULION. .. .uuuutiiiiiiiiiiiii s e aeaaeas
Programming WOIK CYCIE.......uuuiiiiiiiii e

Installation

What this chapter CONTAINS.ovviiiiiiiiiiiii e
Installing ABB Control BUilder PIUSooouiiiii e
Establishing communication t0 the AriVecooiiiiiiiii e

Creating application program
What this Chapter CONAINS.oiiiiiiiiiiiiiiiiieee e
Creating @ NEW PIOJECT.....coii oot et e e et e e et e et eaees
Establishing an on-line connection to the driveceoiiiiiiiieicce e,
Naming the appliCatioNuuuii i e e e e e
Appending @ NEW POU ...
WIHtING PrOGram COUEooviiiiiiiiiiiiiiieeeeee ettt
Continuous function chart (CFC) Programeeeeeeeieemeniiii s
PN [0 [T To J=11=T 0 4 1=T o €SS
Setting the execution order of the elementscoooviiiiiiiiiic e,
Adding a comment to & CFC Programueuummiimiii s
Declaring variabIes. ...
Adding INPUtS and the OULPULSeueiiiiii s
Creating a bloCK SCheME........ccoiiii e
Preparing a project for doWnlOadouvviiiii i

10
10
10
10
11
11
11
11
11

14
14
14
16
16
16
17

18
18
18
20

Downloading the program to the driVecocoeiiiiiii e
EXECULING the PrOGIaIM......oiieiiii e e e e e e e e e e e e e e a e e e e eaees

Features
What this Chapter CONLAINSoooii e e e e e e
D=2V o= aT= T aTo | T o PSSP
Upgrading or adding @ NEW GEVICEciiiieiiiieiiiiie e e e e
Changing an exiSting AeVICEuuuiiiii e e
Program organization UNitS (POU)iiii i
Dz 1= 1Y 011 TSP UP PP PPPPPTRRPPPN
Application downIoad OPLIONSccoviiiiiiiii e e e e e
Removing the application from the targetcccoooe i e
REtAIN VANIADIES.......cooiiiiiiiii ettt
TaSK CONFIQUIALIONeiii et e e e e e e ettt e e e e e e e e eeenenn s
Source code upload and dOWNIOAd..............uuuiiiii i
SYMDBOL FIES ... e e e e
Debugging and on-liN€ ChaNQESccooii i
S F= 10 (=] 018 o o] oo [
TS = 0] o0 1P
RV = 11172 U1 o] o S
1T T Y2 1 1 PSSP
(O U 110011 7= 1o o P

Drivelnterface
What this chapter CONLAINSooiiiiii e e
Implementing DriVEINTEITACEcooieeee e
Selecting the ParamMeter SEL........couviiiiii i e
Parameter MapPiNg FEPOIT.cciiiiiiiiiiiii e
MaPPING EXAMPIE ... et e e e e e et e e e e eaanas
Updating parameter liSt.........oooiiieiie e

Application parameter and event creation
What this chapter CONLAINSooiiiiii e e
ApplicationParameterSandEVENTSoiii i e
ParameterMaNAGET ettt a e et e e e e e e eraans
Creating ParamEter GIOUPS e aa auuteeeeeeaeeeeaaaaeibeseeeee e e e e s s aibbeeee e e e e e e s s aasbbbaeeeeeeeeas
Creating PArMELEIS.ooi ittt e ettt e e e et e e e e e e e et e e e e e e e e e e ar e e e e aeeas
Parameter NAMES and tYPESoviiiiiiiiiiiiiiiit e
Parameter familyouiiii i
FUNCHION TYPES. ..t
SAVING TYPES e
Protection, hiding and excluding from backup ..o,
Minimum, Maximum and Default Valueouviiiiiiiiiiiiiiiiiiiiiiiiiiieaeees
e 1= 10 TS (=T O Y = PP

38
38
38
40
40
41
42
43
44
45
45
46
46
46
47
47
48
48
48

50
50
50
51
51
52
53

Decimal NUMDET ... 58
Formatted NUMDET ... 59
2 0o [=] R 59
[V 2= 1 (U= o o] | 1= SRR 59
Plain VaIUE TStcoo i 59
Bit ISt (16 DIL) oo 60
Parameter fAMIIIES.........uiiiiieiei it 61
Y= [Tox 1 o) 1] £ UPPRTTN 62
] 1 £ RPN 62
PN o] o] Tox= 11 o] g I =2/ | (U 63
Libraries 64
What this chapter CONtAINS.............uiiiii e e e e e e eaaaee 64
LIDIAIY TYPES . 64
Adding a library into the ProJECT..........ovviiiiiiiiiiiiiiie e 66
Creating @ NEW lIDFArYuuuiii e e e e e e e e e et aeaaes 67
INStalliNng @ NEW NIDFAIY ... e e e s 68
Managing lirary VEISIONSuuiiiiiii e 69
Practical examples and tips 70
What this Chapter CONTAINS.eiiiiiiiiiiiiiii e 70
Solving commuNication ProbIEMSuuveiii i e 70
Question: What to do when scan network does not find any drives?...................c..... 70
Solving other ProbIEMS ... 72
Question: How to prevent unauthorized access to an application that is running in the
OEI B 2 e 72
Question: What to do if “The options could not be loaded. (Reason: Root element is
missing.)” error message is displayed when | try to uninstall the software? 72
Question: How to fix an Unknown device in @ Project?.........ccooeeeviiieiiieieieeeeeeeeeeeeeee 72
Question: How to remove a boot application from the flash memory card?................ 72
Question: What to do when | get an error message when | try to download a project
to the target or try to create a boot application?cooevvvviiiiieeeiieeee e 73
Question: How to make a variable which keeps its value over the drive reboot?........ 73
Question: What to do when | continuously receive “The project handle 0 is invalid”
LT o g A 1 TCT ST T U PPPPPTT 73
Question: What to do when stack overflow fault 6487 0CCUIS?ccccooveviiiiiiiviiiinennnn, 74
Question: How to optimize the memory usage of the drive application?..................... 74
Appendix — Incompatible features between versions V3 and V2.3 76
What this Chapter CONTAINS............oiiiii e e e e e e e e 76
Incompatible features between CoDeSys versions V3 and V2.3..........oovviiiiiiiiiiiiiiiiiinnnnnns 76

Appendix - Unsupported features of CoDeSys V3 78

Appendix — ABB drives system library 80
What this Chapter CONTAINScoiiiiiiiiie e e e e e 80
Introduction to ABB drives system liDrary ... 80
Function blocks of the system lIBrary ... 81
Event function BIOCKS.........oooo i 82
BV EN T s 82
REAAEVENTILOG. ... 83
Parameter read function DIOCKScoouiieii e 85
PArREAUBIL. ...ttt 85
ParREaAU_DINT ..ottt e e e e e e e e et e e e e e e e e ettt e e s e eaeeeannnes 86
ParREAI. _REALui i e e e e e et e e e e e e 87
ParRead_UDINT ...t e e e e e e e e et e e e e e e e eeeeennnnnns 88
Parameter write fuNCtion DIOCKS..........coov i 89
ParWIIEEBIL ... 89
=T AT 1 C= T I 1 O PP 90
oYY 1 LT A USSP 91
= AT 1 L= 15 R 92
Pointer parameter read function bIOCK ... 93
o T Y= Y= (o [= 1 I PP 93
ParRead _ValPTR _DINT ...ttt e e e e e e e eeaananas 94
ParRead ValPTR _REAL.......oiiii e e e e e e 95
ParRead _ValPTR_UDINTcooiiiiii e 96
Set pointer parameter to IEC variable function bIOCKSouiiiiiiiiiiiiiiiis 97
ParSet BitPTR _IEC ... 97
ParSet ValPTR _IEC _DINT ..o 98
ParSet VaIPTR _IEC REALccooi oo 99
ParSet ValPTR _IEC _UDINT ..ottt a e 100
Set pointer parameter to parameter function BIOCKS................vviiiiiiiiiiiiiiiiis 101
ParSet_BitPTR _PaAI........couiii it e e e e e e e e e 101
ParSet_ValIPTR _PaAr.......coooiiii e e e et eaaeeaaenes 102
Task time level function DIOCK ... e 103
USEATIMELEVEI ...t e e e e e e e ettt e e e e e eeeeenenes 103
IS o) =T (0] oo Yo [104
Appendix — ABB drives standard library 106
What this Chapter CONLAINSccciiiiiiiii e e e 106
Introduction to ABB drives standard librarycooo oo 106
2 T T (o3 1] od 1 0] o = 107
2 P 107
B O E T 108
DEMUX e 109
31V 0) P 110
11 PR 111

e 5 113
SR D ettt a e e e e e e e e e e e e e e e e e e e aaaaas 114
0 VAT 1 115
SWITCHC ... e aaaaaaaaaaaaaaaens 116
UNPACK ottt s 117
SPECIAI FUNCHIONS. ... e e e e e e e e e e e e 118
DIIVE CONEIOL ..ttt s 118
1= PP 121
FUNCLION QENEIALON ...ttt 122
LT =T =1 (0] O 124
[T T I = Vo RPN 126
Y/ To] (o g o To 1 (=T 01110 4 1] (=] S 128
5 130
S 1 0 o TR 134
Product and ServiCe INQUIMESuuuiiii i e e eeeeeaaees 136

[(0o [T i = 1111 o PRSPPI 136
Providing feedback on ABB Drives manualscccccoiiiiiiii 136

Document library on the INternet ... 136

10

Introduction to the manual

What this chapter contains

This chapter gives basic information on the manual.

Compatibility

This manual applies to the ABB drives that are equipped with the embedded PLC
functionality. For example, ABB ACS880 industrial drives can be ordered with the
embedded PLC programmability.

This manual is compatible with the ACS880 primary control program version 1.3 or later.

This manual is compatible with the ABB PS501 Control Builder Plus (CBP) version 2.3 or
later. Control Builder Plus is part of the ABB Automation builder 1.0 engineering software
suite.

Safety instructions

Follow all safety instructions delivered with the drive.

¢ Read the complete safety instructions before you load and execute the IEC
program on the drive or modify the drive parameters. The complete safety instructions
are delivered with the drive as either part of the hardware manual, or, in the case of
ACS880 multidrives, as a separate document.

e Read the firmware function-specific warnings and notes before changing
parameter values. These warnings and notes are included in the parameter
descriptions presented in chapter Parameters of the firmware manual.

11

Note: Performing on-line changes or program download in a running drive may have
unforeseen consequences and should be avoided.

Target audience

This manual is intended for people who perform drive IEC programming or wish to
understand the programming environment capabilities. The reader of the manual is
expected to have basic knowledge of the drive technology and programmable devices
(the PLC, drive and PC) and programming methods.

Purpose of the manual

This manual gives basic instructions on the drive-based IEC programming using the ABB
Control Builder Plus programming tool. The on-line help of Control Builder Plus contains
more detailed information of the IEC languages, programming methods, editors and tool
commands.

Note: The drive’'s embedded PLC has some functional deviations from the standard
CoDeSys V3 programming. The deviations are listed in Unsupported features.

Contents of the manual

The manual consists of the following chapters:
e Drive IEC programming

e Installation

e Creating application program

e Features

e Drivelnterface

e Application parameter and event creation

e Libraries

e Practical examples and tips

¢ Appendix — Incompatible features between V3 and V2.3
e Appendix - Unsupported features of CoDeSys V3
e Appendix — ABB drives system library

o Appendix — ABB drives standard library

Related documents

A list of related manuals is printed on the inside of the front cover.

Terms and abbreviations

Term/Abbreviation Description

ACS-AP-x ACS-AP-1 or ACS-AP-S control panel used with ACS880 drives. The control
panel has an USB connector enabling a PC tool connection for common
architecture drives.

BCU Type of control unit used in ACS880 drives

12

CBP ABB Control Builder Plus programming tool
CFC Continuous function chart programming language
DI Digital input

Drive composer pro

Drive composer is a 32-bit Windows application for commissioning and
maintaining ABB common architecture drives.

The full version is called Drive composer pro.

DUT Data type unit

FB Function block, type of POU

FBD Function block diagram programming language
FUN Function, type of POU

IEC programming

Standardized programming language for industrial automation. Established by
the International Electrotechnical Commission (IEC)

IL Instruction list programming language

LD Ladder diagram programming language

OPC server OPC DA server interface for Drive composer pro that allows other programs,
such as Control Builder Plus, to communicate with the drive.

PIN IEC variable of the block, which can be connected to other blocks.

PLC Programmable logic controller

POU Program organization unit. POU unit is a unit, object or area where you can
write the program code. Also called as Block.

PRG Program, type of POU

RTS Run-time system

SFC Sequential function chart programming language

ST Structured text programming language

ZCU Type of control unit used in ACS880 drives that consists of a ZCON board built

into a plastic housing.

The control unit may be fitted onto the drive/inverter module, or installed
separately.

For more detailed descriptions, see also the CPB on-line help.

13

14

Drive IEC programming

What this chapter contains

This chapter describes the drive programming environment and a typical work cycle of
the drive IEC programming.

Drive’'s embedded PLC

ABB ACS880 industrial drives can be ordered with the embedded PLC functionality. It
allows you to add your own program code to the drive using the ABB Control Builder Plus
programming tool (version 2.3). The programming environment is based on the IEC
61131-3 programming standard. ABB Control Builder Plus (CBP) is used also for
configuring and programming the ABB AC500 PLC family devices.

Note: For using ABB Control Builder Plus on-line with the drive, the IEC programming
license must be enabled in the target drive.

With the embedded PLC, you can create application-specific features on top of the drive’s
firmware functionality and utilize the drive’s standard and extension I/O and
communication interfaces and firmware signals for that purpose. Your program is
executed in parallel with the drive control tasks and using the same hardware resources.

In addition, you can create your own parameters and events (faults and warnings) that
are visible on the ACS-AP-x control panel and in the Drive composer pro/entry
commissioning tools.

The following simplified system diagram shows the application programming environment
in the same control unit as the drive firmware.

15

ZCU-xx or BCU-xx control unit

i Fw paramelers [FW events -
IEC User System Info
fune parameters User aevents

AEB Drive
COMpasar pro

FW parameters

(10, drive control) D2D communication, Ext /O, etc

ACS880 firmware

Figure imgl
The following lists give the main components for application programming.
Drive control unit:
¢ Run-time system (RTS) to execute the application program

¢ Drivelnterface to make input/output mapping between the IEC program and drive
firmware parameters

e System function library to access the drive system services (parameters/ events/
drive-to- drive communication, extension 1/O)

e User-made parameters

¢ User-made events (fault, warnings)

o Drive System info includes version information of the application program.
Drive memory unit:

e Permanent version of the application program (Boot application)

Retain values of the IEC variables

e Source code of the application (Note that the size of the memory is limited.)

¢ Symbol and address information of the IEC variables for monitoring purposes.

PC tool programs:
e ABB Control Builder Plus 2.3 for IEC program development and on-line operations

¢ ABB Drive composer pro for drive parameter, signal, event log monitoring and
settings

e |EC function libraries (for example, ABB standard library).

16

Programming languages and modules

The programming environment supports programming languages as specified in the
IEC 61131-3 standard with some useful extensions. The supported programming
languages are:

e Ladder diagram (LD)

¢ Function block diagram (FBD)

e Structured text (ST)

e Instruction list (IL)

e Sequential function chart (SFC)

e Continuous function chart (CFC), normal and page-oriented CFC editor.

A program can be composed of multiple modules like functions, function blocks and
programs. Each module can be implemented independently with the above-mentioned

languages. Each language has its own dedicated editors. For more information of the
programming languages, see the on-line help of CBP and chapter Features.

Libraries

Program modules can be implemented in projects or imported into libraries. A library
manager is used to install and access the libraries.

There can be two main types of the libraries:

e Local libraries (IEC language source code, for example, ABB drives standard library)

e External libraries (external implementation and source code, for example, ABB drives
system library)

Local libraries can include source code or be compiled. If the library is compiled, the
source code is not included in the library.

AC500 PLC libraries can be used with the drive target by opening the library project in
Windows as Files of type: CoDeSys project files (before V3.0).

For more information on compatibility, see chapter Libraries.

Program execution

The program is executed on the same central processing unit (CPU) as the other drive
control tasks. In real-time applications, programs are typically executed periodically as
cyclic tasks. The programmer can define the cyclic task interval. For more information,
see chapter Features.

17

Programming work cycle

The following list gives a typical work cycle of the drive IEC programming (the task/the
means for performing the module in tool):

w

N o ok

9.

Creating a new project, defining the target and first program module / Devices tree
(New Project and Add Object)

Defining the interface to drive firmware parameters (I/O access, drive control) /
Drivelnterface

Defining user parameters and events / ApplicationParametersandEvents module in
the Devices tree

Developing the program structure and coding program units / Editors
Defining the program execution / Task configuration editor
Compiling and loading the code / Build menu

Creating boot applications (needed always if new parameters, mappings, events or
task configuration is added) / Online menu

Debugging the program code (stepping, forcing variables and breakpoints) / Online
menu

Monitoring program variables in CBP and Drive composer pro / Editors and the Watch
windows on the View menu

10. Repeating the cycle from step 2 to 8 for testing the program.

Special tasks:

1.
2.

Saving or restoring the source code to the drive’s permanent memory / Online

Saving the drive IEC symbol data to drive’s permanent memory / Devices tree (Add
Symbol configuration object to the tree.)

Naming and versioning the application / Application properties
Removing the application from the target / Reset origin window on the Online menu

18

Installation

What this chapter contains

This chapter explains how to install ABB Control Builder Plus (CBP) and establish
communication to the drive.

Installing ABB Control Builder Plus

Note: You must have the Administrator user rights to install Control Builder Plus.
Control Builder Plus is part of the ABB Automation builder 1.0 engineering software suite.

ABB Control Builder Plus supports Windows XP and Windows 7 (32-bit and 64-bit
versions) operating systems.

1. Install Drive composer pro to enable communication with the target drive. For the
instructions, see Drive composer user's manual (SAUA0000094606 [English]).

2. Inthe Drive composer pro System info->Products/More, check that the ACS880
drive has an active IEC programming license and the drive firmware version is
correct. ADD picture

3. Install ABB Control Builder Plus version 2.3 according to the instruction guide
included in the installation media of Automation Builder. All drive IEC programming
related components are automatically installed as well.

19

4. In Automation Builder, select Install Software Packages for -> Programmable
Drive.

+=4 ABB Automation Builder Setup v1.0 Build 1094 Beta - Selection Page

-_}Auftomation ;‘Mi ==
= Builder 1.0

Select type of installation: Software Package Descriptionl
IDefault Automation Builder Installation j . i———— AC Drive IEC programming plugin V3.5 d
Install Software Packages for: i I-" >,
= = The IEC programming tool of ABB ACS880 drives
=-[¥] ABB Automation Builder = Ilg_‘.__ prog g
PLC - AC500 .| ZBLEEF
Drive Manager ?
[[] Safety PLC - ACS00-5
LJOPC Server This software package contains the following main components
Control Panel - CP&00 and features:
Mirt Motion - MicroFlex e150 '
L] Robot Controller - IRC5 » Configuration, programming, commissioning and diagnostics of ACS880

Programmable Drive - ACSE80: drives

< Previous | Install > Cancel |

1. Run the registry settings Driveda_rename_win7.reg or Driveda_rename_winxp.reg by
double-clicking the file to allow parallel use of the Drive composer pro and CBP. The
files are located in folder Program
Files\ABB\Controlbuilderplus\GatewayPLC\ProxyRTS\ProxyRTS_OPC.

20

Establishing communication to the drive

You can connect your PC to the drive via the USB port of the ACS-AP-x control panel
using a standard USB data cable (USB Type A <-> USB Type Mini-B). For information
on making the control panel-to-PC USB connection, see ACS-AP-x control panel user’s
manual (3AUA0000085685 [English]). Ensure that the ACS-AP-x USB driver has been
installed. If not, install them as instructed in Drive composer user’s manual
(3AUA0000094606 [English]).

