

—
AC500 PLC

AC500 V3 Motion Controller Guide

Motion Controller with AC500 V3

Documentation

3
3ADR011116

3 Motion Controller with AC500 V3

—

NOTICE

This document contains information about one or more ABB products and may include a description of or a refer-

ence to one or more standards that may be generally relevant to the ABB products. The presence of any such descrip-

tion of a standard or reference to a standard is not a representation that all of the ABB products referenced in this

document support all of the features of the described or referenced standard. In order to determine the specific fea-

tures supported by a particular ABB product, the reader should consult the product specifications for the particular

ABB product.

ABB may have one or more patents or pending patent applications protecting the intellectual property in the ABB

products described in this document.

The information in this document is subject to change without notice and should not be construed as a commitment

by ABB. ABB assumes no responsibility for any errors that may appear in this document.

Products described or referenced in this document are designed to be connected and to communicate information

and data through network interfaces, which should be connected to a secure network. It is the sole responsibility of

the system/product owner to provide and continuously ensure a secure connection between the product and the

system network and/or any other networks that may be connected.

The system/product owners must establish and maintain appropriate measures, including, but not limited to, the

installation of firewalls, application of authentication measures, encryption of data, installation of antivirus pro-

grams, and so on, to protect these products, the network, its system, and interfaces against security breaches, unau-

thorized access, interference, intrusion, leakage, and/or theft of data or information.

ABB performs functionality testing on the products and updates that we release. However, system/product owners

are ultimately responsible for ensuring that any product updates or other major system updates (to include but not

limited to code changes, configuration file changes, third-party software updates or patches, hardware change out,

and so on) are compatible with the security measures implemented. The system/ product owners must verify that

the system and associated products function as expected in the environment in which they are deployed.

In no event shall ABB be liable for direct, indirect, special, incidental or consequential damages of any nature or kind

arising from the use of this document, nor shall ABB be liable for incidental or consequential damages arising from

use of any software or hardware described in this document.

This document and parts thereof must not be reproduced or copied without written permission from ABB, and the

contents thereof must not be imparted to a third party nor used for any unauthorized purpose.

The software or hardware described in this document is furnished under a license and may be used, copied, or dis-

closed only in accordance with the terms of such license. This product meets the requirements specified in EMC Di-

rective 2014/30/EU and in Low Voltage Directive 2014/35/EU.

4
3ADR011116

4 Motion Controller with AC500 V3

A. For customers domiciled outside Germany /

Für Kunden mit Sitz außerhalb Deutschlands

„Warranty, Liability:

The user shall be solely responsible for the use of the products described within this file. ABB shall be under no war-

ranty whatsoever. ABB's liability in connection with application of the products or examples provided or the files in-

cluded within these products, irrespective of the legal ground, shall be excluded. The exclusion of liability shall not

apply in the case of intention or gross negligence. The present declaration shall be governed by and construed in

accordance with the laws of Switzerland under exclusion of its conflict of laws rules and of the Vienna Convention on

the International Sale of Goods (CISG)."

„Gewährleistung und Haftung:

Der Nutzer ist allein für die Verwendung des in diesem Dokument beschriebenen Produkte und beschriebenen An-

wendungsbeispiele verantwortlich.

ABB unterliegt keiner Gewährleistung. Die Haftung von ABB im Zusammenhang mit diesem Anwendungsbeispiel

oder den in dieser Datei enthaltenen Dateien - gleich aus welchem Rechtsgrund - ist ausgeschlossen. Dieser Aus-

schluß gilt nicht im Falle von Vorsatz oder grober Fahrlässigkeit. Diese Erklärung unterliegt Schweizer Recht unter

Ausschluß der Verweisungsnormen und des UN-Kaufrechts (CISG)."

B. Nur für Kunden mit Sitz in Deutschland

„Gewährleistung und Haftung:

Die in diesem Dokument beschriebenen Anwendungsbeispiele oder enthaltenen Dateien beschreiben eine mögliche

Anwendung der AC500 bzw. zeigen eine mögliche Einsatzart. Sie stellen nur Beispiele für Programmierungen dar,

sind aber keine fertigen Lösungen. Eine Gewähr kann nicht übernommen werden.