The CoDeSys communication gateway handles communication between Control Builder
Plus (CBP) and the drive. The gateway is a software component that is started
automatically at the power-up of the PC after the installation of the CBP. See the icon in
your Windows notification area (system tray).

Stark Gatewany.
Stop Gateway

Exit Gateway Conkral

&

- about.., ——
VT TR e = 205 AM

.
=
L

Figure img2

You can select the communication gateway in the CBP. In theory, the gateway can be
located also in some other PC or PLC than the CBP host PC. In the ABB configuration,
only the local gateway is scanned and that is why only local communication ports can be
used for drive communication.

For more instructions on communication, see chapter Creating application program.

21

22

Creating application program

What this chapter contains

This chapter describes the following basic steps of application programming:
Creating a new project

Establishing an on-line connection to the drive

Naming the application

Writing and building program code

Preparing a project for download

Downloading the program to the drive

Executing the program

No gasownPE

More detailed instructions of further development steps are given in chapters
Drivelnterface, Application parameter and event creation, Features and Libraries. For
more detailed descriptions, see also the CPB on-line help.

23

Creating a new project
After starting the ABB Control Builder Plus programming environment, you can create a
new project.

1. In Start Page, select Create a new project... or on the File menu, select New
project...

Getting started

|=] Create a new project...

= Cpen a project from disk. .

= Open a project archive from disk. ..
ﬁ Open a projeck archive Fram PLC, ..
Learn about basic concepks

ﬂ Wisit the homepage

Figure img3

2. Inthe New project dialog box, type the project Name and Location, click AC880
project, then click OK.

LCategories: Templates:

------ [(General) — A
: RS

ACS500 project ACS880 Empty project
project

A project containing one drive, one application, and an empty implementation for PLC_PRG

Name: IPrnjectNamel

Location: IC:'l, j_l

Figure img4

3. Inthe Standard Project dialog box, select the type of the control unit (Device):
e ACS880_AINF_ZCU11_M_V3_5 for ZCU-xx control unit

Or
e ACS880_AINF_BCU12 M V3 5 for BCU-xx control units

Check the control unit type of the target drive either from the unit itself, from the
drive’s hardware manual or from your local ABB representative.

4. Select the programming language PLC_PRG in:, then click OK. You can later add
program modules made also with other languages to the project.

24

Standard Project [x|

You are about to create a new standard project. This wizard will create the following
: I objects within this project:
5

- 0ne programmable device as specified below
- & program PLC_PRG in the language specified below

- Task and openings as defined for the selected device. First created task will call

PLC_PRG.

- A reference to the newest version of the ABB Standard library and ABB System library

currently installed.

Device:

PLC_PRG in: |Continuous Function Chart (CFC)

Figure img5

A simple project for an ACS880 target drive is created in the Devices tree.

+#% Projectlame 1.project - Control Builder Plus

File Edit Wew Project Build Online Debug Tools W

i E | ¢4 25 | = |

=3 ProfectNamel o

= [Device (ACSEE0_AINF_ZCU11_M_V3_5)
=-Ell] PLC Logic

=1} Application
m Library Manager
ﬂ ApplicationParametersandEvents
PLC_PRG (PRG)

= @ Task Configuration
Sﬁs Task_1(Task_1)
ﬁ Crivelnterface (ACS880 parameters AINFX 1.30)

The Devices tree includes:

You can add, for example, the following objects under Application:

For changing the device type, see Changing an existing device.

PLC Logic

Drivelnterface for firmware signal and parameter mapping.

Library Manager for installing function libraries

Figure img6

ApplicationParametersandEvents for creating user parameters and events

Program organization units (POUS)

Task Configuration module for defining in which task the POUs are executed

Text list

Symbol configuration
Visualization

Global variable list
Data type units (DUT)

25

Establishing an on-line connection to the drive

After defining the device type, you can establish an on-line connection to the target drive.

1. Inthe Devices tree, double-click ACS880 AINF_ZCU11l M V3 5 and then click the
Communication Settings tab.

Gateway-1 is displayed by default.

<[] Device - X
Communication Settings IApplimtions | Files I Log | PLC settings | PLC shell I Users and Groups I Access Rights I Task deploymentl Status I Information |
Select the network path to the controller:
[Gateway-1 =l | St active path |
#10|Gateway-1 Node Name:
Gateway-1
Add gateway... |
Driver:
TCP/IP Add device. .. |
IP-Address:
localhost
Port: Scan network |
1217
Filter :
ITarget D = I
Sorting order :
IName ~ l
[~ Don't save network path in project
[~ Secure online mode

Figure img7
2. Ensure that the communication settings are correct:

(If Gateway-1 is not available, click the Add gateway... button and select the
gateway with the following settings.)

Node Name: Gateway-1

Driver: TCP/IP
IP- Address: localhost Remote gateways are not scanned.
Port: 1217 See the following firewall note.

Note: Check your firewall settings that may block connections to devices. ABB
CoDeSys needs port 1217 for establishing a connection to the gateway.

Note: If multiple nodes are displayed, it can mean that your ProxyRTS is started twice
or that the IP-Address setting is not localhost (should not be possible to change).

3. Check that the USB cable is connected to the USB connector of the ACS-AP-x control
panel and the drive is powered.

26

4. To search for the target device, double-click Gateway-1 or click Gateway-1 -> the
Scan network button. Filter:/Target ID displays only the devices that are of the same
type as the device selected in the Devices window.

The device of the gateway is added under Gateway-1.

= -,I;C. Gateway-1
= % EETLL-L-0000201 [0002]
El ACS380 [0002.0001]

Figure img8
5. Under Gateway-1, select the device and click the Set active path button (or double-
click the device, or right-click the device to see the shortcut menu and then click Set
active path).

= @4 Gateway-1
= gy EETLL-L-0000201 [D00Z]
(] Acssso[0002.0001] (active)

Figure img8b

After the device is set as active path, the project is ready for on-line communication
with the drive.

To see which port and node is used by each device, see the information in the device
name in brackets [GGGG.PPNN] where:

GGGG is the gateway number.
PP is the OPC channel number.
NN is the OPC node number.

Naming the application

27

It is a good idea to give a name and a version number for the application program in the
very beginning. This information is then visible in the Drive composer tool and ACS-AP-x
control panel and helps to identify the loaded application without the Control Builder Plus

tool.

1. Inthe Devices tree, right-click Application and select Properties.
2. Inthe Common tab, enter the name of the application (30 characters).

Properties - Application [ACS880_AINF_ZCU_M_V3_5: PLC Logic] [<]

|Applimh'on build options I Build I Boot application I Access cont 4 I ’I

; ?.;J IAppIicaﬁon

Tt

Full name: Application [ACS880_AINF_ZCU_M_V3_5: PLC Logic]
Object type: Application

QOpen with:

oK I Cancel | Apply |

Figure img13

3. In Properties, select the Information tab, enter the author, company, version and
description of the application. The CBP tool version and project identification code are

registered automatically.

4. The project information (Project menu -> Project Information) is not loaded to the
target. To copy the information to application information fields, click Reset to values

from project information.

Properties - Application [ACS880_AINF_ZCU_M_V3_5: PLC Logic] [x]
' Build | Boot application | Access control Information | 4 | »
Author: IProgrammer

Company: |ABB Drives

Version: II.D.D.D

Description: | An application in CoDeSys ;I

[

Reset to values from project informationl

Figure img14

28

Appending a new POU

1. To append a new POU, right-click Application, select Add Object and then Add
POU.

2. Onthe Add POU menu, give a name for the POU and select the type of the POU and
the used implementation language.

@ Create a new POU (Program Organization Unit)

Name:
Pou_t

—Type:

' Program
" Function Block
[~ | Extends: I

I Implements: |

Access specifier:

Method implementation language:

ICc-ntinLlc-Lls Function Chart (CFC)

H E B

" Function

Return type: I

QOpen I Cancel |

Figure img16
The appended POU, xxx (PRG) is added to the Devices tree under your application
and the POU window with the declaration part and program code part is displayed.

Writing program code

29

A program organization unit (POU) is a unit, object or area where you can write the
program code. The units can be created either directly under the Applications in the
Devices tree or in a separate POUs window (View ->POUs or click POUs in the lower-left

corner).

The POU includes a declaration part (the upper window) and a program code part (the
lower window). There are two different types of views for the declaration part: a textual
view and tabular view. You can switch between these views by clicking the buttons in the

upper right corner of the window.

ToolBox

FC

Pointer

= Qutput
IFBox

= Jump

= Label

. Daturn

Figure icons

1410 "[g) TORQUE_MEMORY | Task 1 [g) TENSION_TO_SPEED []z]

DIAMETER_HOLD |g) WINDER_CONTROL [[5] w X

1 PROGRAM TORQUE_MEMORY

Declaration part

TENSION_CONTROL_MODE_ACK }

- -
- pr m_m’u‘[j
< ENABLE_TORQUE_MEMORY: BOOL: (* Selects the activation source to use the menc E
4 TORQUE_MEMORY_SAMPLE: BOOL: (* Activates torque memory sampling *)
5 TENSION_CONTROL_MODE_ACK: VINT: (* Tension control mode acknowledgement -
6 TORQ_REF_TO_TRQ_CTRL: REAL; (* Final torque reference used to be reme
7 TORQUE_BOOST_MUL: RERAL; (* Multiplies memorized torgque by this va
4| |
a
--—-———-iET 0 -

|

1]

r Torg_mem_ena)

AND] SR — true
— SET1 ol

| TORQUE_MEMORY_SAMPLE — ——aRESET l

4

Boost_on_delay
AND w | TON q |

Program code part

3

Figure img15

30

Continuous function chart (CFC) program
This example shows how to create a new project in the CFC implementation language.

Adding elements

1.
2.

In the Devices tree, select the xxx(PRG) under your application.
On the View menu, select ToolBox. Use the ToolBox components to add a CFC
scheme.

CFC B
k Painter

= Input

= Qutput
IF Box

W= Jump

= Label

< Return
I Composer
I Selector
= Comment
2 F Input Pin

= Qutput Fin
= Figure img17

If an empty ToolBox list is already displayed on the right side of the window, double-
click the xxx(PRG) to display the Toolbox and the POU window.

To add, for example, SEL and AND elements (logic operators, functions), use the Box
element in the ToolBox list. In the ToolBox list, click Box and move the mouse to the

program code area and left-click.

Ta |:||E= [nE4

| k- Foinker

= Input

= Cukpuk

777 [1 EI:F Box

1 B = Jumnp

o= Lahel

Figure img18

4. Enter in the name of the function or operand in the ??? field.

You can also use Input Assistant to find the function, keyword, operator, etc. you wish
to use. To start Input Assistant, click the white rectangle next to the ??? field or press

F2.

777 E] Input Assistant
Categoties: Ttems:

Functionblocks & Pame
Module Calls < ACOS
Keywards 2 |ADD
Canversion Operatars < ADR
@ AND Figure img19

31

Note: The number in upper right corner of the white box indicates the execution order
of the function.

5. Toinvert the input/output, right-click the input/output of the element and select
Negate.

M 777 <
AN D ‘x. Cut
i 3 Copy
0 Pacte
¥ Delete

Select All

Edit Working Sheet...

[l negate
Set/Reset »
Execution Order »

Figure img20
Setting the execution order of the elements

Each element has its own execution order. The number in the upper right corner of the
element indicates the sequence in which the elements in a CFC network are executed in
the on-line mode. Processing starts from the element with the lowest number, that is 0.
Note that the sequence influences the result and must be changed in certain cases.

1. Right-click the element where the execution order needs to be changed.

2. On the displayed shortcut menu, select Execution Order, then Set Execution
Order..., type the New Execution Order number and click OK.

] Sl Cut
Copy
Paste
> Delete
Select all
Q Input Assistant...
M EMJENOD
Set/Reset 3
| Execution Order 3 -'JJ send To Front
H1 Send To Back
Pins Ly MoveUp
Select Connected Pins L5 Mave Down
f#F ResetPins Set Execution Order...
=F Remove Unused Pins Order By Data Flow
Order By Topology

Figure img21
The block execution order is changed.

32

Adding a comment to a CFC program

1. In ToolBox, select Comment, then click the needed point in the program code area

and enter the comment text.
CFC | =]
\[k Pointer

= Input

= Qutput
IF Box

W= Jump

=2 Label

< Return
4I1 Composer
Ik Selector

= Comment |

Declaring variables

Figure img22

To create a new variable, you can either declare it in the declaration part of the editor

window or use autodeclaration.

Depending on the type of the declaration view (textual or tabular) you can add a new
variable by writing its properties to a new text row (textual view) or using the TAB button
(tabular view). For changing between the views, see Writing program code.

1. Select the needed object in the program code area.

2. Select Edit -> Auto Declare or press Shift + F2. The Auto Declare window opens.

If you have enabled to declare unknown variables automatically (Tools -> Options ->
SmartCoding), the Auto Declare window opens every time you use an unknown
variable in your program and you can declare the variable instantly.

AND Auto Declare |
prev DI walue
of Scope: Mame: Type:

[~ | [7rcv_Dl1_vale frooL =z

Object: Initialization: Address:

|Pou [Application] = o]

Flags: Commenk:

[~ ComsTANT =]

[~ RETAIN

I™ PERSISTENT =l
Ok I Cancel |

Figure img23

3. Define the Scope, Name and Type of the variable (mandatory).
e The scope defines the type of use of the variable (global, input, output, etc.).

e The name is a unique identifier of the variable. It should represent the purpose of

the variable.
e The type is the IEC data type of the variable.

Optionally you can also define the Initialization value, Address, Comment or Flags

for the variable.

33

The flags have the following meaning:
¢ CONSTANT means that the variable value cannot be changed, that is, the
variable maintains its initial value all the time.

o RETAIN keeps its value over reboot and warm reset.
e PERSISTENT is not supported!

Adding inputs and the outputs

You can add inputs and outputs by selecting them in ToolBox like the box elements. See
section Adding inputs and the outputs.

To |:||EI 0

.; Fainter

= Inpuk

|-|:| Oukpuk
I°F Box

= Jumnp

= Label

= Return
47T Composer
1IE selector

= Comrmenk

Figure img24

Another way to add inputs and outputs straight to a block is to select a pin of a block and
start typing the name of a variable.

1. Select the pin of the block in the program code area.

2. Name the input or output by writing the variable name to the block or use input
assistant as described in Declaring variables.

3. Connect the input or output block to a pin by left-clicking the line connected to the
block and drag and drop it to a pin of another block.

Creating a block scheme
Example:

Create the following CFC program:

Falimg eqde fagger [#umpui TisTAUE , e inpul 3 = copied fo outpuf efftenmee mpof 2 |

SEL 3
M | ADD MNurber_of_faling_edges
1
- —]

[Adds pievious value fo nesw |

prey_DI1_wvalue

prey_DI1_value (]

[Exvuiion of ifre fvr oulou seffng musl be afer ihe AND block |

Figure img25

34

The following local variables are needed in the block scheme.

PROGRAM POTT
ViR
SF Digital imput 1 from ECU
DT1: BOOL;
S Praviucs DI1 walue
prew_DI1 walue: BOOL:
A Counter of falling edges in DI
Mumber_of_ falling edges: UDIHT:
END VAR

W -1 T e D M

=
o

1]

Figure img26

During block scheme programming, the already created variables are displayed in the
Input Assistant and new declarations are added to the variable declaration area. For
using the Input Assistant, see section Adding elements in Continuous function chart
(CFC) program.

Preparing a project for download

1. To prepare a project for download, click Build on the Build menu or press the F11
key.
2. On the View menu, select Messages or press Alt+2.

3. Inthe Messages window, check that there are no errors or warnings. Otherwise,
check and fix your application.

|

Description Project Object Position
------ Build started: Application: DeviceApplication ------
typify code ...
Compile complete -- 0 errors, 0 warnings

Precompile: €% 0K
Figure img27

In the example, the process is successfully completed without any errors or warnings,
and the project is ready for download.

35

Downloading the program to the drive

After the project is ready for on-line communication with the drive, the written program

can be downloaded and executed on the drive. Check that the active path to the target

device has been defined in the communication settings. For more information, see

section Establishing an on-line connection to the drive.

1. Onthe Online menu, select Login or press Alt+F8. The following dialog is displayed
because no program has been downloaded before. Click Yes.

CoDeSys E

Mo program on the target: Do you want to perform a download?

Yes MNa Details... |

Figure img28

For more information about download options, see section Application download options
in chapter Features.

After the download is completed, the background color of the device name and
application name in the Devices tree changes to light green. The application status is
shown in brackets [xxx] after the name. In the example it is [stop].

-4 Projectlamel.project® - Control Builder Plus

File Edit WView Project Buld Online Debug Tools Window Help

BEEEIS bl RN =R

_ o] StartPage |[5] PLCPRG) 3 Device | - x
= Projectvamel =l . -
- [Device [connected] (ACSB80_AINE_ZCU11_M_v3_5) ; Communication Settings | Applications I Log I Users and Groups | Access Rights | Information |
= PLC Logic
= . 9 = Select the network path to the controller:
=L} Application [stop]
IGahe'A'ay-l:UEIEE.UUU 1.0001 j Siet active path |
m Library Manager
ﬂ ApplicationParametersandEvents = g#¥3q Gateway-1 Node Name:
PLC_PRG (PRG) = @y EETLL-L-0000201 [00BE.0001] [ACS880 e — |
= @ Task Configuration El ACS880 [00BE.0001.0001] (active) Node Address:
@ Task_1 (Task_1) 00BE.0001.0001 Add device...
ﬁ Drivelnterface (ACS880 parameters AINFX 1.30) Target ID:
16#165120001
Target Name: Scan netwark. |
Target Type: Filter :
16#1003
Target ID ~
Target Vendor:
Sorting order :
Target Version: MName ~
3.4.3.10

Figure img29

36

Executing the program

1.

To run the application, select Start on the Debug menu or press the F5 key. The
application status changes to [run], showing that the program is executed
successfully.

[SwtPage Vi) PLC_PRE | 5 Dewee - % Bl
=) Frepecstamel - R N -
g ACSBIN_AING_CU_M_V3_5 Application U 3
=] Devior [ennnected] (ACSAS0_ADWE_20U11 M V3 8 e
__i p - Exprassion Typa Vg Prepaned value _Comment . ii
2 ciege # 0 (= Dl input | From 201 b
phe. 0
O Appication fren) # prew D1_vahe oot Privasns 011 vahst o
E Ly Macuagee @ Nrbec o faling adiost e] Courner of fag edges 0 C11 ¥
AopkaborP e smetersandEvents
il (RG] 4

Figure img30
To set or change a value of an existing variable, double-click the cell in the Prepared
value column, type a new value and press Enter.

To apply the prepared value to the variable, select Write values on the Debug menu
or press Ctrl+F7.
or

To force the prepared value to the variable, select Force values on the Debug menu
or press the F7 key.

or

To unforce a forced value, select Unforce values on the Debug menu or press
Alt+F7.

The variable value is changed. The current variable values are displayed in the Value
column and in the source code near the variable.

To log out correctly, select Stop on the Debug menu or Shift+F8 and then select
Logout on the Online menu or Ctrl+F8.

Note: Debugging or performing on-line changes on a running drive may have unforeseen
consequences and should be avoided.

37

38

Features

What this chapter contains

This chapter describes the features of CoDeSyS V3 that are supported by the Control
Builder Plus.

Device handling

In the IEC programming environment, devices represent hardware. The device
description file contains information about the target device (drive) from the programming
point of view like the device identifier, compiler type and memory size. The ABB
Automation Builder installation package installs the device description files automatically.

There are two target control units:
e ACS880_AINF_ZCU11 M _V3_5 for ZCU-xx control units
e ACS880 AINF BCU12 M V3 5 for BCU-xx control units, where
e ACS880 = drive type
e AINF= firmware type (Primary control firmware)
ZCU11/BCU12 = control unit type (BCU-12 is used with high power drives.)
Contact your ABB representative to ensure the control board type of your

ACS880 drive.
M = Master device

e V3 5 = CoDeSys environment main version.