Der Nutzer ist für die ordnungsgemäße, insbesondere vollständige und fehlerfreie Programmierung der Steuerungen

selbst verantwortlich. Im Falle der teilweisen oder ganzen Übernahme der Programmierbeispiele können gegen ABB

keine Ansprüche geltend gemacht werden.

Die Haftung von ABB, gleich aus welchem Rechtsgrund, im Zusammenhang mit den Anwendungsbeispielen oder den

in dieser Datei enthaltenen Beschreibung wird ausgeschlossen. Der Haftungsausschluß gilt jedoch nicht in Fällen des

Vorsatzes, der groben Fahrlässigkeit, bei Ansprüchen nach dem Produkthaftungsgesetz, im Falle der Verletzung des

Lebens, des Körpers oder der Gesundheit oder bei schuldhafter Verletzung einer wesentlichen Vertragspflicht. Im

Falle der Verletzung einer wesentlichen Vertragspflicht ist die Haftung jedoch auf den vertragstypischen, vorherseh-

baren Schaden begrenzt, soweit nicht zugleich ein anderer der in Satz 2 dieses Unterabsatzes erwähnten Fälle gege-

ben ist. Eine Änderung der Beweislast zum Nachteil des Nutzers ist hiermit nicht verbunden.

Es gilt materielles deutsches Recht unter Ausschluß des UN-Kaufrechts."

—

TRADEMARKS

All rights to copyrights, registered trademarks, and trademarks reside with their respective owners.

Copyright © 2022 ABB.

All rights reserved.