The device description may be updated later and a new file can be installed by means of
the Device Repository object on the Tools menu. The system supervises that a project
with an incompatible device description file cannot be loaded to the drive.

39

Control builder plus shows detailed information of the device by selecting the Device in
the tree and opening the information tab. See the figure below.

‘ﬂ Start Page - PLC_PRG ﬁi Device]
==l Projeciiamel -

.Commumaﬁon Settings I Applications I Log

= m Device (ACS880_AINF_ZCU11 M V3_5)
=& PLC Logic

=4} Application
m Library Manager
ﬂ ApplicationParametersandEvents
PLC_PRG (PRG)

= @ Task Configuration
¥ Task_1 (Task_1)
§ Drivelnterface (ACS880 parameters AINFX 1,30)

—General:

@

I Users and Groups | Access Rights Information

Name: ACS380_AINF_ZCU11_M_V3_5
Vendor: ABE Oy

Groups:

Type: 4093

ID: 16120001

Version: 3.5.1.0

Drive FW: AINFX

Application Interface: 3.0.0.1

Description: CoDeSys V3 for ABB Drives.

—Image:

Figure img6.1

Device ID (1612 0001), Drive FW name (AINFX) and application interface version
(3.0.0.1) must be equal in the project and drive target. Using the Drive composer pro
System info, check that the drive target has the corresponding application interface
version and device type and drive firmware name is displayed in parameter 7.04. In the
Drive composer pro System info->Products/More, check that the drive has the

corresponding application interface version and device ID.

Drive name: |[eSEEN 8.2.13 12:25:19 5.2.4312:26:42 || Settime
Products

Dirive type: ACS330

Drive model

Serial number:
Firmware version:
Drescription:

Drive name:

MRP code:

Application

Application name
Application version
Application id

Int application name
Int application version
Int application id

Option modules
Embedded ethernet

AINFD v1.31.200.9

ACS38D

i - (0] x]
DCP version: 00411
Backup restore version: 01.00
Loading package: AINLD v1.31.200.9
Target 1D: 0x1612 0001
Application device version: 34310
Application interface version: 3001

System library name

Application system library version: 1.9.0.4

Ok Cancel ‘
P

More

More

Figure img30.1

The Drive composer pro view shows also the name and version of the available actual
system library. It must match the installed system library in the CBP project.

40

Upgrading or adding a new device

You can upgrade or add a new device to the IEC programming environment.

1. On the menubar, select Tools -> Device Repository... -> Install...

2. Inthe Install Device Description window, browse and select the device description
file (.devdesc.xml).

Now you can add a new device to projects or upgrade currently existing devices in the
project.

Changing an existing device

1. To change an existing device in a project, right-click the device in the Devices tree
and select Update Device... or on the menu bar, select Project->Update Device.

: o Ba Ao | = . .
LI Y S A =l
=
== Projectamel > Name: IDe‘-.-'ice
v ﬂ Devica ATRIC T 44 a4 un o .
ENETIET Target change ~Action:
=3 Copy " Appenddevice { Insertdevice { Plug device ¥ Update device
Paste —Device:
#Ml cut Vendor: |<AII vendors> j
- > Delete Mame | endor Version |
=) = [{] Miscellaneous
£ on AR 1.30) [acsssn_aINF_BCU12 M_V3_5 ABE Oy 35.1.0
Export mappings to CSV... [Acssso_AINF_zCU11_M_V3_5 ABB Oy 3.5.1.0
I + . from CSV m ACS880_AINF_ZCU12_M_WV3_5 ABB Qy 3.5.1.0
mport mappings from CSV...
port mapping) cpe00 control Panel ABB Automation Praducts GmbH 2.3.0.0
N @ Programmable Safety Controller ABB AB, Jokab Safety 2.3.0.0

= +-[f) rLcs

™ Display all versions(for experts only)

[~ Display outdated versions

Update Device...

Online Config Mode... [T
[mame:ACSS880_AINF_ZCU11 M V35
Add Folder... Vendor: AEE Oy

Ly L

Categories:

Edit Object Version: 3.5.1.0 - =

" ot Order Number: 777 al E
ST Description: CoDeSys V3 for ABB Drives. . 1B
Check configuration n KL G Nk B

Update and try to preserve most information of
Device

& (You can select another target node inthe navigator while this window is open.)

Update Device I Close |

Figure img31

The Update Device window opens. You can find other device types under
Miscellaneous. You can display old installed device versions by selecting Display all
versions (for experts only).

2. Inthe Miscellaneous list, select the drive device.

41

Program organization units (POU)

The POU types are:

1. A program (PRG) may have one or several inputs/outputs. A program may be called
by another POU but cannot be called in a function (FUN). It is not possible to create
program instances.

2. Afunction (FUN) has always a return value and may have one or several
inputs/outputs. The functions contain no internal state information.

3. A function block (FB) has no return value but may have one or several outputs as
declared in the variable declaration area. A function block is always called using its
instance and the instance must be declared in a local or global scope.

A created project may have POUs with a specified implementation language. Each added
POU has its own implementation language.

For more detailed description of the POU types, see the IEC programming environment
user manual and the IEC 61131-3 open international standard.

42

Data types

Note that the ABB drives embedded PLC does not support some of the standard IEC
data types like BYTE, SINT, USINT, STRING. The following list gives the standard IEC
data types, sizes and ranges.

Data type Size Range Supported Supported | Notes
(bits) by BCU by ZCU
BOOL 16* 0, 1 (FALSE, TRUE) Yes Yes
SINT 8 -128...127 No No
INT 16 212 Yes Yes
DINT 32 2%.2% Yes Yes
LINT 64 -2%..2%1 No Yes
USINT 8 0...255 No No
UINT 16 0...65535 Yes Yes
UDINT 32 0..2% Yes Yes
ULINT 64 0..2* Yes Yes
BYTE 8 0.255 No No
WORD 16 0...65535 Yes Yes
DWORD 32 0..2%1 Yes Yes
LWORD 64 0..2°-1 Yes Yes
REAL 32 -1.2*10%...3.4%10% Yes Yes
LREAL 64 -2.3*10°%..1.7*10°® Yes Yes Slow. Do
not use.
TIME 32 0O ms... Yes Yes
1193h2m47s295ms
LTIME 64 0 ns...~213503d Yes Yes
TOD 32 00:00:00...23:59:59 Yes Yes
DATE 32 01.01.1970...~06.02.2106 | Yes Yes
DT 64 01.01.1970 00:00... Yes Yes
~06.02.2106 00:00
STRING[xX] 0...255 characters No No
WSTRING[xX] 0...32767 characters Yes Yes

43

Application download options

Before you can execute an application on the drive, it must be downloaded into the drive
memory. Once downloaded, the application software is embedded in the firmware of the
drive and has access to system resources.

There are two different download options:

Download — a regular download method that copies the compiled application to the
drive RAM memory. As a result, it is possible to execute the application, but after a
power cycle or reboot the memory is erased. This download method does not alter an
application that is located in the drive boot memory (ZMU) and the original application
is available for use after a reboot.

Note: To download a program to the RAM memory, the drive must be in the stopped
mode.

Create boot application — a download method that copies the application to the non-
volatile memory of the drive memory card. This way the application remains intact
after a power cycle or reboot. You need to be logged into the drive to perform this
operation. Features that require restarting the drive to work must be downloaded with
this method.

Note: Firmware parameter mapping, task configuration, application parameters and
event configuration are activated only after the boot application is loaded and the
drive is booted.

The create boot application command (Online -> Create boot application) includes
also booting of the drive. Rebooting stops the execution of the whole drive firmware
for a while. For this reason it is allowed only when the drive is stopped and start
inhibition is granted for the CBP for this action. The following message is displayed to
warn about rebooting.

CoDeSys |

':9:' Reboot drive after creation of the boot project?

Mo Cancel

Figure img32

Notes:

If the Reboot is not selected (No), the new application is, however, loaded to the drive
permanent memory (ZMU) and the new program will be loaded after the next power
off-on cycle. This may lead to unexpected behaviour of the drive for the user who is
not aware of the changed application.

Ensure that stopping the execution of drive firmware and the application program
does not have dangerous consequences for example, personal safety. An alternative
method is to disconnect the power supply of the drive system and reconnect it again.

Start inhibition is not granted if the drive is running, disabled (DIL, Safety function
active) or faulted. Make sure that these conditions do not exist before the program
download.

44

Removing the application from the target

If the target already includes an application, we recommend using the Reset origin
selection in the Online tab before downloading a new application. We recommend this
especially if the application includes a lot of changes like application parameter changes
or the application is replaced by another application.

This command removes (clears all) old applications from the target and all the application
related references. Use this command at least once before the “final” version of
application is loaded. The command can be used only in the on-line mode.

See also section Reset options.
In the following dialog box, select Yes.
CoDeSys |

l:g] Do you really want to perform the operation ‘Reset arigin'?

Figure img33_1

In the following dialog box, select Yes. The command is executed only if CBP gets the
permission from the drive.

CoDeSys |

i "~ 1 This operation will remove the application from drive and reboot
"W the drive. Drive must be stopped. Do you want to continue?

Figure img33_2

45

Retain variables

Retain variables are variables with the RETAIN flag. They can keep their value
throughout the drive reboot and warm reset. A cold reset sets a retain variable to its initial
value. The values of retain variables are cyclically stored in the flash memory of the drive
and they are restored to the stored value after the restart of the program. The storing
cycle period is 2...3 minutes. For that reason the recovered variable might not be the
latest one if the value was changed after the last storing event. The retain variables are
stored in a separate 256-byte memory area which defines the limits of their amount.

Notes:

e Retain variables are saved to the drive’s permanent memory periodically and
therefore there is a risk that the latest values have not yet been saved if the drive has
been shut down unexpectedly

e If alocal variable in a function block is declared as RETAIN, the complete instance
of the function block is saved in the retain memory area. Avoid this to prevent running
out of memory space because of large function block instances.

Declaring a local variable in a function as RETAIN has no effect and the variable is not
saved in the retain memory area.

Task configuration

Call configuration of the programs is handled by the task configuration object. A task is a
project unit that defines which programs are called in the project and when. The projects
can have more than one task with different time levels. (In the Devices tree, right-click
Task Configuration -> Add Object -> Task.)

There are three types of tasks available:
e Cyclic (Task_1, Task_2 and Task_3)

e Pre-task.

Cyclic tasks are processed cyclically according to the task cycle time (Interval). The
following table lists the time intervals available for cyclic application programs. The
highest priority is given to the task with the shortest execution interval.

Table 1: Configuration times for cyclic tasks

Task Time interval
Task 1 1..10ms
Task 2 10 ... 100 ms
Task_3 100 ... 1000 ms

If the program is configured as Pre_task, it is executed only once at start-up of the
application program. This feature is useful for one time initializations. POU’s (blocks)
assigned into this task, will be executed before cyclic tasks start running.

The application program has its own quota of the CPU resources. If its limit is exceeded,
the drive trips to task overflow fault (see ACS880 firmware manual).

46

Source code upload and download

Optionally, the source code of the project may also be saved in the drive. This feature is
located in File -> Source download... or Online -> Source download to connected
device and it ensures that the files are easy to obtain if needed. To retrieve the saved
source code from the drive, select File -> Source upload in an empty new project.

Note: If the source code is saved on the ZMU memory unit, it is possible to retrieve the
program with another PC without the authors consent unless the project is password-
protected.

The size of the source code is limited to 500kB. Check the archiving option to minimize
the source code size (File->Project Archive->Save/Send Archive...). Note that
Referenced devices and libraries are needed, the rest is optional.

Symbol files

If the Symbol configuration object is added to the project (Application in the Devices
tree -> Add object->Symbol configuration... or Project->Add object->Symbol
configuration...), the IEC variable-to-symbol data is loaded into the drive during the
Create boot application download. (See Application download options.) This feature
provides Drive composer pro access to the application variables, which is very useful for
graphical monitoring and debugging purposes.

For more information on the Symbol configuration editor and adding variables, refer to the
On-line help.

Debugging and on-line changes

The following debugging features and variable forcing are supported:
e Start / stop program execution

e Setting breakpoints

e Stepping code line by line or by function

¢ Forcing variables (constant setting of variable values)
e Writing variables (single setting of variable values).

On-line changes of the program code are not supported.

Note: Setting breakpoints and forcing variable values on a running drive with a motor
connected may have unforeseen and dangerous consequences and must be avoided.

47

Safe debugging

Take special care when debugging the application program of a running drive in the on-
line mode. If you are not sure that the malfunction of the application does not cause
safety risks, avoid the following actions when your drive is running a motor:

e stopping the application program

e setting breakpoints to the application program

e forcing variable values.

It is best, for example, to avoid assigning values to outputs, changing the values of a local
variable in function blocks or assigning invalid input values.

Breakpoints stop the entire IEC application, instead of just the task that has the currently
active breakpoint.

Reset options

You can reset the application, using the reset selections on the Online tab:

o Reset warm resets all variables of the currently active application to their initial
values (except the retain and persistent variables). In case of specific initial values,
the variables are reset exactly to those specific values.

e Reset cold resets all variables (normal and retain) of the currently active application
to their initial values.

e Reset origin erases the application, downloaded to the drive from the RAM and the
memory unit (Boot application). In case of specific initial values, variables are reset to
those specific values. Drive firmware parameter mappings and user-defined
parameters and events are also removed. Lastly, drive will be restarted.

Note: The reset origin actions cannot be undone.

1. Toreset the current application in the on-line mode, select the application in the
Devices tree and then Online-> the required reset method.

File Edit Wiew Project Build | Online | Debug Tools Window Help

B IS & B @y s Lo Alt4F

o]

Devices @8 Logout crl+Fa [

= ProjectVame ! Create boot application -

- 1] |pevice [connected] (ACSaS — B
=1 PLC Logic Logoff current online user

= ":; Application [sto Download]

m Library Manag
i‘ ApplicationPar - Al

FLC_PRG (PRG Source download to connected device
= @ Task Configurz
Reset warm
@ Task_1(T:
ﬁ Drivelnterface (ACSE e
Reset origin
Restart ProxyRTS

[|
Figure img34

2. After the reset, you must restart the application (key F5).

48

Visualization

You can run the visualization elements only within the Control Builder Plus tool. Target-
based visualization is not supported.

You can access the drive data in the on-line mode from the visualization application and
read and write variables with the visualized controls on the PC (Application -> Add
object -> Visualization; for more information, see the CPB on-line help).

Memory limits

The build report shows the actual memory allocation. To see the effective size of the
program, use Build -> Clean and Clean All to remove temporary code sections from the
program.

Memory area 0 is assigned for the code and data. Area 1 is for retain variables.

Build

Description
—————— Build started: Application: ACSEE0_AINF_ZCU_M_V3_S,Application -------
The application is up to date
generate code. .,
generate global initializations ...
generate code initialization ...
generate relocations ..
£ Size of generated code: 3224 bytes
¥ Size of alobal data: 2344 bytes
& Total allocated memory size For code and data: 6604 bytes
0|Mem0ry area 0 contains Data, Input, Cutpuk, Memory and Code: highest used address: 81920, largest contiguous memory gap: 75316 (91 %)
€ Memory area 1 contains Retain Data: highest used address: 256, largest contiguous memory gap: 256 (100 %)
Build complete -- 0 errars, 0 warnings : ready For download!

Precompile: €% OK

Figure img35

To optimize the memory consumption, avoid, for example, using function blocks and
unnecessary variable definitions.

CPU limitation

The maximum execution load of the application is limited to a certain value (5...15%)
depending on the drive type. Check the load limit from your local ABB representative.

You can check the application load, using parameter 7.5 which monitors the CPU load.
You can see the load difference by comparing the value with and without the application.
The difference should not be greater than value limit.

If the application exceeds the limit, the drive trips to the task overload fault. The fault is
registered to the drive’s event log and the fault-specific AUX code indicates the
overloaded tasks (10 =task 1, 11 =task 2 and 12=task 3).

We recommend doing careful CPU load tests to ensure that the drive is capable of
adequately running the application. For this purpose, enable as many as possible of the
drive’s functions during the execution of the IEC application, for example, motor control,
communication modules, encoders, and so on.

49

50

Drivelnterface

What this chapter contains

This chapter describes how to implement Drivelnterface and make input/output mapping
between the IEC program and drive firmware parameters.

Implementing Drivelnterface

The interface between the drive firmware and IEC application is easiest to implement

using Drivelnterface.

=2 Prafectamel =

=[] Device (ACSBB0_AINF_ZCU11_M_V3_5)
=Bl PLC Logic

=4 Application
m Library Manager
ﬂ ApplicationParametersandEvents
PLC_PRG (PRG)

= @ Task Configuration
@ Task_1({Task_1)
§ Drivelnterface (ACS5330 parameters AINFX 1,30)

|] StartPage [[m] PLC_PRG V(7] Device |

—General:

i

.Cornmuniﬁtion Settings I Applications I Log

I Users and Groups | Access Rights Information

Mame: ACS380_AINF_ZCU11 M_V3_5
Vendor: ABB Oy

Groups:

Type: 4099

ID: 1612 0001

Version: 3.5.1.0

Drive FW: AINFX

Application Interface: 3.0.0.1

Description: CoDeSys V3 for ABB Drives.

—Image:

!

Figure img6.1

51

Drivelnterface has a list of all the drive firmware parameters that can be used in the IEC
program. This list is specific for each drive firmware (a new firmware may have new
parameters). You can assign a parameter to be an input for the application program and
define that the parameter is read at the very beginning of the task execution. Similarly,
user can assign parameters to be an output of the application.

Task X .
Execution order
Read IEC Program Write
Inputs Outputs
Read par Write par
1.1 30.12
=
-~
Parameter Name ,.f" _— ' | Assignment | Mapping | IEC Varisble
= [1 Actual valugs
*% 1 Motor speedused Input » ACS880_ePLC_ZCU_V2_2_Motor_speed_used_1_1
=i 30 Limits ’
"$ 12 Maximum spée Outpuk » AC5830_ePLC_2CU_V2 2 Maximum_speed 3012 Figure img37

Note: Parameter to IEC variable mappings become valid only at boot, so a reboot of the
drive is required after the download. In other words, the boot application is the only way
to use parameters in CoDeSys. See also Application download options.

Selecting the parameter set

A drive can have different parameters depending on the firmware version. Before
performing parameter modification, ensure that the correct parameter set is selected in
Drivelnterface.

Note: Changing the parameter set in Drivelnterface removes all parameter mapping data.

1. To change the currently selected parameter set, right-click Drivelnterface in the
Devices tree and select Plug Device.

2. Select the correct parameter set for the current target.

Parameter mapping report

When you download the application program, a report of non solved parameter mappings
between the project parameters and actual parameters in the drive is written in the PLC

log.

(7] Acssso_AINF_zCu_M_v3_5 | - X
" Communication Settings I Applications I Files Log |PLC settings | PLC shell | Users and Groups I Access Rights I Task deploymentl Status I Information I
™ offline-Logging:
|® 0 warning(s) | O Errur(s)l E! 0 exception(s) | Li BT infurmatiun(s)| <Al components = - | Logger: <Defaultlogger= - £ | ET E‘p | %
Severity | Time Stamp | Description | Component
i) 1.01.1970 0:00:0:0 Application Application |oaded CmpAppEmbedded
il 1.01.1970 0:00:0:0 Application Application loaded CmpAppEmbedded
o 1.01.1970 0:00:0:0 CoDeSys Controlready cMm
il 1.01.1970 0:00:0:0 CH_INIT_COMM done CcM
i 1.01.1970 0:00:0:0 Call CH_INIT_COMM... CcM
il 1.01.1970 0:00:0:0 CH_INIT_TASKS done CcM
5] 1.01.1970 0:00:0:0 Application Applicationnot foundto start CmpAppEmbedded
[] 1.01.1970 0:00:0:0 Call CH_INIT_TASKS... cM Figure img38

For more about download, see Downloading the program to the drive and Application
download options_Downloading _the program 1.