Release: December 2022

Document number: 3ADR011116

5
3ADR011116

5 Motion Controller with AC500 V3

1 Contents
1 INTRODUCTION ... 11

1.1 Scope of the document ... 11

1.2 Safety Instructions and Preconditions ... 11

2 AC500 PRODUCT OVERVIEW .. 13

2.1 AC500 PLC overview ... 13

2.2 AC500 / S500 hardware overview .. 14

2.3 Selecting an AC500 “V3” CPU as Motion Controller ... 14

2.3.1 Identifying AC500 “V3” CPU ... 14

2.3.2 Understanding the ABB products type codes and labels: .. 15

2.3.3 Understanding the Contents of ABB Motion Controller Kits: .. 16

2.3.4 The CPUs main technical data and limits for motion control selection 17

2.4 Mechanical installation ... 18

2.4.1 Mounting and demounting .. 19

2.5 Electrical connection .. 33

2.5.1 Power supply for processor modules .. 33

2.6 CPU function keys Display and LED display .. 34

2.6.1 Description of the function keys .. 34

2.6.2 Description of Display .. 35

2.6.3 Other common display codes ... 36

2.6.4 Description of LED .. 36

2.7 Accessories (TA521 - Lithium battery) ... 36

2.8 Introduction to ABB PLC Licenses .. 37

3 AUTOMATION BUILDER OVERVIEW ... 39

3.1 Software installation .. 39

3.1.1 Preconditions ... 39

3.1.2 Online Installation ... 42

3.1.3 Offline Installation ... 47

3.1.4 Installing additional tools .. 55

3.2 Software user licensing of Automation Builder .. 56

3.2.1 Online Activation ... 58

3.2.2 Offline Activation ... 59

3.3 Using Servo Drives with AC500 PLC ... 62

3.3.1 Setting up ABB Servo Drives for use with EtherCAT Master .. 62

3.3.2 Exporting the xml file from the drive ... 63

3.3.3 Adding ABB and 3rd party devices to the Device repository ... 63

4 INTRODUCTION TO THE PROJECT ... 66

4.1 Project types guidance ... 66

6
3ADR011116

6 Motion Controller with AC500 V3

4.1.1 Different project types ...66

4.1.2 Understanding when to use the different project types .. 67

4.2 Selecting hardware used in the project ... 67

4.2.1 Select PLC Type .. 67

4.2.2 Saving the project .. 68

4.2.3 Navigating the project ..69

4.3 Important CPU parameters ... 69

4.3.1 Checking program size and number of configured axis ... 70

4.4 Changing CPU type .. 71

4.5 I/O in AC500 and S500 IO System .. 73

4.5.1 Configuring local ABB I/O module (S500) ... 73

4.5.2 Configuring to ABB Remote IO .. 76

4.5.3 Configuring to 3rd Party Remote IO... 78

4.6 Fieldbus protocol types ... 79

4.6.1 Communication using Onboard Ethernet Ports .. 79

4.6.2 Communication via a coupler Communications module ... 80

4.7 Programming and compiling AC500 code ... 82

4.8 Library Manager Introduction ... 85

4.8.1 Add or Search function ... 85

4.8.2 Placeholders and handling different library versions ... 86

4.8.3 Library Repository ... 87

4.8.4 View embedded documentation of all libraries ... 87

4.9 Task configuration .. 88

4.9.1 Understanding Task Configuration. .. 88

4.9.2 Task types and task monitor .. 89

4.10 Real time clock and battery ... 89

4.11 Integrated project visualization ... 89

4.11.1 Add the Visualization ... 89

4.11.2 Set-up the Visualization Manager ... 91

4.11.3 Enable web visualization .. 91

5 AC500 COMMUNICATION PROTOCOLS .. 95

5.1 Supported Protocols Overview ... 95

5.2 EtherCAT... 95

5.2.1 Configuring the CM579-ETHCAT EtherCAT master in the project .. 95

5.2.2 CM579-ETHCAT .. 95

5.2.3 EtherCAT Master Settings ...96

5.2.4 EtherCAT Slave Settings .. 100

5.2.5 Setting up the PLC and ABB Servo EtherCAT Slave for EoE Comms 105

5.2.6 How to add a Serial Protocol ... 109

7
3ADR011116

7 Motion Controller with AC500 V3

5.2.7 Modbus RTU Server (Slave) .. 109

5.2.8 Modbus RTU Client (Master) ... 110

5.2.9 HMI Modbus RTU communication .. 110

5.3 Modbus TCP/IP ... 111

5.3.1 Modbus TCP/IP Server .. 112

5.3.2 Modbus TCP/IP Client .. 113

5.3.3 HMI’s and Modbus TCP/IP communication .. 114

5.4 OPC UA ...115

6 GETTING ONLINE AND MANAGING THE PLC ... 118

6.1 Getting online to the PLC ... 118

6.1.1 Set-up communication parameters in windows .. 118

6.1.2 Configuration of the PLC IP settings ... 119

6.1.3 Set-up the communication gateway .. 119

6.1.4 Check communication settings .. 121

6.1.5 Change PLC IP address ... 121

6.2 Login to the CPU and download the program ... 123

6.3 Firmware update ... 124

6.3.1 Behaviour of LEDs during firmware update ... 125

6.4 Run time license for PLC for Motion Control ... 126

6.4.1 What is Run time licensing ... 126