52

Mapping example

To read digital input DI1 of the ACS880 control unit to the previous CFC example
(Creating a block scheme), open group 10 and select index 1.

1. Inthe Devices tree, click Drivelnterface. The Parameter Mapping window opens.

Parameter Mapping |

& Molice: Create boot application and target boot needed ta get mapping effektive

T - |"® Inputs |K@ Outputs | & Unassigned |

Pararneter Mame | Assignment Mapping IEC Yariable Daka Type
+- 4 1 Actual values

+ 4 3 Input references

[4 warnings and Faults

|4 5 Diagnostics

|4 & Control and skatus words

[7 System info

| 10 Standard OI, RO

IS SI SIS

= @ 10I status Unassigned UINT
@ [0Cn | Unassigned BOOL
@ 1012 Unassigned BOOL
@ 2DI3 Unassigned BOOL
@ 3014 Unassigned BCoL
@ 4DIS Unassigned BCOOL
@ SDIa Unassigned BOOL
@ 15 DIIL Unassigned BOOL
Figure img39

2. Inthe Parameter Mapping window, right-click the required Assignment cell and
select Input in the drop-down list.

—rm

=4 105tandard DI, RO
= @ 1DIstatus Unassigned

@ 001 Unassigned vI

@ 1DI2 .
@ 2DI3 Llnassined
@ 3004 Figure img40

3. Double-click the default IEC variable name
ACS880_ AINF_ZCU11 M V3 5 DI1 10 1. A button is displayed to the right of the
selected name.

4. Click the button. The Input Assistant is displayed.

5. Select existing variable DI1 from the POU variable list. DI1 is connected to drive
parameter 10.1. DI status, bit O.

=4 105tandard DI, RO
= @ 1DIstatus Unassigned UINT
4% 0Dl Input » ACSEE0_AINF_ZCU_M_Y3_5_DI1_10_1 [d BooL
1l i

@ 1D0l2 _ llmacciona A Rl
@ Z2DI3 Input Assistant [x]
@ 3DI4
@ 4DI5
5DI6 :
15DI0L Variables - Name | Type |_Address |_origin
+- @ 2DI delayed status =1} Application Anolication
*#- & 3 DI force selection +- @@ ApplicationParametersandevents
+- @ 4 DI force data - POU
@ 5DI1 ON delay
@ 6 DI OFF delay % DIl
@ 7 DIZ OM delay % Number_of_falling_edges
@ & DI2 OFF delay # prev_DI1_value BOOL

a0 AT O Aalse

Categories: Ikems:

Figure img41

After this the mapped parameters are is available as IEC variables in the program editors
(press F2).

Note: Bit and value pointer parameters can be used as outputs and then the pointer is
linked directly to the application memory.

53

Updating parameter list

1. To update the parameter list in Drivelnterface, right-click Drive Interface and select
Delete.

2. Right-click Drivelnterface again and select Plug Device. Now it is possible to change
the parameters list of the DI.

You can hide a parameter from the ACS-AP-x control panel and the Drive composer pro
display:
1. Select Drivelnterface.

2. Inthe upper-left corner of the Parameter Mappings window, select Settings and
then the required Hide option for the corresponding parameter.

54

Application parameter and event

creation

What this chapter contains

This chapter describes how to use ParameterManager and gives detailed information on
parameter settings.

ApplicationParametersandEvents

You can create your own application parameters for the drive with the Control Builder

Plus environment using the ApplicationParametersandEvents tool.

=3 ProfectVamel =~

=[] Device (ACS880_AINF_ZCU11_M_V3_5)
=B pLc Logic

[]
Le

=48
Copy
Paste
) & cut
§ Dr‘x- Delete I.30)
Properties...
|J Add Object ||“ Application Parameters. ..
Add Device... @ Data Server...
Insert Device... @ Global Variable List...
Scan For Devices... Image Pool...
) Add Folder... =0 Interface...
_‘T Edit Object T Persistent Variables...
Edit Object With... 8] Fou...
'g; Login ﬂ, Redpe Manager...

Symbol configuration. ..

Figure img42

55

ParameterManager

In the ParameterManager window, you can create new groups of parameters, parameter
families, selection lists, units, events and language translations for the names of all the
previous items.

1. Inthe Devices tree/Application, double-click the ApplicationParametersandEvents
object. The ParameterManager window opens.

i@ ParameterManager]

“e Import XML " Export to XML

Parameter Groups and Parameters |Parameter Families I Selection Lists I Units I Events I

—Parameter Groups and Parameters

=/ Add Name < Delete

Mo, I Marne IEC Yariable Type I Parameter Type |
=L |Samp|e Group 1 Language Id I Mame
@ 1 Sample parameter REAL Decimal number English {en) Sample Group 1
4 74 Sample Group 2

—Group level Protections
™ Humanwp [~ Total wp

[T Human Hide [~ Total Hide

Figure img43

Creating parameter groups

All the parameters must belong to a parameter group hence before creating any new
parameters you must create a new group. All the groups must have a unique name and
number. You can change the group number and name. You can also add translations into
other languages in addition to the default language which is English.

1. Inthe ParameterManager window, click the Add Group button,| = Greup

ParameterManager automatically selects the first free parameter group number that is
not yet used in the drive firmware or ParameterManager.

56

Creating parameters
1. Inthe ParameterManager window, select a parameter group.
2. To create a new parameter, click the Add Parameter button. ‘# Parameter

The Parameter Settings window opens. In the window, you can set the properties of
the parameter. The general settings window is the same for all the parameters but
there are also custom settings available depending on the parameter type. For more
information on the type-specific windows, see Parameter types.

Add Parameter

—Parameter Settings
Mame Itestjlammeter
Parameter Type IDecimaI number j
—|EC variable —Protections
& New [e REAL ~| | |T HumanwP [~ Total WP
™ Human Hide [~ Total Hide
™ Existing | |
Parameter Family I:— Mone —> j [WP Run
¥ Include in user set
Function Type ISetting (adjustable) j I™ Exclude from Backup
Sawving Type Iimmediate j

Figure img46

Parameter names and types

Parameter name is the name that is shown in the parameter list when using Drive
composer or ACS-AP-x control panel.

Parameter type defines which kind of parameter is created. There are following
parameter types:
e decimal number

o formatted number

e Dbit pointer

¢ value pointer

e plain value list and

e bit list (16 bit).

The types are described in more detail in Parameter types.

You can also define an IEC variable name for the parameter. The New option maps the

parameter to a new IEC variable. If you do not give a name for the new IEC variable, the
parameter name is used as the IEC variable name.

When you create a new IEC variable, you must select the variable type, for example,
REAL. For more information on the variable types, see Data types in chapter Features.
The selected parameter type restricts the variable type selection and only the allowed
types are shown in the IEC variable/Type list.

With the Existing option you can map the parameter to an already existing IEC variable
by finding the parameter from the list the Input Assistant or writing the name to the field.

57

Parameter family

Parameter family allows you to make the parameter a part of a parameter family and
inherit the settings defined for the family. For more information, see Parameter Families.

Function types

Function types are flag configurations for parameters which determine the parameter
behaviour with the ACS-AP-x control panel and PC tool displays. There are five different
configurations:

e Setting (adjustable) — a generic configuration parameter. When a parameter with
this function type is changed by ACS-AP-x control panel or Drive composer, the
changed value is saved. If the value is written cyclically, the saving type for the
parameter must be no (for example, motor speed limits).

e Setting (reverts to default) — The parameter is used by the user to request some
function. The parameter returns to its default value when the request has been
processed.

e Signal (read only) — The parameter is used to display a value of an application
parameter in the ACS-AP-x control panel or Drive composer. The parameter does not
have any meaningful default value.

e Signal (resettable) — The same as the read-only signal except that the user can reset
the parameter to some default value (for example, resettable counters).

e Custom — Both the application and the user can change the value.
Saving types

Saving types define the method of storing the parameter value to the non-volatile

memory. There are three different saving types:

e No — The parameter value is created by the application program and it is not stored to
the non-volatile memory if changed by the ACS-AP-x control panel or Drive
composer.

e Powerfail — The parameter value is saved if a power down situation is detected. This
saving type is good for continuously changing counters, and so on. It is not
recommended for controls that do not change often.

e Immediate — The parameter value is saved as it has been written. This saving type is
good for controls and highly not recommended for signals.

Protection, hiding and excluding from backup

You can set the following protections for parameters or set them on the parameter group

level by selecting a parameter group in ParameterManager.

¢ Human WP/Human Hide write-protects/hides the parameter from a human user
manipulation. This setting can be bypassed using configuration tools, fieldbus
controllers, and so on.

¢ Total WP/Total Hide write protects/hides the parameter from any kind of
manipulation outside firmware. These parameters are meant to be used only by the
application.

The following settings are for the parameters only:
e WP Run protects the parameter from writing when the drive is running.

e Exclude from Backup leaves the parameter out of parameter backup. The
parameter default restore is still performed.

58

Minimum, Maximum and Default value
The minimum, maximum and default values are set for decimal and formatted numbers.

Minimum and Maximum define the limits for the value of the parameter. These values
cannot exceed the limits of the data type defined for the parameter. Default value is the
value of the parameter at the start-up of the program and it must be inside the limits
defined by the minimum and maximum values. The default value is returned if you restore
defaults or clear all with parameter 96.06 Parameter restore (see the drive firmware
manual).

Parameter types

Decimal number

The decimal number parameter type is used to create a parameter with actual numeric
contents, either decimal or non-decimal numbers. The available IEC types are REAL,
UDINT, UINT, DINT and INT.

Base value, Value (32-bit int) and Value (16-bit int) define how the parameter value is
scaled in different contexts. Base value is the internal firmware value, Value (32-bit int)
is the 32-bit external value (for example, for Drive composer or ACS-AP-x control panel)
and Value (16-bit int) is the 16-bit external value (for example, for fieldbus devices).

All these scaling values match each other and define how one certain value of the
parameter is represented in the other contexts. Scaling for all the other values of the
parameter is calculated on the basis of the scaling values defined. If you wish the scaling
factor to be 1, which means direct transform from one representation to another, use the
same number for all of these scaling values.

Example:

The firmware uses values 0...1 for motor rotation speed measurement. The maximum
rpm is 1500, and therefore the ACS-AP-x control panel displays 1500 rpm when the
internal value is 1.0 (the maximum speed). The 16-bit fieldbus device shows 100%.

In this example the values are:
Base value = 1.0

Value (32-bit int) = 1500
Value (16-bit int) = 100.0

Decimal Display defines how many decimals are displayed on the Drive composer or
ACS-AP-x control panel. This setting has no effect on the internal value, only on the
displayed external value.

16-bit interface support defines if the 16-bit external format is allowed, for example, in
fieldbus devices and how it is scaled to the 32-bit external format:
e No —the 16-bit external format is not allowed.

e Direct — the 32-bit scaling is used but the value is displayed as a 16-bit value.
Therefore, Value (16-bit int) is considered meaningless.

e Scaled — separate 16-bit scaling is used. Value (16-bit int) must be defined.

59

Formatted number

The formatted number parameter type is used to make special-purpose parameters like
date displays, version texts, passcodes, and so on. The available IEC types are UDINT,
UINT, DINT and INT.

Display format for Data Parameter defines in what format the value is displayed on the
Drive composer or ACS-AP-x control panel.

Minimum lo =
Maximum ||]. =
Default value ||]. =
Display format for Data Parameter INl:nne j
Figure img47
Bit pointer

Bit pointer creates a pointer parameter which can be assigned to point to a bit of another
parameter. You must associate the bit pointer parameter to a selection list (a bit pointer
list) that must be created beforehand. For more information, see Selection Lists. The only
available IEC type for bit pointer is BOOL. You can define the default selection from the
list.

Selectionlist I <= Mone > j

Default 5 election I j
Figure img48
Value pointer

Value pointer creates a pointer parameter which can be assigned to point to another
parameter. You must associate the value pointer parameter to a selection list (a value
pointer list). For more information, see Selection Lists. The available IEC types for the
value pointer are REAL, UDINT, UINT, DINT and INT. You can define the default
selection from the list.

Plain value list

The parameter type Plain value list must be associated to a selection list (a plain value
list) and it allows only values of the list as its own value. The available IEC types are
UDINT, UINT, DINT and INT. You can define the default selection from the list.

60

Bit list (16 bit)

A Bit list (16 bit) consists of maximum 16 Boolean values (bits). You can add new rows
(bits) to the list using the Bitlist row button. You can change the names of the bits and
their values to represent their purpose. The default value is the bit value at the start-up of
the program. The only available IEC type is UINT.

Add Parameter
—Parameter Settings
Name Jtest_bit_ist
Parameter Type [Bit st (16 6t) =l
|EC variable Protections
& New I Type IUlNT vl [~ HumanWP [~ Total WP
™ Human Hide [~ Total Hide
™ Existing %] | | |
Parameter Family I:— Mone - ﬂ [~ WP Run
¥ Include in user set
Function Type ISeﬂing (adjustable) ﬂ W Ewhdef Backup
Saving Type Iimrnediate j
Display format [pbBinary i
—Bitlist rows —Bit names
¥ gitlistrow < Delete = Add Name Delete
Bit Mumber Bit Mame lizh Default value Language Id | Mame
oD test_bit False English (en) Emergency_stop
g1 start_bit False
8 2 emergency_bit False

— Bit Value names

= BitValue Delete

Language Id I Name for 'False' value

| Name for ‘True' value

English (en) running

stopped

Cancel

Figure img50

61

Parameter families

If a parameter shares some of its attributes (scaling, minimum/maximum, and so on) with
another parameter, it can belong to a family that describes these common attributes. This
way, when the attribute is changed in one parameter, it is also changed in all parameters
belonging to the same family.

You can freely choose the parameter family Version style but the family must have a
unique Name. The parameter families can define limit or scaling properties or both of
them.

Parameter Groups and Parameters Parameter Families | Selection Lists I Lnits I Events I
—Parameter Families ———— i Parameter Family Settings
ersion | Iarne | Lirnit | Scaling
w11 Test_Family Minirm ||:| ﬁ Maximum ||:| :jl
Internal Yariable type Iuint16 j
Base walus |1 ﬁ
3z2bit | Float walue external |1 ﬁ
16bit walue external |1 ﬁ
Uit fMaLnit |
Decimal Display Iint Oder j
—Display Format
Data Parameter |none j Bitlist |pbBinary j

Figure img51

62

Selection lists

There are three different types of selection lists:
e Bit pointer list — By default, it has the const_false and const_true values. You can
add to the bit pointer list single bits of any parameter of the appropriate type.

e Value pointer list — By default, it has the const_null value. You can add to the value
pointer list any parameter which has the same data type as the pointer associated to
the list.

e Plain value list — You can add to the plain value list any values of types INT, DINT,
UINT or UDINT. The type has to be the same as the type of the pointer associated to
the list.

Selection lists are always associated to a parameter of the same type as the list and they
can be accessed only through the parameters.

Selection list name — The text visible to the user. Note that the name is not the official
text since the language translator just uses this text as a source when creating the official
language texts.

Value/Source par — The value of the list row. For the bit and value pointers, it is the
index of the row in the list. For the value lists, it is an actual selectable value.

List type — A Bit pointer list, Value pointer list or Plain value list.

Inverted — When a bit /value is read from a source parameter, it is inverted /negated for
output when the inverted flag is set.

Units

You can create own units for the application parameters. A unit has a unique number and
a name. The allowed unit codes for the application program are 128...255.

You can add translations of the name into other languages.

Parameter Groups and Parameters I Parameter Families I Selection Lists Lnits |

— Units Translations
=l Unit 3 Delete z| Add Mame 2 Delete
Mo, | E =) | Language Id | Mame |
=] 129 unit_129 English {en-029) unik_129
Finmish (fi-FI} kesti_wksikko

Figure img52

The units are attached to parameters in the Add Parameter -> Parameter Settings
window.

63

Application events

You can configure your own application events (faults or warnings). The application
program can then trigger the event and the event is registered to the drive’s event logger
with a time stamp. This tool defines the event ID code, type and event name (with
translation).

In the Events dialog box, give the following information

1. Name, in this example My Event. The event name is displayed on the ACS-AP-x
control panel and in the Drive composer tools when the event is
activated / deactivated.

2. Event Type, in this example fault.

The following event types are supported:

e 1 =Fault (Trips the drive.)

e 2 =Warning (Is registered to the event logger.)
e 3 =Pure event (Is registered to another logger.)

3. Event ID, in this example D100. Each type of event has its numerical range (ID code).
You can select the ID code within the range.

"Parameter Groups and Parameters | Parameter Families | Selection Lists | Units Ewvents |

—Events —Translations

i Event 3 Delete = AddMame ¥ Delete
MName Event Type Ewvent ID | Language Id | Mame
My_Event fault D100 English {en) My _Event

Figure img53

The event is activated by using the EVENT function block in the program code (ABB
drives system library). Every event must have its own instance of the EVENT block.

The EVENT function block must have the same ID code and type as defined in the
previous dialog box.

64

Libraries

What this chapter contains

This chapter contains general information of the libraries and description of the ABB
drives system and standard libraries. You can find more detailed information in Appendix
— ABB drives system library and Appendix — ABB drives standard library.

Library types

The following libraries are installed by default in Control Builder Plus for drive
programming.

Default libraries:
o ABB drives system library (AY1LB_System_ ACS880 V3 _5)
e ABB drives standard library (AS1LB_Standard_ACS880_V3_5).

Optional libraries:

e All generic CoDeSys IEC-libraries (standard and util) can be installed, but ABB does
not guarantee their correct functioning (Note the data type limitations described in
Data types.).

65

The Library Manager controls and manages the library usage in the project. Each project
has its own Library Manager which is added automatically when you create a new
project.

- m Library Manager - X
MName | MNamespace | Effective version | Add library...

+ AS1LB_Standard_ACS880_W3_5, 1.0.1.1 (ABB Oy) AS1LB_Standard_ACSBB0_V3_5 1.0.1.1

+ AY1LB_System_ACS880_V3_5, 1.9.0.4 (ABB Oy) AY1LB_System_ACS880_V3_5 1.9.0.4

Flaceholders...

Library repositony..

Figure img55

ABB drives standard library contains the most common and useful functions and
function blocks for drive control. All the functions are implemented locally using the
Structured text language. The CoDeSys Util and Standard libraries include additional
general purpose functions.

ABB drives system library includes all the drive-specific functions to interface the IEC
application with the drive firmware and I/O interface. This library has external
implementation in the drive system software.

Note: Check that the drive has the corresponding system library installed:
1. Inthe Drive composer pro System info, select More in Products.

2. Check that the Application System Library displayed in the Drive composer pro has
the same library version as the Control Builder Plus project. If the versions are not the
same, part of the library may be incompatible.

66

Adding alibrary into the project

1. To add a Library Manager (library container) into the project, right-click Application in

the Devices tree.

2. Select Library Manager and then Open. The Library Manager

opens.
- m Library Manager - X
MName | MNamespace | Effective version | Add library...
+ AS1LB_Standard_ACS880_V3_5, 1.0.1.1 (ABB Oy) ASILE_Standard_ACSB80_V3_5 1.0.1.1
+ AY1LB_System_ACS880_V3_5, 1.9.0.4 (ABB Oy) AY1LB_System_ACS880_V3_5 1.9.0.4

Placeholders...

Library repositony..

Figure img55

3. To add a library, click the Add library... link on the right side of the Library Manager

window.
4. Select the needed library and click OK.

("l Add Library E

Library | Flaceholder I

Company: I (Al companies)

w= (Miscellaneous)
- ABB - Drives
= Application

%Z Commaon

Standard
Standarded 3.4.4.0

3.5

[+ util 3510 System
E'_“Composaer
- Safety
= Intern
5= System

¥ Group by category [Display all versions (for experts only)

[

Details... Find... Library Repository... Ok I Cancel |
Y
Figure img56
The library has been successfully added.

- m Library Manager - X
MName | MNamespace | Effective version | Add library...

* AS1LB_Standard_ACS880_V3_5, 1.0.1.1 (ABB Oy) ASILB_Standard_ACSBB0_V3_5 L.0.L.1

+ AY1LB_System_ACS880_V3_5, 1.9.0.4 (ABE Oy) AY1LB_System_ACS880_V3_5 1.9.0.4

* Util, 3.5.1.0 (System) Util 3.5.1.0

Figure img57

Flaceholders...

Library repositony..

67

Creating a new library

The IEC programming environment allows you to create your own libraries to be used in
the projects. After starting the programming environment, a new library can be created
with the New Project dialog.

1. On the File menu, select New Project.

‘ New Project

Categories: Templates:

...... G 0 — v
1 (General m J

ACS500 project ACSE30 Empty project
project

IA project containing one drive, one application, and an empty implementation for PLC_PRG

Name: IProjech‘\lame 1

Location: IC:'\ j_l

Figure img4
2. Inthe dialog-window, click Empty project, type the library Name and Location, then
click OK. The new library is added into the POUs tree.
3. To add a new POU into the created library, select POUs on the View.
4. Then right-click the project name, select Add Object, then POU.
5. Give the new POU a name, for example, POUL.
6. Select the type of the POU, for example, Function Block and the implementation
language, for example, Structured Text (ST) and then click Add.
7. Open the created POU and add the following code into the variables declaration
window:
FUNCTION BLOCE EQUL

VAR INPUT
DI1 : BOOL;
END VAR

VAR _OUTFUT
ROl : BOOL:
END VAR

VAR
prev_DI1 walue : BOOL;
END “AER
Figure img59

68

8. Add the following code into the code area:

IF DI1 = FALSE AND prev _DI1_value = TRUE THEN
ROL := NOT(ROL):
END_IF

prev DIl walue := DIL; . .
- - Figure img60

9. After the code is added all library objects must be checked before the library export.
On the Build menu, select Check all Pool Objects.

10. To use the created library in the future, select Project ->Project Information and fill
in the following information on the created project: company, title and version.

Project Information E

.File Summary |Properh'es I Statistics | Licensing |

Company: I\r’endor name

Title: ILibrarv example title

Version: |1.1.D.1 [~ Released
Library Categories: I _l

Default namespace: I

Author: I

Description: |=]

The fields in bold letters are used to identify alibrary.

[Automatically generate POUs for property access

OK I Cancel |

Figure img61
11. After the information is added, it is possible to install this library directly to the Library

Repository. On the File menu, select Save Project and Install into Library
Repository.

Or

To save the library as a usual file, select Save Project as... on the File menu.
Or

To save the library as a compiled library file, select Save Project as Compiled
Library on the File menu.

Note: To protect the library source code, you must use a compiled library file. The non-
compiled library format does not protect the source code.

Installing a new library

If the needed library is not in the repository, it must be installed before use.
1. Toinstall a new library, open Library Manager and click Add library.

2. Inthe displayed window, click the Library Repository... button and then the Install...
button.

3. Inthe displayed dialog, browse/select the needed compiled library, and click Open. A
new library is installed into the Library Repository and is ready for use in the project.

69

Managing library versions

Control Builder Plus allows you to use different versions of the selected library according
to project requirements.

1. To change the current effective library version, open Library Manager.
2. Select the needed library and click the Properties... link on the right.

3. Select the needed version and then click OK. The library version is changed and can
be used in the
project.

Properties - System Library, 1.9.0.3 (ABB - Drives)

—General: Version:

Mamespace: IS‘IStEI'I'I_LibFﬂW i* Specific version: -
Defaultlil:urar}':l | i r*.lv;-_ﬂ.l'.'vast'..narsiuz:nnalml'g'u'2
—Visibility:

If the current project is referenced as a library by another project:

™ Publish all IEC symbols to that project as if this reference would have been incuded there directly.
[Hide this reference in the dependency tree.

oK I Cancel

Figure img62

If you wish to add a new library version that is not in the Specific version list, install the
version first. See Installing a new library.

70

Practical examples and tips

What this chapter contains

This chapter gives practical examples and tips on working with Control Builder Plus.

Solving communication problems

Question: What to do when scan network does not find any
drives?

Answer
o Check the communication settings..

¢ In Windows Computer Management -> Device Manager, check that your
communication port is correctly installed.

o If the USB Serial Port (COMX) is not displayed under Device Manager, check that
the corresponding USB/communication port driver is installed.

E Computer Management —|O LI

g File Action View Window Help |;|i|l|
e+ @@ & 2@ a

g Computer Management (Local) & y PCMCIA adapters ;I
E- i System Tools B, Ports [COM&LPT)
: @ Event Yiewer (y Bluetooth-tietolikenneportti (COM21)
Shared Folders (y Bluetooth-tietolikenneportti (COMS)
% Local Users and Groups (y Cammunications Port (COM1)
Performance Logs and Al (y Intel{R) Active Management Technalogy - SOL {COM3)
g Device Manager (y Printer Port {LPTL)
Storage (y USE Serial Port {COM24)
Removable Storage % Processors
Disk Defragmenter S 5051 and RAID controllers
Disk Management @), sound, video and game controllers
=5 <ervires and Annli arinn<_lL| a{ System devices
ﬂ—r L -8 | niversal Serial Fs cantrallers =l
|

I
Figure img10

71

o To check that the OPC server (DriveDA.exe) has started in Windows Task Manager,
select Ctrl + shift + esc -> Processes.

JRT=IE

File Options Yiew Help

Applications ~ Processes IPerFormance | Metworking |

Irnage Marme I User Marne CPL Mern Lisage I :I

ctfmon. exe lalujark. i} 3,640 K

cvpnd.exe SYSTEM oo 6,012 K

dbsryd, exe lalujark. i} 6,932 K

DLG.Exe lalujark. oa 3,364 K

DOZESVC ERE SYSTEM juli]

e] lalujark.

EvtEng SYSTEM]

explarer .exe lalujark. i} 55,980 K

EZEIMMNAR.EXE lalujark. ula] 3,104 K

Firesve.exe SYSTEM ula] 2,980 K

FireTray.exe lalujark. i} 2,272K

FrameworkService, exe SYSTEM oo 4,704 K

Gakewayservice exe SYSTEM ula] 3,536 K

GaktewaySysTray. exe lalujark. oa 2,756 K

HIPSwE. exe SYSTEM ula] 3,320 K

hkemd. exe lalujark. i} 5,072 K

ibmpmsvc.exe SYSTEM oo 1,620 K

igfxext.exe lalujark. i} 6,260 K

igfxpers.exe lalujark. oa 2,964 K j
[Show processes from all users End Pracess |

[Processes: 121 [cPU Usage: 28% [commit Charge: 1312M } 5902M | 4

Figure img11
e Check that Drive composer pro (Drive OPC) finds the connection to the drive.

¢ Note: To work in parallel with Drive composer pro, the register setting of the DriveDA
OPC server is needed. This register setting is not included in the installation set-up of
Automation builder version 1.0. You must make the following settings:

4. Open regedit —program

1. Search driveDA.dIl (Find + F3) until you find key visible in fig, img 12
2. Rename InprocServer32 to InprocServer.bak.

3. Save change and close regedit

e Also the reinstallation of the Drive composer pro adds a nhew InprocServer object to
the registry.

£ Registry Editor

File Edt Wiew Favorites Help

Mare Type | Data

EhJ(DeFault) REG_SZ DriveDd OPC Server by ABE Oy
{1 Contral [38)appo REG_SZ {BO397EES-6EF7-4152-61 BA-ODEO0ADTET4)
{211 Implemented Categaries

D InprocServer3z.bak

Figure img12

72

Solving other problems

Question: How to prevent unauthorized access to an application
that is running in the drive?

Answer

A compiled project as well as the downloaded source code can be password-protected.
You can make a backup copy of the protected application. The backup copy is encrypted
and you need a password for downloading or executing the copied application. The IEC
function libraries and projects can be protected as well by means of CoDeSys.

Question: What to do if “The options could not be loaded.
(Reason: Root element is missing.)” error message is displayed
when | try to uninstall the software?

Answer
Remove the *.opt.* and *.opt files from the following locations:
e Windows XP:
e Program Files\3S CoDeSys\CoDeSys\Settings
e Documents and Settings\<Username>\Application Data\CoDeSys
e Documents and Settings \All Users\ Application Data\CoDeSys
e <The project directory>
¢ Windows Vista:
e Program Files\3S CoDeSys\CoDeSys\Settings
e Users\<Username>\ AppData\Roaming\CoDeSys
e <ProgramData>\CoDeSys
e <The project directory>
e Windows 7 (64 bit)
e Program Files (x86)\3S CoDeSys\CoDeSys\Settings
o Users\<Username>\ AppData\Roaming\CoDeSys
e ProgramData\CoDeSys
e <The project directory>

Question: How to fix an Unknown device in a project?

Answer

Install the desired device description to the device repository if you do not have it already.
Then upgrade the device in the IEC project to the newly installed one, by right-clicking the
device in the project and selecting Update Device....

Question: How to remove a boot application from the flash
memory card?

Answer

Select Online -> Reset origin. Note that this removes the application permanently from
the drive. Ensure that you have the source project available.

73

Question: What to do when | get an error message when | try to
download a project to the target or try to create a boot
application?

Answer

If the error message is not a compiler error because of an error in your program, clean
the project compile information (Build -> Clean all) and then download the program

again. If the error still persists, remove the previous application from the drive (Online ->
Reset origin) and then download your program.

Question: How to make a variable which keeps its value over the
drive reboot?

Answer

Define the variable as a retain variable using the RETAIN flag. You can select the flag in
the scope section or textually define the variable as in the screen shot below. For more
information, see section Retain variables in chapter Features.

FROGRAM PLC_FRG

@ RETATH

exanple retain wariahle: THT:

s, v

Figure img63

Question: What to do when | continuously receive “The project
handle O is invalid” error message”?

Answer

There are two ways to get rid of the error:
e Select Window -> Close All Editors and then restart CoDeSys.

e Save the project into a new empty folder.

CoDeSy= |

':8:' The project handle O is inwvalid,

Figure img64

74

Question: What to do when stack overflow fault 6487 occurs?

If stack overflow fault 6487 occurs, the number of the local variables inside a function is
too large. Unfortunately the limit of the local variables is relatively small. The stack usage
is high especially if there are, for example, division operands inside the EXPT function.

Also if the division function’s divider is zero (an exceptional case), the stack usage is
high.

Answer

First do not make too big functions at all. Try to make a compact function with a limited
number of the variables (40 REAL). If the function is too large, change some of the local
variables to global variables (use, for example, multiple global variable lists GVL to group
variables by functions). Consider to use function blocks or program modules instead of
functions.

Question: How to optimize the memory usage of the drive
application?

The code memory of the application is running out. How to optimize the program?
Answer

The drive embedded PLC has relatively limited memory and execution capacity. You

cannot compare that to real dedicated PLCs. There are a couple of tips to minimize the

program code:

e Use functions as much as possible. (Note: If there are too many variables inside the
function, the risk of stack overflow increases.)

e Try to design the application so that you do not need to create many instances of big
function blocks. Instead of function blocks use programs or functions.

e Use Drivelnterface to access drive parameters instead of the parameter read / write
functions

75

76

Appendix — Incompatible
features between versions V3
and V2.3

What this chapter contains

This chapter lists the features that are not compatible between CoDeSys versions V3 and
V2.3 and gives some tips to solve possible problems.

Incompatible features between CoDeSys versions V3 and V2.3

e Unlike the newer version, CoDeSys V2.3 does not allow functions to have multiple
outputs, thus the VAR_OUTPUT or VAR_IN_OUT tags cannot be included in the
description part of functions. Converting the function into a function block solves this
issue and provides an identical interface on both platforms at the cost of additional
memory usage.

¢ Single-line comments “//” are not supported in CoDeSys V2.3. Use block comments
instead “(*...*)".

e Array initialization has different syntax. For this reason, it is not possible to have code
that initializes an array to non-default values at declaration that is suitable for both
versions. This can be solved by writing values to the array once right after the code is
called.

e Boolean operations are not allowed for integer types other than BYTE, WORD and
DWORD in CoDeSys 2.3.

¢ Namespaces are not supported in CoDeSys 2.3.

e At least one statement is required for IF, ELSEIF and ELSE instructions in
CoDeSys 2.3.

¢ References are not supported in CoDeSys 2.3. Assigning a value directly instead of a
reference can eliminate this limitation.

¢ Unions are not available in CoDeSys 2.3.

e Indexed access to variable pointers is not allowed in CoDeSys 2.3. For this reason, a

pointer to the first element of an array cannot be used to access elements. Instead,
the pointer needs to be declared as a pointer to an array of elements. For example:

e ptr: POINTER TO ARRAY[0..10] OF REAL;
e instead of ptr: POINTER TO REAL,; to access ptr[5].
¢ Inthe newer CoDeSys versio, {attribute ‘hide_all_locals’} should be used to hide local
variables, whereas the 2.3 version uses {library private}. These pragmas can be

combined to produce code that works in both programming environments (only a
warning is produced).

77

78

Appendix - Unsupported
features of CoDeSys V3

The ACS880 drives do not support the following standard CoDeSys V3 features:
o Persistent variables, parameters or retain variables should be used instead

e Target visualization

e Target-based tracing. You can use the Monitor feature in Drive composer. See Drive
composer user’s manual (3AUA0000094606 [English]).

e BYTE, SINT, STRING and LREAL data types (The BOOL data type is internally
converted to a 16-bit UINT in the ZCU target unit.)

e The number of tasks is limited to 3.
e Simulation

79

80

Appendix — ABB drives system
library

What this chapter contains

This appendix contains detailed information of the function blocks of the ABB drives
system library (AS1LB_Standard_ACS880_.V3_5)

Introduction to ABB drives system library

The ABB drives system library is intended to be used with the ACS880 drives. It provides
event, parameter read/write and program time level function blocks for application
programming in the CoDeSys environment. The description of the features in this
document is based on the ABB drives system library version 1.9.0.3.

Note: Using the Drive composer pro System info, check that the drive has the
corresponding system library installed. In the System info, the system library version is
located under the Products/ More view. The system library versions must be the same in
the drive and the IEC application program project.

81

Function blocks of the system library

Function block name

Description

EVENT Send the application event.
ReadEventLog Read the drive’s faults and warnings.
ParReadBit Read the value of a bit in a packed-Boolean-type parameter.

ParRead_DINT

Read the value of a DINT/INT type parameter.

ParRead_REAL

Read the value of a REAL type parameter.

ParRead_UDINT

Read the value of a UDINT/UINT type parameter.

ParWriteBit

Write the value to a bit of a packed-Boolean-type parameter.

ParWrite_DINT

Write the value to a DINT/INT type parameter.

ParWrite_ REAL

Write the value to a REAL type parameter.

ParWrite_ UDINT

Write the value to an UDINT/UINT type parameter.

ParRead_BitPTR

Read the pointed bit value from a bit pointer type parameter.

ParRead_ValPTR_DINT

Read the pointed DINT/INT value from a value pointer type parameter.

ParRead_ValPTR_REAL

Read the pointed REAL value from a value pointer type parameter.

ParRead_ValPTR_UDINT

Read the pointed UDINT/UINT value from a value pointer type parameter.

ParSet_BitPTR_IEC

Set a bit pointer parameter to point to a bit type IEC variable.

ParSet_ValPTR_IEC_DINT

Set a value pointer parameter to point to a DINT type IEC variable.

ParSet_ValPTR_IEC_REAL

Set a value pointer parameter to point to a REAL type IEC variable.

ParSet_ValPTR_IEC_UDINT

Set a value pointer parameter to point to an UDINT type IEC variable.

ParSet_BitPTR_Par

Set a bit pointer parameter to point to a bit of a packed Boolean parameter.

ParSet_ValPTR_Par

Set a value pointer parameter to point to a value parameter.

UsedTimeLevel

Show time level (ms) of the program where the function block is located.

82

Event function blocks

EVENT
Summary
The application event function block is used to trigger a EVENT
predefined event (fault/warning/pure) from the IEC code. The § - Cod Err
H H H — AL =
event is registered to drive event logger. EventType
Connections —|Trig
—Enzble
Inputs:

Name Type Value Description

AuxCode DWORD The auxiliary code that you can set freely (constant).

Enable BOOL Enable/disable event sending.

EventType WORD Type of the event (constant, cannot be changed on run
time). Supported event types: Fault = 1, Warning = 2,
Pure = 8 (Notice is not supported).

1D WORD Identification of the event (constant, cannot be
changed on run time). This is a unique value of the
event. You can find the supported values in the
ApplicationParametersAndEvent tool. A certain range
is reserved for each application event type.

Trig BOOL The high level (TRUE) of this pin sends/activates the
event, if Enable is set to TRUE. . Warning is
deactivated automatically, when Trig falls down. To
clear fault the reset command must be given.

Outputs:

Name Type Value Description

Err WORD The value is typically 0x0000.
0x0001 = Not used
0x0002 = Event is not user-defined event
0x0003 = Event type error
0x0004 = Event ID type error
0x0005 = Not used
0x0006 = Unknown event type

Description

You can configure an application event with the ApplicationParametersandEvents in
Control Builder Plus tool. (See chapter Application parameter and event creation). This
tool defines the ID and the event text (description).

Control Builder Plus supports the following event types: Fault, Warning and Pure (or
none).

The event ID, text, auxiliary code, time and operation data is registered into the drive
event logger.

The application events can be shown using the ACS-AP-x control panel and Drive
composer tools, or using the ReadEventLog block on the application level. Fault can be
reset e.g. using control panel or Drivecomposer Pro tool.

83

ReadEventLog

Summary

ReadEventLog is a special block for reading faults and ReadEventlog

warnings from the drive event system. The block does not :Eﬂ;‘ﬂ‘f’p‘a Colsz

read evgnts or use the drive e_vent or fault loggers. Jdent AuxCode

Instead it gets the events straight from the event system _{Enabl= Status

itself. RdCnt
Eventl ostCnt

The purpose of the block is to forward drive events, for

example, to external systems, like automation user interfaces.

Inputs:
Name Type Value Description
Cnt UINT Number of the wanted events at a time. (0...6)
Enable BOOL Enable / disable the block execution. The falling edge of
this pin clears all the output vectors.
EventType UINT Not used. The block returns the drive’s faults and
warnings. Can be setto 0.
Index UINT Not used. Can be set to 0.
Outputs:
Name Type Value Description
AuxCode Array of Auxiliary code of the event.
UINT[10]
Code Array of Event code (ID). The block supports maximum 6 events at
UINT[10] a time.
Err UINT Not used.
EventLostCnt | UINT The number of the lost events (for monitoring).
RdCnt UINT The number of the get/read events at a time.
Maximum 6
RdCnt value = 0 indicates that there are no new events.
Status Array of Status of the event.
UINT[10] 1 = The event has been activated.
2 = The event has been deactivated.
3 = Acknowledgement requested.
4 = The event is reactivated (warnings).
5 = All faults have been deactivated.

84

Description

The block packs the event Code, AuxCode and Status to vectors that the user can read.
The block does not sort faults and warnings from each other. The 1* event in the vector is
the oldest one.

The block returns the maximum Cnt number of events in each execution cycle depending
on how many events exist at this time on the drive. RdCnt indicates how many events are
got in each execution cycle. The vectors and RACnt are updated in every execution cycle
if new events exist. For this reason, only the value of RdCnt matters when reading the
event data from vectors. The older events are overwritten by the newer ones.

Example:

In the 1% execution cycle, the user reads 2 events, for example, events 11, 12
(RdCnt = 2). Both are valid. 12 is the last one.

In the 2" execution cycle, the user reads 1 event, for example, 21 (RdCnt = 1).

Now values 21, 12 can be seen in the Code vector, but because RdCnt is 1, only
the first value is valid (21). (12 read in the previous cycle.)