6.4.2 Activating PLC license with internet connection ... 126

6.4.3 Downloading and activating PLC license without internet connection 127

6.4.4 Downloading and activating PLC license via memory card ... 129

6.4.5 Activating a demo license .. 130

6.4.6 Returning a license from a PLC ... 130

7 GENERAL PLC PROGRAM BASICS ... 133

7.1 Programming languages and editors ... 133

7.2 Variable classifications .. 133

7.2.1 Local Variables - VAR ... 133

7.2.2 Input Variables - VAR_INPUT .. 133

7.2.3 Output Variables - VAR_OUTPUT .. 133

7.2.4 Input/Output Variable (VAR_IN_OUT) ... 134

7.2.5 Global Variables - VAR_GLOBAL .. 134

7.2.6 Temporary Variable - VAR_TEMP .. 134

7.2.7 Static Variables - VAR_STAT .. 135

7.2.8 Constant Variables - ‘CONSTANT’ .. 135

7.2.9 Persistent Variable - PERSISTENT ... 135

7.2.10 Retain Variable - RETAIN ... 136

7.2.11 Handling of remanent variables for AC500 V3 products .. 136

8
3ADR011116

8 Motion Controller with AC500 V3

7.3 Data types .. 136

7.3.1 BOOL .. 136

7.3.2 INTEGER .. 136

7.3.3 REAL / LREAL .. 137

7.3.4 STRING ... 137

7.3.5 TIME ... 137

7.3.6 LTIME ... 138

7.3.7 Date and Time .. 138

7.3.8 BIT .. 139

7.3.9 Pointers ... 139

7.3.10 ARRAY .. 140

7.3.11 SUM := diResult;Structure (STRUCT) .. 146

7.3.12 Enumerations (ENUM) .. 149

7.4 ST Statements ... 153

7.4.1 IF ... 153

7.4.2 FOR ... 154

7.4.3 CASE ... 154

7.4.4 WHILE .. 155

7.5 REPEAT .. 156

7.5.1 RETURN ... 156

7.5.2 JMP ... 156

7.5.3 EXIT .. 157

7.5.4 CONTINUE ... 157

7.5.5 Function Block Call .. 157

8 MOTION SOLUTION PROJECT .. 158

8.1 Introduction ... 158

8.1.1 Understanding the Motion Solution Project ... 158

8.1.2 Understanding the Motion Solution Wizard ... 158

8.1.3 Understanding the Axis Objects ... 158

8.2 Installing the latest Motion Control Wizard and Libraries .. 158

8.3 Creating new Motion Solution project ... 158

8.3.1 Creating new project .. 158

8.3.2 Add PLC types .. 159

8.3.3 Add PTO axis .. 160

8.3.4 Add EtherCAT axis ... 167

8.3.5 Adding encoder axis .. 176

8.3.6 Adding virtual axis ... 178

8.4 Motion Axis generation .. 179

8.4.1 PTO axis ... 180

9
3ADR011116

9 Motion Controller with AC500 V3

8.4.2 EtherCAT motion axis ... 183

8.4.3 Axis program generated (Hidden by default) ... 186

8.5 Writing Application program ... 190

9 CAM EDITOR ... 192

9.1 Definition of a Cam ... 192

9.2 Structure of the Cam Editor .. 192

9.2.1 Tab 'Cam' ... 192

9.2.2 Tab 'Cam table' ... 193

9.2.3 Tab 'Tappets' .. 193

9.2.4 Tab 'Tappet table' .. 195

9.2.5 Dialog 'Properties - 'Cam' ... 195

9.3 Creating Cams ... 196

9.3.1 Adding a cam to the device tree ... 196

9.3.2 Setting the properties of the cam .. 197

9.3.3 Changing the Cam Path .. 197

9.3.4 Defining Switch Points ... 198

9.4 Cam generated code ... 199

9.5 Importing a Cam from 3rd party Codesys controller .. 200

9.5.1 Exporting the Cam for the the 3rd party PLC ... 200

9.5.2 Importing the Cam data into Automation Builder ... 202

9.6 Application program using generated Cam .. 204

10 ABB PLCOPEN MOTION CONTROL LIBRARY ... 206

10.1 Motion Control library: System Technology .. 206

10.1.1 Preconditions for the use of the motion control libraries... 206

10.1.2 Overview and Basics ... 207

10.1.3 PLCopen Introduction and Basics .. 215

10.1.4 PLC-based motion control ... 235

10.1.5 Load Control/Torque Control: Fluid Power Extension according PLCopen 271

10.2 PLCopen based Motion Control Libraries (Function Block descriptions) 277

10.2.1 MotionControl (Library) ... 277

10.2.2 MotionControlLoad (Library) ... 436

10.2.3 MotionControlEco (Library) .. 460

10.2.4 Ecat_CiA402 (Library) .. 468

10.2.5 MathFunctions (Library) .. 485

11 DIAGNOSIS .. 488

11.1 Online diagnosis using Automation Builder .. 488

11.2 Diagnosis in PLC program .. 489

11.3 EtherCAT Diagnosis .. 489

11.3.1 Application scenarios of EtherCAT diagnostics .. 489

10
3ADR011116

10 Motion Controller with AC500 V3

11.3.2 Operational .. 490

11.3.3 Diagnostic with Automation Builder .. 491

11.3.4 Process guideline for typical faults and errors during commissioning 495

11.4 Diagnostic with IEC programming ... 498

11.4.1 Topology error .. 499

11.4.2 Communication error ... 501

11.5 Data recording with trace .. 502

REVISION HISTORY .. 506

11
3ADR011116

11 Motion Controller with AC500 V3

1 INTRODUCTION

Note: Please refer to ABB library for the latest version of Motion Controller Guide 3ADR011116