Vectors are cleared only on the falling edge of the Enable pin.

EventLostCnt indicates the number of the lost events. The value should be 0. In
the opposite case, the reason can be too slow execution cycle of this block.

We recommend, however, that the execution cycle of this block is as slow as
possible, and, for optimizing the application resources, there should be only one
instance of this block in use.

Parameter read function blocks

85

ParReadBit
Summary
ParReadBit reads the value of a bit in a packed Boolean type ParReadbit
parameter. :ﬁ;‘g{p D”"E‘::
Connections —|EitNro
Inputs:
Name Type Value Description
BitNro INT ANY Bit number
Group INT ANY Parameter group
Index INT ANY Parameter index
Outputs:
Name Type Value Description
Err INT ANY Error output
Output BOOL T/IF Output value
Description

The function block reads the value of a bit in a packed Boolean type parameter. Group
and Index define the parameter to be read and BitNro defines the number of the bit. The
value of the bit read is returned from Output.

Err returns an error code if there is an error during the read operation, for example, the
parameter is not found or it is a parameter of a wrong type. If the read operation is

successful, Err returns a 0.

86

ParRead_DINT

Summary
ParRead_DINT reads the value of a DINT/INT type parameter. ParRead_DINT
. —Group Cutput

Connections indesx =
Inputs:

Name Type Value Description

Group INT ANY Parameter group

Index INT ANY Parameter index
Outputs:

Name Type Value Description

Err INT ANY Error output

Output DINT ANY Output value
Description

The function block reads the value of a DINT or INT type parameter. Group and Index
define the parameter to be read. The value of the parameter is returned from Output. The
type of Output is DINT even if the parameter to be read is of the INT type.

Err returns an error code if there is an error during the read operation, for example, the
parameter is not found or it is a parameter of a wrong type. If the read operation is

successful, Err returns a 0.

ParRead REAL

87

Summary
ParRead_REAL reads the value of a REAL type parameter. ParRead REAL
Connections e DIt
—{ I Err

Inputs:

Name Type Value Description

Group INT ANY Parameter group

Index INT ANY Parameter index
Outputs:

Name Type Value Description

Err INT ANY Error output

Output REAL ANY Output value
Description

The function block reads the value of a REAL type parameter. Group and Index define
the parameter to be read. The value of the parameter is returned from Output.

Err returns an error code if there is an error during the read operation, for example, the
parameter is not found or it is a parameter of a wrong type. If the read operation is

successful, Err returns a 0.

88

ParRead_ UDINT

Summary

ParRead_UDINT reads the value of a UDINT/UINT type

parameter.

Connections

ParRead_UDINT
—Group Clut
—Index

put
Err

Inputs:
Name Type Value Description
Group INT ANY Parameter group
Index INT ANY Parameter index
Outputs:
Name Type Value Description
Err INT ANY Error output
Output UDINT ANY Output value
Description

The function block reads the value of a UDINT or UINT type parameter. Group and Index

define the parameter to be read. The value of the parameter is returned from Output. The

type of the output is UDINT even if the parameter to be read is of the UINT type.

Err returns an error code if there is an error during the read operation, for example, the
parameter is not found or it is a parameter of a wrong type. If the read operation is

successful, Err returns a 0.

Parameter write function blocks

ParWriteBit
Summary ParWriteBit
. . . . Input Err
ParWriteBit writes a value to a bit of a packed Boolean type Group
parameter. Indest
. BitMro
Connections Store

89

Inputs:
Name Type Value Description
BitNro INT ANY Bit number
Group INT ANY Parameter group
Index INT ANY Parameter index
Input BOOL TIF Input value
Store BOOL TIF Store input
Outputs:
Name Type Value Description
Err INT ANY Error output
Description

The function block writes the value of Input into a selected bit of a packed Boolean type
parameter. Group and Index define the parameter to be written and BitNro define the
number of the bit. Store defines if the current written value of the parameter is stored to
the flash memory. During the power-up of the drive, the value of the parameter is set to
the latest stored value.

Err returns an error code if there is an error during the write operation, for example, the
parameter is not found or it is a parameter of a wrong type. If the write operation is
successful, Err returns a 0.

90

ParWrite_DINT

Summary _
Parwnte_DINT
ParWrite_DINT writes a value to a DINT/INT type parameter. —{Input Errf-
. —Group
Connections index
—{Store

Inputs:

Name Type Value Description

Group INT ANY Parameter group

Index INT ANY Parameter index

Input DINT ANY Input value

Store BOOL TIF Store input
Outputs:

Name Type Value Description

Err INT ANY Error output
Description

The function block writes the value of Input into a selected DINT or INT type parameter.
The type of the Input is DINT even if the parameter to be written is of the INT type. Group
and Index define the parameter to be written. Store defines if the current written value of
the parameter is stored to the flash memory. During the power-up of the drive, the value
of the parameter is set to the latest stored value.

Err returns an error code if there is an error during the write operation, for example, the
parameter is not found or it is a parameter of a wrong type. If the write operation is
successful, Err returns a 0.

91

ParWrite_ REAL

Summary _
Parwnte_REAL
ParWrite_ REAL writes a value to a REAL type parameter. —{Input Errf-
] —Group
Connections —{Index
—{Store

Inputs:

Name Type Value Description

Group INT ANY Parameter group

Index INT ANY Parameter index

Input REAL ANY Input value

Store BOOL TIF Store input
Outputs:

Name Type Value Description

Err INT ANY Error output
Description

The function block writes the value of Input into a selected REAL type parameter. Group
and Index define the parameter to be written. Store defines if the current written value of
the parameter is stored to the flash memory. During the power-up of the drive, the value
of the parameter is set to the latest stored value.

Err returns an error code if there is an error during the write operation, for example, the
parameter is not found or it is a parameter of a wrong type. If the write operation is
successful, Err returns a 0.

92

ParWrite_UDINT

Summary
. . Parwrite UDINT
ParWrite_UDINT writes a value to a UDINT/UINT type Tk
parameter. —Group
. —Index

Connections Store
Inputs:

Name Type Value Description

Group INT ANY Parameter group

Index INT ANY Parameter index

Input UDINT ANY Input value

Store BOOL TIF Store input
Outputs:

Name Type Value Description

Err INT ANY Error output
Description

The function block writes the value of Input into a selected UDINT or UINT type
parameter. The type of Input is UDINT even if the parameter to be written is of the UINT
type. Group and Index define the parameter to be written. Store defines if the current
written value of the parameter is stored to the flash memory. During the power-up of the
drive, the value of the parameter is set to the latest stored value.

Err returns an error code if there is an error during the write operation, for example, the
parameter is not found or it is a parameter of a wrong type. If the write operation is
successful, Err returns a 0.

Pointer parameter read function block

ParRead BitPTR

Summary

ParRead_BitPTR reads the pointed bit value from a bit pointer

type parameter.

ParRead_BiFTR

93

) —Group Output -
Connections —Index Err
Inputs:

Name Type Value Description

Group INT ANY Parameter group

Index INT ANY Parameter index
Outputs:

Name Type Value Description

Err WORD ANY Error output

Output BOOL ANY Output value
Description

The function block reads the pointed value of a bit pointer type parameter. Group and
Index define the pointed parameter to be read. The pointed value of the parameter is

returned from Output.

Err returns an error code if there is an error during the read operation, for example, the
parameter is not found or it is a parameter of a wrong type. If the read operation is

successful, Err returns a 0.

94

ParRead_ValPTR_DINT

Summary

ParRead_ValPTR_DINT reads a pointed DINT/INT value
from a value pointer type parameter.

Connections

—Group
—Index

ParRead_ValFTR_DINT

Cutput
Err

Inputs:
Name Type Value Description
Group INT ANY Parameter group
Index INT ANY Parameter index
Outputs:
Name Type Value Description
Err INT ANY Error output
Output DINT ANY Output value
Description

The function block reads the pointed value of a DINT or INT pointer type parameter.
Group and Index define the pointed parameter to be read. The pointed value of the
parameter is returned from Output. The type of Output is DINT even if the parameter type

is INT.

Err returns an error code if there is an error during the read operation, for example, the

parameter is not found or it is a parameter of a wrong type. If the read operation is
successful, Err returns a 0.

ParRead_ValPTR_REAL

Summary

ParRead_ValPTR_REAL reads a pointed REAL value

from a value pointer type parameter.

95

ParRead_ValFTR_HEAL

) —Group
Connections —{Index
Inputs:

Name Type Value Description

Group INT ANY Parameter group

Index INT ANY Parameter index
Outputs:

Name Type Value Description

Err INT ANY Error output

Output REAL ANY Output value
Description

The function block reads the pointed value of a REAL pointer type parameter. Group and

Index define the pointed parameter to be read. The pointed value of the parameter is
returned from Output.

Err returns an error code if there is an error during the read operation, for example, the
parameter is not found or it is a parameter of a wrong type. If the read operation is
successful, Err returns a 0.

96

ParRead_ValPTR_UDINT

Summary
ParRead_ValPTR_UDINT reads a pointed UDINT/UINT

value from a value pointer type parameter. ParRead_ValPTR_UDINT

_ —Group Output
Connections —Index Err
Inputs:

Name Type Value Description

Group INT ANY Parameter group

Index INT ANY Parameter index
Outputs:

Name Type Value Description

Err INT ANY Error output

Output UDINT ANY Output value
Description

The function block reads the pointed value of a UDINT or UINT pointer type parameter.
Group and Index define the pointed parameter to be read. The pointed value of the
parameter is returned from Output. The type of Output is UDINT even if the parameter
type is UINT.

Err returns an error code if there is an error during the read operation, for example, the
parameter is not found or it is a parameter of a wrong type. If the read operation is
successful, Err returns a 0.

Set pointer parameter to IEC variable function blocks

ParSet_BitPTR_IEC

Summary

ParSet_BitPTR_IEC sets a bit pointer parameter to point to a

ParSet_BitPTR_IEC

bit type IEC variable. —Group Err
) —Index
Connections —Bithro
HIEC_ Var

Inputs:

Name Type Value Description

BitNro INT 0 Bit setting is not supported.

Group INT ANY Parameter group

IEC_Var BOOL TIF IEC variable

Index INT ANY Parameter index
Outputs:

Name Type Value Description

Err INT ANY Error output
Description

The function block sets a bit pointer type parameter to point to an IEC variable of the
Boolean type, that is, the IEC variable overwrites the value of the bit pointer. The

parameter to point must be of the bit pointer type. Group and Index define the parameter.
The BitNro input must be set to zero since (at least in this library version) the type of
IEC_Var must be Boolean and type of the parameter to be set must be bit pointer.
Therefore the bit number cannot be chosen. The IEC_Var input is the IEC variable to be

pointed.

Err returns an error code if there is an error during the set operation, for example, the
parameter is not found or it is a parameter of a wrong type. If the set operation is

successful, Err returns a O.

98

ParSet_ValPTR_IEC_DINT

Summary

ParSet_ValPTR_IEC_DINT sets a value pointer - PHTSEL""H'PTH_'EE_D'"TE
parameter to point to a DINT type IEC variable. — i
Connections HIEC_Var
Inputs:

Name Type Value Description

Group INT ANY Parameter group

IEC_Var DINT ANY IEC variable

Index INT ANY Parameter index
Outputs:

Name Type Value Description

Err INT ANY Error output
Description

The function block sets a value pointer type parameter to point to an IEC variable of the
DINT type, that is, the IEC variable value overwrites the value of the value pointer. The
parameter to point must be a value pointer to the DINT or INT type. Group and Index
define the parameter. The IEC_Var input is the IEC variable to be pointed.

Err returns an error code if there is an error during the set operation, for example, the
parameter is not found or it is a parameter of a wrong type. If the set operation is

successful, Err returns a 0.

ParSet_ValPTR_IEC_REAL

Summary

99

ParSet_ValPTR_IEC_REAL sets a value pointer _GFEJ;'S“—““'PTH—'H:—HEN'E”
parameter to point to a REAL type IEC variable. |-
. H|EC_Var

Connections
Inputs:

Name Type Value Description

Group INT ANY Parameter group

IEC_Var REAL ANY IEC variable

Index INT ANY Parameter index
Outputs:

Name Type Value Description

Err INT ANY Error output
Description

The function block sets a value pointer type parameter to point to an IEC variable of the
REAL type, that is, the IEC variable value overwrites the value of the value pointer. The
parameter to point must be a value pointer to the REAL type. Group and Index define the
parameter. The IEC_Var input is the IEC variable to be pointed.

Err returns an error code if there is an error during the set operation, for example, the

parameter is not found or it is a parameter of a wrong type. If the set operation is
successful, Err returns a 0.

100

ParSet_ValPTR_IEC_UDINT

Summary

ParSet_ValPTR_IEC_UDINT sets a value pointer ParSel ValPTR IEC UDINT
parameter to point to a UDINT type IEC variable. —{Group Err
. —Index
Connections Sl|EC_Var
Inputs:
Name Type Value Description
Group INT ANY Parameter group
IEC_Var UDINT ANY IEC variable
Index INT ANY Parameter index
Outputs:
Name Type Value Description
Err INT ANY Error output
Description

The function block sets a value pointer type parameter to point to an IEC variable of the

UDINT type, that is, the IEC variable value overwrites the value of the value pointer. The
parameter to point must be a value pointer to the UDINT or UINT type. Group and Index
define the parameter. The IEC_Var input is the IEC variable to be pointed.

Err returns an error code if there is an error during the set operation, for example, the
parameter is not found or it is a parameter of a wrong type. If the set operation is

successful, Err returns a 0.

101

Set pointer parameter to parameter function blocks
ParSet_BitPTR_Par

Summary ParSet_BitPTR Par
ParSet_BitPTR_Par sets a bit pointer parameter to point to a :g—ﬁ;‘;ﬂ Errf
bit of a packed Boolean parameter. s Bithire
Connections 1-Group
—T_Index

Inputs:

Name Type Value Description

S_BitNro INT ANY Source bit number

S_Group INT ANY Source parameter group

S_Index INT ANY Source parameter index

T_Group INT ANY Target parameter group

T_Index INT ANY Target parameter index
Outputs:

Name Type Value Description

Err INT ANY Error output
Description

The function block sets a bit pointer parameter to point to a bit of a packed Boolean type
parameter. S_Group and S_Index define the parameter to be pointed (the source) and
S_BitNro defines the number of the bit. T_Group and T_Index define the pointer
parameter (the target) which points to the source parameter. The target parameter must
be a Bit Pointer type and the source parameter must be a packed Boolean type.

Err returns an error code if there is an error during the set operation, for example, the
parameter is not found or it is a parameter of a wrong type. If the set operation is
successful, Err returns a 0.

102

ParSet_ValPTR_Par

Summary
ParSet_ValPTR_Par sets a value pointer parameter to point . E“’M—““'F'H—P“’E
—=_Group T~
to a value parameter. 5 Index
Connections —|T-Group
—T_Index
Inputs:
Name Type Value Description
S_Group INT ANY Source parameter group
S_Index INT ANY Source parameter index
T_Group INT ANY Target parameter group
T_Index INT ANY Target parameter index
Outputs:
Name Type Value Description
Err INT ANY Error output
Description

The function block sets a value pointer parameter to point to a value parameter. S_Group
and S_Index define the parameter to be pointed (the source). T_Group and T_Index
define the pointer parameter (the target) which points to the source parameter. The target
parameter must be a pointer parameter of the same type as the source parameter which
must be a value parameter.

Err returns an error code if there is an error during the set operation, for example, the
parameter is not found or it is a parameter of a wrong type. If the set operation is
successful, Err returns a 0.

103

Task time level function block
UsedTimeLevel

Summary
UsedTimeLevel shows the time level (ms) of the program (task UsedTimeLevel
execution cycle) where the function block is located. Output |-

Connections

Inputs:
Name Type Value Description

NONE

Outputs:
Name Type Value Description

Output INT ANY Used time level in ms

Description

The function block shows the time level of the program (task cycle) in which the particular
function block is located. Output gives the time level in milliseconds.

104

List of error codes

The following list gives the most common error codes related to the function blocks of the
ABB drives system library. The error codes are received from the Err output and they
indicate if there is an error during the performance of the function block.

Error code number Description

0 (hex 0) Success, no error

4 (hex 4) The parameter is write-protected.

5 (hex 5) The parameter is hidden.

6 (hex 6) Illegal operation, for example, the parameter type is incorrect.
9 (hex 9) Parameter minimum value is exceeded.
10 (hex A) Parameter maximum value is exceeded
11 (hex B) No value in the list

13 (hex D) The parameter is not found.

774 (hex 306) Outside index area

775 (hex 307) Overlapping group

777 (hex 309) UFF error

105

106

Appendix — ABB drives standard
library

What this chapter contains

This appendix contains detailed information of the basic and special functions of the ABB
drives standard library (AS1LB_Standard_ACS880_.V3_5)

Introduction to ABB drives standard library

The ABB drives standard library is intended to be used with the ACS880 drives and the
AC500 PLC. It provides frequently used control elements for application programming in
CoDeSys. Unlike the standard libraries provided by 3S-Smart Software Solutions, most of
the function blocks in the library use floating point numbers. This provides a more flexible
development environment as the programmer does not need to worry about handling
wide numerical ranges and scaling.

The drive version of the library is generated from the PLC version to ensure that the code
IS not altered in any way. For compatibility, some functions are implemented as function
blocks because the PLC does not support multiple outputs for functions. The functions do
not have a state and thus require less memory. This is also why the drive version of the
library has these blocks as functions (that is, there are 2 versions available in the drive
version).

Input values are checked to be within the defined limits. If for some reason the block
detects that a value is out of range, it can:

1. Limit the value to the maximum or minimum value. For example, if the time constant
is set to a very large value or a negative value, it is limited inside the block to ensure
the correct execution.

2. Produce an error signal. For example, if the low limit for the output is greater than the
high limit, the block cannot operate and produces an error.

The function blocks with a state have a balance reference and balance mode. This
feature provides the means to force the control system to a new state. By enabling the
balance mode, the blocks operate as if the balance reference is the calculated output of
the block. Internal variables are also adjusted so that once the balance mode is disabled
the process continues from the balance reference value.

107

Basic functions

BGET
Summary
. . BGET_WORD

The BGET function reads one selected bit from a WORD BT NR ~ BGET woRDL
or a DWORD (includes size check). 4N -
Connections
Inputs:

Name Type Value Description

BIT_NR UINT 0...31 Bit number

IN DWORD, ANY Data input

WORD

Outputs:

Name Type Value Description

BGET BOOL TRUE, Bit value

FALSE

Function

The output (BGET) is the selected bit (BIT_NR) of the input word (IN).
If BIT_NR is 0O, the bit is 0. If BIT_NR is 31, the bit is 31.

If the bit number is not within the range of 0...31 (for DWORD) or 0...15 (for WORD), the
output is 0.

108

BSET
Summary BSET_WORD
. —EN BSET_WORD £
The BSET function changes the state of one selected —BIT_NR
bit of a WORD or a DWORD (includes size check). —|BIT_VALUE
—IM

Connections
Inputs:

Name Type Value Description

BIT_NR UINT 0..31 Bit number

BIT_VALUE | BOOL TRUE, New value for bit

FALSE
EN BOOL TRUE, Enable block
FALSE
IN DWORD, ANY Data input
WORD

Outputs:

Name Type Value Description

BSET DWORD, ANY Changed word

WORD

Function

The value of a selected bit (BIT_NR) of the input (IN) is set as defined by the bit value
input (BIT_VALUE).

If BIT_NR s 0, the bitis 0. If BIT_NR is 31, the bit is 31. The function must be enabled
by the enable input (EN).

If the function is disabled or the bit number is not within the range of 0...31 (for DWORD)
or 0...15 (for WORD), the input value is stored to the output as it is (that is, no bit setting
occurs).

Example:
EN =1, BIT_NR =3, BIT_VALUE =0
IN = 0000 0000 1111 1111
BSET = 0000 0000 1111 0111

DEMUX

Summary

109

. DEMUX_8_INT
The demultiplexer function block is available with 2, 4 and 8 i ~ T ouTik
inputs for the BOOL, DINT, INT, REAL and UDINT data types. —ADDR ouTzk
. . . OUT3E
Since the block does not need internal memory, it also comes as ouT4L
a function (CoDeSys for PLC does not support multiple outputs OUTh}-
for functions). OUTE-
_ OUTTH
Connections OUTEE-
Inputs:
Name Type Value Description
ADDR UINT 1..8 Address
IN BOOL, DINT, | ANY Input
INT, REAL,
UDINT
Outputs:
Name Type Value Description
OUT1...8 BOOL, DINT, | ANY Output 1...8
INT, REAL,
UDINT
Function

The input value (IN) is stored to the output (OUT1...8) selected by the address input

(ADDR). All other outputs are set to 0.

If the address input is not from 1 to 8, all outputs are set to O.

110

DEMUXM
Summary
DEMUXM_B INT
The demultiplexer function block with an internal memory to —SET ouT1
store output values is available with 2, 4 and 8 inputs for the _lﬁ%;DEr gﬂ%
BOOL, DINT, INT, REAL and UDINT data types. 1apoR OUT4
—IM OuUTS
OUTE
Connections ouTy
ouTa
Inputs:
Name Type Value Description
ADDR UINT 1.8 Address
IN BOOL, DINT, | ANY Input
INT, REAL,
UDINT
LOAD BOOL TRUE, Load (Set only once)
FALSE
RESET BOOL TRUE, Reset
FALSE
SET BOOL TRUE, Set
FALSE
Outputs:
Name Type Value Description
OuUT1...8 BOOL, DINT, | ANY Output 1...8
INT, REAL,
UDINT
Function

DEMUXM is used as a demultiplexer with memory. It remembers the assigned values to
outputs and continues sending them until changed or reset.

The input value (IN) is stored to the output (OUT1...8) selected by the address input
(ADDR) if the load input (LOAD) or the set input (SET) is 1.

When the load input is set to 1, the input value is stored to the output only once. When
the set input is set to 1, the input value is stored to the output every time the block is
executed. The new set input overrides the load input.

If the address input is not from 1 to 8, the outputs are not affected by the input value.
If RESET = 1, all outputs are set to 0 and the block’s memory is reset.

111

MUX MUX_8_REAL
—|ADDR MUX_8_REAL -
Summary 1M1
. . —IM2
The multiplexer function for the REAL data type as the Jdina
CoDeSys version does not support this type. The function {ina
block is available with 2, 4 and 8 inputs. —mg
Connections —{IN7
—{INE
Inputs:
Name Type Value Description
ADDR UINT 1..8 Address
IN1...8 REAL ANY Inputs 1...8
Outputs:
Name Type Value Description
MUX REAL ANY Selected input value
Function

The value of an input (IN1...8) is selected by the address input (ADDR) and stored to the

output (MUX).

If the address input is not from 1 to 8, the output is set to O.

112

MUXM
MUXM_2_INT
Summary —SET ouT
] .)) —LOAD
The multiplexer function block with an internal memory to store the JRESET
output is available with 2, 4 and 8 inputs for the BOOL, DINT, INT, —ADCR
REAL and UDINT data types. :m;
—IN3
L
—INE
. —INE
Connections INT
. —INg
Inputs:
Name Type Value Description
ADDR UINT 0..8 Address
INZ...8 BOOL, DINT, | ANY Inputs 1...8
INT, REAL,
UDINT
LOAD BOOL TRUE, Load
FALSE
RESET BOOL TRUE, Reset
FALSE
SET BOOL TRUE, Set
FALSE
Outputs:
Name Type Value Description
ouT BOOL, DINT, | ANY Output
INT, REAL,
UDINT
Function

MUXM is used as a multiplexer with a memory. It remembers the assigned value of the
output and continues sending it until changed or reset.

The value of an input (IN1...8) is selected by the address input (ADDR) and is stored to
the output (MUX) if the LOAD input or the SET input is 1.

When the load input is set to 1, the input value is stored to the output only once. When
the set input is set to 1, the input value is stored to the output every time the block is
executed. The new set input overrides the load input.

If the address input is not from 1 to 8, the output is not affected by input value. If
RESET = 1, the output is set to 0 and the block’s memory is reset.

113

PACK
Summary
The PACK function sets the BOOL inputs into a WORD or a PACK_WORD
DWORD. —INO PACK_WORD -
N1
—iNz
—IN3
—IN4
—IN5
—ING
—INT
—INE
—INg
—IN10
—IMN11
—IN12
—IN13
. —IMN14
Connections T
Inputs:
Name Type Value Description
INO...31 BOOL TRUE, Bits
FALSE
Outputs:
Name Type Value Description
PACK WORD, ANY Resulting pack of bits
DWORD
Function

The Pack function takes an input set of bits and packs it in to a word.

114

SR D

Summary

The SR-D function block is an extension to a normal SR trigger

. SRE_D
with an additional memory input D trigger. The Reset signal T = ouT
overrides all other control signals and clears the internal block —DATA
state. The Set signal forces the output to the TRUE state. —CLK

_ —RESET
Connections
Inputs:
Name Type Value Description
CLK BOOL TRUE, Clock, rising edge active
FALSE
DATA BOOL TRUE, Data Input
FALSE
RESET BOOL TRUE, Reset
FALSE
SET BOOL TRUE, Set Input
FALSE
Outputs:
Name Type Value Description
ouT BOOL TRUE, Output signal
FALSE
Function

The SR-D block implements D trigger with the SET, RESET controls. The data is stored

from D input when the clock changes from 0 to 1. The SET signal forces the output to the
TRUE state. If R is active, the output is always FALSE. The RESET signal overrides all
other control signals and clears the internal block state.

When the clock input (CLK) is set from 0 to 1, the DATA input value is stored to the
output (OUT).

When RESET is set to 1, the output is set to 0.

Truth table:
SET RESET DATA CLK Previous output ouT
Any 1 Any Any Any 0
1 0 Any Any Any 1
0 0 Any 0 Qn1 Qn1
0 0 0 0->1 Any 0
0 0 1 0->1 Any 1

115

SWITCH
Summary
The SWITCH function block sets the outputs the same as the =TCH EINT
input if EN equals TRUE, otherwise all outputs are 0. SWITCH _|gy T T ouTik
is available with 2, 4 and 8 inputs and outputs for the BOOL, N1 ouTzL
DINT, INT, REAL and UDINT data types. —m% SHE -
Since the block does not need internal memory, it also comes M4 OUTHE
as a function (CoDeSys for PLC does not support multiple -mg SHE -
outputs for functions). Az ouTsl
Connections —INg
Inputs:
Name Type Value Description
EN BOOL TRUE, Enable
FALSE
IN1...8 BOOL, DINT, | ANY Input 1...8
INT, REAL,
UDINT
Outputs:
Name Type Value Description
OUT1...8 BOOL, DINT, | ANY Output 1...8
INT, REAL,
UDINT
Function

The output (OUTL1...8) is equal to the corresponding input (IN1...8) if the block is enabled
(EN = 1). Otherwise the output is 0.

116

SWITCHC
SWITCHC_8 INT
Summary —EN ouT1
. —SELECT QuT2
The SWITCHC function block has two channels. A channel can In1a ouT3
be chosen by using the Select signal. If Select equals FALSE, —IN?_'? ouT4
channel A is active. If Select equals TRUE, channel B is active. If N34 OuTS
. . . . —IN4A OuTe
the EN signal is not active, all outputs are 0. SWITCHC is _insa ouT?
available with 2, 4 and 8 input pairs and outputs for the BOOL, Insa ouTE
DINT, INT, REAL and UDINT data types. —INTA
—INBA
Since the block does not need an internal memory, it also comes JIN1E
as a function (CoDeSys for PLC does not support multiple —m%g
outputs for functions). -
Connections —IN3E
—INGE
Inputs: —INTB
—INEE
Name Type Value Description
EN BOOL TRUE, Enable
FALSE
IN1...8A BOOL, DINT, | ANY InputA1...8
INT, REAL,
UDINT
IN1...8B BOOL, DINT, | ANY InputB 1...8
INT, REAL,
UDINT
SELECT BOOL TRUE, Select
FALSE
Outputs:
Name Type Value Description
OUT1...8 BOOL, DINT, | ANY OutputA1...8
INT, REAL,
UDINT
Function

The output (OUTL1...8) is equal to the corresponding channel A input (IN1...8A) if the
activate input signal (SELECT) is 0. The output is equal to the corresponding channel B

input (IN1...8B) if the activate input signal (SELECT) is 1.

If the block is disabled (EN = 0), all outputs are set to O.

117

UNPACK
UNPACK_WORD
Summary I ouToL
The UNPACK function block splits a WORD or a DWORD into a gﬂ%:
set of BOOL outputs. ouT3L
. . . OUT4E
Since the block does not need an internal memory, it also OuTsL
comes as a function (CoDeSys for PLC does not support ouTEH-
multiple outputs for functions). OUT7 |-
QUTEF
OUTSE
. OUT10k
Connections ouT11k
. OUT12
Inputs: ouTi12L
OUT14F
OUT1EE
Name Type Value Description
IN WORD, ANY Input data
DWORD
Outputs:
Name Type Value Description
ouTO...31 BOOL TRUE, Output bits
FALSE

Function

The Unpack function takes an input word and returns it as a set of bits.

118

Special functions

. DRIVE_CTRL
Drive control En DONE
—START ERR
Summary -{STOP_EMCY_COAST ERNO
—] A, I
The drive control program offers basic STDP—EMEY—H”MP F";E’*DY
. —STOP_COAST OPERATING
controls of an ACS880 drive for JRESET TRIPPED
application programmers. A similar —EXT_CTRL_LOC ALARM
function block for the PLC to control the EF'EEESTEEEE D*T_TUDF::_EN?E?_LHE
. L. . _ WA AL
drive exist is in the PS553 library. EXT_CTRL LOC ACT
ACT_SPEED
ACT ValLUE2
Connections ACT_Sw
USED_Cw/
Inputs: MESSAGE
Name Type Value Description
EN BOOL TRUE, Enable function block - TRUE. Additionally configures
FALSE | the drive to use the application program.
See parameters 19.11, 20.1, 20.6, 22.11 and 26.11.
EXT_CTRL_LOC BOOL TRUE, Selects external control location (EXT1/EXT2).
FALSE See parameters 6.2.11 and 19.11.
REF_VALUE2 REAL ANY Torque reference value.
See parameter 26.11.
RESET BOOL TRUE, Resets drive and internal parameter errors.
FALSE See parameter 6.2.7.
SPEED_REF REAL ANY Speed reference value.
See parameter 22.11.
START BOOL TRUE, TRUE = start drive
FALSE FALSE = stop along currently active stop ramp.
See parameter 6.2.0.
STOP_COAST BOOL TRUE, TRUE = coast stop
FALSE | FALSE = normal operation
See parameter 6.2.3.
STOP_EMCY_COAST BOOL TRUE, Emergency coast stop to drive:
FALSE FALSE = stop by coast
TRUE = no stop
See parameter 6.2.1.
STOP_EMCY_RAMP BOOL TRUE, Emergency stop to drive
FALSE FALSE = stop by ramp
TRUE = no stop
See parameter 6.2.2.

119

Outputs:
Name Type Value Description
ACT_SPEED REAL ANY Actual speed (in rpm) read from drive
See parameter 1.01.
ACT_SW WORD | ANY Main status word read from drive
See parameter 6.11.
ACT_VALUE2 REAL ANY Actual torque (in %) read from drive
See parameter 1.10.
ALARM BOOL TRUE, Drive has an alarm
FALSE See parameter 6.11.7.
DONE BOOL TRUE, Execution finished when output DONE = TRUE.
FALSE
ERNO ENUM ANY Internal error code
ERR BOOL TRUE, Error occurred during execution when output ERR =

FALSE TRUE

EXT_CTRL_LOC_ACT | BOOL TRUE, Actual external control location EXT2 selected
FALSE See parameter 6.16.11.

EXT_RUN_ENABLE BOOL TRUE, Run enable status
FALSE See parameter 6.18.5.

LOCAL_CTRL BOOL TRUE, Drive control location: LOCAL
FALSE See parameter 6.11.9.

MESSAGE ENUM | ANY State of the function block
OPERATING BOOL TRUE, Drive is operating.

FALSE
READY BOOL TRUE, Ready to switch on

FALSE See parameter 6.11.0

TRIPPED BOOL TRUE, Drive FAULT
FALSE See parameter 6.11.3.

USED_CW WORD | ANY Application control word
See parameter 6.02.

Function

The program uses drive parameters as an interface to the drive.

An application control word (06.02) is used to control the drive. It sets the EXT1
command (20.01) and EXT2 command (20.06) parameters to Application Program. The
control word is defined in the ABB Drives control profile.

When the drive is in the operational state, the OPERATING output is set to TRUE to
indicate the current state of the state machine.

120

The program is enabled by setting the EN signal to TRUE. Once active, the block sets the
configuration parameters to the desired values once: Parameters 19.11, 20.01, 20.06,
22.11 and 26.11 are set to Application Program. The parameters are intentionally
changed once enable to change them manually while the program is running.

The drive status is obtained from the Main status word (06.11) and Status word 1 (06.16).
The actual speed (ACT_SPEED) and torque (ACT_VALUE?2) data are obtained from
parameters Motor speed used (01.01) and Motor torque % (01.10).

When the program is disabled, Application control word is set to O once.

If the EXT1 and EXT2 parameters are not set to the correct value while the program is
enabled, an error is produced.

Error codes and the ERR outputs are internal program errors and not drive fault codes.
Internal parameter errors do not prevent the program from functioning.

Limiting

Only one instance of drive control is allowed. This is why it is implemented as a program.

121

Filter
Summary
. FILT1_1
The FILT1_1 function block provides filtering of the high i ouTL
frequency part of the input signal. The block acts as a single- TF
pole low pass filter for the REAL numbers. The balancing —{BAL
function permits the output signal to track an external reference. —|BALREF
P P 9 —TIMELEVEL

Connections
Inputs:

Name Type Value Description

BAL BOOL TRUE, Balance input, activates the tracking mode.

FALSE

BALREF REAL ANY Value for the tracking mode

IN REAL ANY Input signal for the actual value

TF REAL 0...ANY | Filter time constant (ms)

TIMELEVEL INT 1...ANY | Task interval in milliseconds, default = 10 ms
Outputs:

Name Type Value Description

ouT REAL ANY Filtered actual value
Function

The function filters the input signal using the current input and previous output.
The transfer function for a single-pole filter with no passband gain is:
Error! Objects cannot be created from editing field codes.
)
To get the function for the output, the first step cross-multiplies the equation:
Error! Objects cannot be created from editing field codes.
(2)
Resolving the parenthesis gives:
Error! Objects cannot be created from editing field codes.
3

To get the equation to the time domain s has to be replaced by derivation:
Error! Objects cannot be created from editing field codes.
4

Since this is a first order approximation function block, the derivation can be replaced by
a difference:

Error! Objects cannot be created from editing field codes. (5)
Where: Ts is the cycle time of the program in milliseconds (time difference between
t and t-1).

The final filtering algorithm (6) is calculated by using the following formula that is obtained
from (5) by extracting O(t):
Error! Objects cannot be created from editing field codes.
(6)
If TF = 0 or negative, the output value is set to the input value.
Because of the REAL data type limitation, the TF/Ts ration is limited to 8000000, to
ensure that it is always possible to add 1 to the real value.

122

Function generator

Summary

The FUNG_1V function block is used for generation of an optional function of one
variable, y = f(x). The function is described by a number of coordinates. Linear
interpolation is used for values between these coordinates. An array of 8, 16 or 32
coordinates can be specified. The balancing function permits the output signal to track an
external reference and gives a smooth return to the normal operation.

Since the block does not need an internal memory, it also FUNG 1V 32 REAL
comes as a function (CoDeSys for PLC does not support _gaL - T T puth
multiple outputs for functions). —BALREF BALREFO -
. —IN_XTAB ERROR |-
Connections —®TAB
—YTAB
Inputs:
Name Type Value Description
BAL BOOL TRUE, Input for activation of the balancing mode
FALSE
BALREF REAL ANY Balance reference

Input for the reference value in the balancing mode

IN_XTAB REAL ANY Input signal for the function

XTAB REAL[N] | ANY Table of X coordinates for the function

YTAB REAL[N] | ANY Table of Y coordinates for the function
Outputs:

Name Type Value Description

BALREFO REAL ANY TRUE if the high limit is reached.

ERROR BOOL TRUE, TRUE when the input is outside the table range or

FALSE when the table contains unsorted (low to high) data for
the input coordinates.

ouT REAL ANY Value of the function

Function

The function generator FUNG_1V calculates output signal Y for a value at input X.
Calculation is performed in accordance with a piece-by-piece linear function which is
determined by vectors XTAB and YTAB. For each X value in XTAB, there is a
corresponding Y value in YTAB. The Y value at the output is calculated by means of
linear interpolation of the XTAB values, between which lies the value of input X. The
values in XTAB must increase from low to high in the table.

The output of the block depends only on the current input values, in other words, it does
not have any state.

123

Interpolation

The generated function is performed as follows:

Yie

y=2
e
Y 7
X« X Xt
Y = Yk + (X - Xk) (Yk+1 B Yk)
(Xk+1 - Xk)

Balancing

If BAL is set to TRUE, the value at Y is set to the value of the BALREF input. The X value
which corresponds to this Y value is obtained at the BALREFO output. On balancing, the
X value is calculated by interpolation in the same way the Y value is calculated during the
normal operation. To permit balancing, the values in YTAB must increase from low to
high in the table.

Limiting

If input signal X is outside the range defined by XTAB, the Y value is set to the highest or
lowest value in YTAB. If BALREF is outside the YTAB value range in the BAL mode, the

value at Y is set to the value at the BALREF input and BALREFO is set to the highest or

lowest value in XTAB.

124

Integ rator
Summary
The INT_REAL function block integrates the input. The INT_REAL
output signal can be limited within limit values. The :LEJMN DUE""J;
balancing function permits the output signal to track an 71 OuT LO
external reference and gives a smooth return to the —RESET
normal operation. —HOLD
—BAL
—BALREF
—OHL
Connections —OLL
—{TIMELEVEL
Inputs:
Name Type Value Description
BAL BOOL TRUE, Balance input, activates the tracking mode
FALSE
BALREF REAL ANY Value for the tracking mode
GAIN REAL ANY Gain input
HOLD BOOL TRUE, Stops integration when set to TRUE
FALSE
IN REAL ANY Input signal for the actual value
OHL REAL ANY High input limit
OoLL REAL ANY Low input limit
RESET BOOL TRUE, Clear integrated value
FALSE
TI REAL 0...ANY | Integration time (ms)
TIMELEVEL INT 1...ANY | Task interval in milliseconds, default = 10 ms
Outputs:
Name Type Value Description
ouT REAL ANY Output value
OUT_HI BOOL TRUE, TRUE if the high limit is reached.
FALSE
OUT_LO BOOL TRUE, TRUE if the low limit is reached.
FALSE

125

Function

The INT function can be written in the time plane as:
O(t) = K/T([1 t)dt)

The main controlled property is that the output signal retains its value when the input
signal I(t) = 0.

Clearing

The integrated value is cleared when RESET = TRUE (all internal variables are cleared).

Tracking

If BAL is set to TRUE, the integrator immediately goes into the tracking mode and the
output value is set to the value of the BALREF input. If the value at BALREF exceeds the
output signal limits, the output is set to the applicable limit value. On return to the normal
operation from the tracking mode, integration continues from the tracking reference.

Limiting

The output value is limited between OHL and OLL. If the actual value exceeds the upper
limit, the OUT_HI output is set to TRUE. If it falls below the lower limit, the OUT_LO
output is set to TRUE. If the limits have incorrect values, both OUT_HI and OUT_LO are
set to TRUE.

126

Lead lag

Summary

The LEADLAG_REAL function block is used to filter the input LEADLAG_REAL

M ouT

signal and provide a phase shifted output. This block acts as :CDEF

a lead/lag filter based on the COEF input value. ie
—RESET
—BAL
; —BALREF

Connections IrimMELBVEL
Inputs:

Name Type Value Description

BAL BOOL TRUE, Activates the balance mode

FALSE
BALREF REAL ANY Balance reference
Input for the reference value in the balancing mode.

COEF REAL ANY Constant that determines the filter type

IN REAL ANY Input signal for the function block

RESET BOOL TRUE, Resets the function block

FALSE

TC REAL 0...ANY | Time constant (ms)

TIMELEVEL INT 1...ANY | Task interval in milliseconds, default = 10 ms
Outputs:

Name Type Value Description

ouT REAL ANY Output signal

127

Function

The transfer function for the lead/lag filter is:

1+#Ts
1+T.s

The lead/lag filter has two input parameters TC and + (COEF):
If + > 1, the filter acts as a lead filter.
If + < 1, the filter acts as a lag filter.
If + =1, no filtering is applied.

The filter algorithm is calculated using the following formula:
dn = X - B1*dnMem
Y = AO*dn + Al*dnMem
dnMem =dn

Where,
A0 = (1+£*Tc)/ (1 + Tc),
Al=(1-%*Tc)/ (1 + Tc),
B1=(1-Tc)/(1+Tc)
X is the input signal.
Y is the output signal.

The initial value of dnMem is set to zero.

Note: If the = or TC inputs to the block are negative, the corresponding negative input is
assigned to zero before the filter algorithm is calculated.

Because of the REAL data type limitation, the TC/Ts ration is limited to 8000000, to
ensure that it is always possible to add 1 to the real value

Balancing

If BAL is set to TRUE, the value at Y is set to the value of the BALREF input. The block
operates normally during this time which means that the internal variable is always
calculated.

Reset

If RESET is set to TRUE, the internal variable dnMem is set to zero and input value X is
returned.

128

Motor potentiometer

MOTPOT_REAL
Summary —EN OUTH
. . . —UP
The MOTPOT_REAL (motor potentiometer) function block is Jon
used to generate the reference based on the activation of the = {sSLOFE
Boolean (UP and DN) inputs. The rate of change of a =
reference signal is controlled by the slope time and limits. The :g:lLLHEF
current value is retained after a power cycle. JoL
Connections g =
Inputs:
Name Type Value Description
BAL BOOL TRUE, Sets the output to BALREF or limit if it exceeds the
FALSE limit.
BALREF REAL ANY Sets the output value when he BAL input is active.
DN BOOL TRUE, Enables count down.
FALSE
EN BOOL TRUE, Enables operations.
FALSE
OHL REAL ANY High input limit
OLL REAL ANY Low input limit
SLOPE UINT 0..65535 | Delay time to count from OLL to OHL and vice versa
TIMELEVEL INT 1...ANY Task interval in milliseconds, default = 10 ms
upP BOOL TRUE, Enables count up
FALSE
Outputs:
Name Type Value Description
ouT REAL ANY Output value
Function

The MOTPOT functional block is used to control the rate of change of an output
reference signal. Digital inputs are normally used as the UP and DOWN inputs.

The rate of change of a reference signal is controlled by the slope time parameter. If the
enable pin (EN) is set to TRUE, the reference value rises from minimum to maximum
during the slope time.

EN turns on the MOTPOT function. If EN is set to FALSE, the output is zero. Based on
the UP or DN inputs getting activated, the output reference increases or decreases to the
maximum or minimum value based on the slope. If both UP/DN inputs are

activated / deactivated, the output is neither incremented nor decremented and is in a
steady state.

129

Clearing

When EN is set to FALSE, the output and internal values are set to zero.

Tracking

If BAL is set to TRUE, the output is set to the value of the BALREF input. If the value at
BALREF exceeds the output signal limits, the output is set to the applicable limit value.

Limiting
The output value is limited between OHL and OLL. If the actual value exceeds the upper

limit, the output is set to the OHL input value. If it falls below the lower limit, the output is
set to the OLL input value.

130

PID
Summary
. L PID_REAL
The PID_REAL (Proportional-Integral-Derivative) element |, ouT
can be used as a generic PID regulator in feedback —IN_REF DEV
systems. The main extension of the element is that a —GAIN QUT_HI
derivative correction term with a filter is included. Another —pD ouT_Lo
major extension is the antiwindup protection. The output :Tc
signal can be limited with limit values specified at special _|tf
inputs (OHL and OLL). The balancing function permits the —I_RST
output signal to track a gradual return to the normal n B{*'—
operation. After any parameter change or error condition, :g:lLLHEF
the integral term of the correction is readjusted so that the _|g|
output does not change abruptly (“bumpless transfer”). —{TIMELEVEL
Connections
Inputs:
Name Type Value Description
BAL BOOL TRUE, Balance input, activates the tracking mode.
FALSE
BALREF REAL ANY Value for the tracking mode
GAIN REAL ANY Proportional gain
IN_FB REAL ANY Actual input value
IN_REF REAL ANY Reference input value
I_RST BOOL TRUE, Clear integrator
FALSE
OHL REAL ANY High input limit
OLL REAL ANY Low input limit
TC REAL 0.. ANY Antiwindup correction time (ms)
D REAL 0.. ANY Derivation time (ms)
TF REAL 0.. ANY Filter time (ms)
TI REAL 0.. ANY Integration time (ms)
TIMELEVEL INT 1...ANY | Task interval in milliseconds, default = 10 ms
Outputs:
Name Type Value Description
DEV REAL | ANY Deviation (IN_FB - IN_REF)
ouT REAL ANY Output signal
OUT_HI BOOL TRUE, TRUE if the high limit is reached.
FALSE
OuUT_LO BOOL TRUE, TRUE if the low limit is reached.
FALSE

131

Function

The differential equation describing the PID controller before saturation/limitation that is
implemented in this block is:

OUTpresat(t) = Up(t) + Ul(t) + Ud(t)
Where:

OUT resat IS the PID output before saturation
Up is the proportional term

Ui is the integral term with saturation correction
Ud is the derivative term

tis time.

The proportional term is:
Up(t) = Kp*DEV(t)

Where:
Kp = P is the proportional gain of the PID controller
DEV(t) is the control deviation (see below).

The integral correction term is:
. Kp |
Vi) =— [DEV (z)d7 + K *(OUT (1) ~OUT, ., (1))
! 0

Where:
Kc is the integral antiwindup correction gain of the PID controller
OUT(t) is the (saturated/limited) output signal of the controller

The antiwindup correction
K, *(OUT () -OUT (1))
is thus taken to be part of the integral correction term.

Windup is a phenomenon that is caused by the interaction of an error integral action and
saturations. All actuators have limitations: a motor has limited speed, a valve cannot be
more than fully opened or fully closed, and so on. For a control system with a wide range
of operating conditions, it is possible that the control variable reaches the actuator limits.
When this happens, the feedback loop is broken and the system runs as an open loop
because the actuator remains at its limit independently of the process output. If a
controller with the integrating action is used, the error continues to be integrated. This
means that the integral term may become very large or, in other words, it “winds up”. It is
then required that the error has the opposite sign for a long period before things return to
normal. The consequence is that any controller with the integral action may give large
transients when the actuator saturates.

132

The derivative term is:

d(DEV (1))

Ud(t) = Kp*Td *
() =Kp m

Where:
Td is the derivative time constant.

The differential equations above are transformed into difference equations by backward
approximation.

This term is also filtered to make it resistant to high frequency noise.

G(s)=1/1+s*TF)
Smooth transfer

The controller guarantees a smooth transfer in many special situations where, for
example, control parameters are abruptly changed. This means that in such a bumpless
cycle the output retains its previous value. This is performed by resetting the integrator
term Ui to:

Ui(t) = OUT (t) —Up(t) —ud (t).
Smooth functionality is not triggered in the first cycle by change in Ti, Tc, Td and Tf.
Gain, time constants

The proportional gain Kp is directly an input parameter. The integrator, derivative and
antiwindup gains Ki, Kd and Kc must be calculated from the corresponding time
constants Ti, Td and Tc which are input parameters. The derivative gain is:
Kd=Td/T
Where:
T is the time level (execution cycle) of the block (in milliseconds as the time
constants).
The integral gain is determined from Ti as follows:
Ki=0,ifTi=0
Ki=T/Ti,if T<Ti
Ki=1,ifTeTi>0
The antiwindup gain is determined similarly by Tc:
Kc=0,if Tc=0
Kc=T/Tc,ifT<Tc

Kc=1,f TeTc>0

133

Thus the values of Ki and Kc are limited to the range 0 d Ki, Tid 1.

If Tc = 0, Kc = 0 and antiwindup correction is disabled.

If Ti=0, Ki = 0. The module does not update the integral term Ui, not even by the
antiwindup correction. Thus the integrator term retains its original value as long as Ki

remains zero.

The element stores the “current” set of gains Kp, Ki, Kc and Kd and time constants Ti, Tc
and Td, which it uses for calculating the control output(s).

Filtering

This derivative is filtered using a single-pole low pass filter. The following algorithm is
used to calculate the filtered value:

.
Kd *(Up(t)—Up(t—1»+7f*y(t—1)

y(t) =
1+
T
Where:
T is the time level (execution time) of the block (in milliseconds as the time
constants).

If the filter time constant is left unassigned, it defaults to O which means that the
derivative is calculated without filtering. The time constant is limited to 8000000*time level
to avoid underflow.

Tracking

If BAL is set to TRUE, the regulator goes into the tracking mode and the output follows
the value at BALREF. If the value at BALREF exceeds the output signal limits (OLL and
OHL), the output is set to the applicable limit value. The return from the tracking state is
bumpless.

Limitation function

The limitation function limits the output signal to the value range from OLL to OHL. If the
presaturated output exceeds OHL, OUT is set to OHL and OUT_HI is set to TRUE. If the
presaturated output falls below OLL, OUT is set to OLL and OUT_LO is set to TRUE.
Bumpless return from limitation is requested if and only if the antiwindup correction is not
in use, that is,. Ki= 0 or Kc = 0.

IF OLL < OHL, both OUT_HI and OUT_LO are set to TRUE and OUT retains the value
that it had in the execution cycle before the error occurred. After this error, the return to
the normal operation is smooth

Limiting

The output value is limited between OHL and OLL. If the actual value exceeds the upper
limit, OUT_HI is set to TRUE. If it falls below the lower limit, OUT_LO is set to TRUE.

134

RAMP
—IN OuUTH
Ramp —STEP_UP OUT_HIE
Summary —STEP_DN DUT_LD —
—SLOPE_UP
The RAMP is used to limit the rate of change of a signal. —SLOPE_DM
The output signal can be limited with limit values _all:HEF
specified at special inputs. The balancing function permits :DHL
the output signal to track an external reference. oL
. —|STOP
Connections _TIMELEVEL
Inputs:
Name Type Value Description
BAL BOOL TRUE, Balance input, activates the tracking mode.
FALSE
BALREF REAL ANY Balance reference
Input for the reference value in the tracking mode
IN REAL ANY Input signal for the actual value
OHL REAL ANY High input limit
OLL REAL ANY Low input limit
SLOPE_DN REAL 0.. ANY Negative ramp for the output
SLOPE_UP REAL 0.. ANY Positive ramp for the output
STEP_DN REAL 0.. ANY The greatest allowed negative STEP change
STEP_UP REAL 0.. ANY The greatest allowed positive STEP change
STOP BOOL TRUE, Holds the output (stops ramping)
FALSE
TIMELEVEL INT 1...ANY | Task interval in milliseconds, default = 10 ms
Outputs:
Name Type Value Description
ouT REAL ANY Output value
OUT_HI BOOL TRUE, TRUE if the high limit is reached
FALSE
OUT_LO BOOL TRUE, TRUE if the low limit is reached
FALSE
Function

The main property of the RAMP element is that the output signal tracks the input signal,
while the input signal is not changed more than the value specified at the step inputs. If
the input change is greater than the specified step changes, the output signal is first
changed by STEP_UP or STEP_DN depending on the direction of change. After that the
output signal is changed by SLOPE_UP or SLOPE_DN per second, until the values at
the input and output are equal. This means that if STEP_DN = STEP_UP =0, a pure
ramp function, that is, SLOPE/sec is obtained at the output. The greatest step change
allowed at the output is specified by the STEP_UP and STEP_DN inputs for the
respective direction of change.

All parameters are specified as absolute values with the same unit as the input. Slopes
specify the change in units per second. Certain constants are precalculated to make the

135

execution time of the element as short as possible. The results are stored internally in the
element. These constants are recalculated if the SLOPE_UP or SLOPE_DN values are
changed.

Calculation of the output

If Input (t) = Output (t-1), then Output (t) = Input (t)
If Input (t) > Output (t-1), then the change of the output O value is limited as follows:

An internal auxiliary variable VPOS follows the input value with the maximum rate
of change defined by SLOPE_UP. If the input value is greater than VPOS +
STEP_UP, the output value is limited to the value VPOS +STEP_UP. If the input
value is less than VPOS + STEP_UP, the output value is set to be equal to the
input.

If SLOPE_UP = 0, the output value does not rise no matter what the value of
STEP_UP and IN is.

If Input (t) < Output (t-1), then the change of the Output value is limited as follows:

An internal auxiliary variable VPOS follows the input value, with the maximum rate
of change defined by SLOPE_DN. If the input value is less than VPOS —
STEP_DN, the output value is limited to the value VPOS — STEP_DN. If the input
value is greater than VPOS — STEP_DN, the output value is set to be equal to the
input.

If SLOPE_DN = 0, the output value does not lower no matter what the value of
STEP_DN and IN is.

Tracking

If BAL is set to TRUE, the ramp immediately goes into the tracking mode and the output
is set to the value of BALREF. If the value at BALREF exceeds the output signal limits,
the output is set to the applicable limit value. During the tracking mode VPOS = Output =
BALREF. The return to the normal operation is done as if a unit step had occurred at the
input.

Limiting

The limitation function limits the output signal to the values at the OHL inputs for the
upper limit and OLL for the lower limit. If the actual value exceeds the upper limit,
OUT_HI is set to TRUE. If it falls below the lower limit, OUT_LO is set to TRUE. In the
limiting state VPOS(t) and OUT(t) are set to the applicable limit value.

IF OLL < OHL, both OUT_HI and OUT_LO are set to TRUE and OUT retains the value
that it had in the execution cycle before the error occurred.

136
Further information

Product and service inquiries

Address any inquiries about the product to your local ABB representative, quoting the
type designation and serial number of the unit in question. A listing of ABB sales, support
and service contacts can be found by navigating to www.abb.com/drives and selecting
Sales, Support and Service network.

Product training

For information on ABB product training, navigate to www.abb.com/drives and select
Training courses.

Providing feedback on ABB Drives manuals

Your comments on our manuals are welcome. Go to www.abb.com/drives and select
Document Library — Manuals feedback form (LV AC drives).

Document library on the Internet

You can find manuals and other product documents in PDF format on the Internet. Go to
www.abb.com/drives and select Document Library. You can browse the library or enter
selection criteria, for example a document code, in the search field.

http://www.abb.com/drives
http://www.abb.com/drives
http://www.abb.com/drives
http://www.abb.com/drives

137

Contact us

www.abb.com/drives

www.abb.com/drivespartners

http://www.abb.com/drives
http://www.abb.com/drivespartners

	Introduction to the manual
	What this chapter contains
	Compatibility
	Safety instructions
	Target audience
	Purpose of the manual
	Contents of the manual
	Related documents
	Terms and abbreviations

	Drive IEC programming
	What this chapter contains
	Drive’s embedded PLC
	Programming languages and modules
	Libraries
	Program execution
	Programming work cycle

	Installation
	What this chapter contains
	Installing ABB Control Builder Plus
	Establishing communication to the drive

	Creating application program
	What this chapter contains
	Creating a new project
	Establishing an on-line connection to the drive
	Naming the application
	Appending a new POU

	Writing program code
	Continuous function chart (CFC) program
	Adding elements
	Setting the execution order of the elements
	Adding a comment to a CFC program
	Declaring variables
	Adding inputs and the outputs
	Creating a block scheme

	Preparing a project for download
	Downloading the program to the drive
	Executing the program

	Features
	What this chapter contains
	Device handling
	Upgrading or adding a new device
	Changing an existing device

	Program organization units (POU)
	Data types
	Application download options
	Removing the application from the target
	Retain variables
	Task configuration
	Source code upload and download
	Symbol files
	Debugging and on-line changes
	Safe debugging

	Reset options
	Visualization
	Memory limits
	CPU limitation

	DriveInterface
	What this chapter contains
	Implementing DriveInterface
	Selecting the parameter set
	Parameter mapping report
	Mapping example
	Updating parameter list

	Application parameter and event creation
	What this chapter contains
	ApplicationParametersandEvents
	ParameterManager
	Creating parameter groups
	Creating parameters
	Parameter names and types
	Parameter family
	Function types
	Saving types
	Protection, hiding and excluding from backup
	Minimum, Maximum and Default value

	Parameter types
	Decimal number
	Formatted number
	Bit pointer
	Value pointer
	Plain value list
	Bit list (16 bit)

	Parameter families
	Selection lists
	Units
	Application events

	Libraries
	What this chapter contains
	Library types
	Adding a library into the project
	Creating a new library
	Installing a new library
	Managing library versions

	Practical examples and tips
	What this chapter contains
	Solving communication problems
	Question: What to do when scan network does not find any drives?

	Solving other problems
	Question: How to prevent unauthorized access to an application that is running in the drive?
	Question: What to do if “The options could not be loaded. (Reason: Root element is missing.)” error message is displayed when I try to uninstall the software?
	Question: How to fix an Unknown device in a project?
	Question: How to remove a boot application from the flash memory card?
	Question: What to do when I get an error message when I try to download a project to the target or try to create a boot application?
	Question: How to make a variable which keeps its value over the drive reboot?
	Question: What to do when I continuously receive “The project handle 0 is invalid” error message?
	Question: What to do when stack overflow fault 6487 occurs?
	Question: How to optimize the memory usage of the drive application?

	Appendix – Incompatible features between versions V3 and V2.3
	What this chapter contains
	Incompatible features between CoDeSys versions V3 and V2.3

	Appendix - Unsupported features of CoDeSys V3
	Appendix – ABB drives system library
	What this chapter contains
	Introduction to ABB drives system library
	Function blocks of the system library
	Event function blocks
	EVENT

	ReadEventLog
	Parameter read function blocks
	ParReadBit
	ParRead_DINT
	ParRead_REAL
	ParRead_UDINT

	Parameter write function blocks
	ParWriteBit
	ParWrite_DINT
	ParWrite_REAL
	ParWrite_UDINT

	Pointer parameter read function block
	ParRead_BitPTR
	ParRead_ValPTR_DINT
	ParRead_ValPTR_REAL
	ParRead_ValPTR_UDINT

	Set pointer parameter to IEC variable function blocks
	ParSet_BitPTR_IEC
	ParSet_ValPTR_IEC_DINT
	ParSet_ValPTR_IEC_REAL
	ParSet_ValPTR_IEC_UDINT

	Set pointer parameter to parameter function blocks
	ParSet_BitPTR_Par
	ParSet_ValPTR_Par

	Task time level function block
	UsedTimeLevel

	List of error codes

	Appendix – ABB drives standard library
	What this chapter contains
	Introduction to ABB drives standard library
	Basic functions
	BGET
	BSET
	DEMUX
	DEMUXM
	MUX
	MUXM
	PACK
	SR_D
	SWITCH
	SWITCHC
	UNPACK

	Special functions
	Drive control
	Filter
	Function generator
	Integrator
	Lead lag
	Motor potentiometer
	PID
	Ramp
	Product and service inquiries
	Product training
	Providing feedback on ABB Drives manuals
	Document library on the Internet