1.1 Scope of the document

This document contains the most important parts out of the complete AC500 documentation in a com-

pact form to enable an efficient start when using the AC500 V3 PLC as a motion controller.

It contains a compact overview of the AC500 platform including hardware and engineering of the options

with Automation Builder as central engineering tool and then mainly focusses on the parts needed for

typical real time motion control applications using EtherCAT or PTO type motion drives.

The “Motion Control” package needs to be installed as a separate option from Automation Builder Instal-

lation Manager. This will install the below features:

• Motion Solution Wizard

• Cam Editor

• Motion Control PLCopen library, where above engineering tools are fully based on.

Note: This software manual carries the information which are needed for an engineer to start a

motion application quickly. For the latest and more detailed information on AC500 hardware

and software, please refer the latest Automation Builder integrated help file (or its pdf versions

in ABB Library).

The Motion Solution wizard is an integrated tool within Automation Builder. It improves the setup, over-

view and time needed for axis configuration significantly, so that the users can focus more on the motion

tasks. This is then possible by easy configuration of different application parameters and adding further

PLCopen function blocks of Motion Control library (PS5611-MC) - based on the application needs

The Cam editor tool helps to create Cam table(s), which can be easily created using the graphical window

of Cam editor. The Cam path(s) can be created offline in an integrated graphical window or a linked Cam

table to quickly create the Cam points as per the application requirements.

Functional description of the PLCopen principles used, the Motion Control libraries and details of the

contained blocks are available in this document.

Note! The material in this application might need to be adapted according to actual equipment and func-
tion before it is used. Testing of the equipment must always be performed by the responsible start-up
person according to current legislation before the equipment is placed in service. ABB does not take any
responsibility for possible damage caused by using the material in this application (shown examples,
data, project tools, etc.).

1.2 Safety Instructions and Preconditions

The user must read the following instructions and documents before using the libraries:

All pertinent state, regional, and local safety regulations must be observed when installing and using this

product. When functions or devices are used for applications with technical safety requirements, the rele-

vant instructions must be followed.

Read the complete safety instructions of the user's manuals for the devices you are using before installa-

tion and commissioning.

Read all safety instructions of the AC500 PLC. See System description AC500 in the online help in Auto-

mation Builder

https://search.abb.com/library/Download.aspx?DocumentID=3ADR011116&LanguageCode=en&DocumentPartId=&Action=Launch
https://share.library.abb.com/api/v3/?view=Result&categoryId=9AAC177443&documentKind=Manual
https://share.library.abb.com/api/v3/?view=Result&categoryId=9AAC177443&documentKind=Manual

12
3ADR011116

12 Motion Controller with AC500 V3

Read the user Information of the devices and functions you are using, see online help in Automation

Builder.

The Motion Control package has been released for the software and firmware versions listed in the Re-

adme file of the package only.

In no event will ABB or its representatives be liable for loss of data, profits, revenue or consequential, inci-

dental, or other damage that may result from the use of other versions of product, software or firmware

versions. The error-free operation of the Motion Control Package with other devices, software or firm-

ware versions should be possible but cannot be guaranteed and may need adaptations e.g. of example

programs.

The user must follow all applicable safety instructions and the guidelines mentioned in the user docu-

ments of the ABB products.

Read the complete safety instructions for the AC500 before installation and commissioning.

CAUTION!

Generally, the user in all applications is fully and alone responsible for checking all func-

tions carefully, especially for safe and reliable operation.

13
3ADR011116

13 Motion Controller with AC500 V3

2 AC500 PRODUCT OVERVIEW

ABB has a wide PLC Automation portfolio, with a range of scalable and robust PLCs and HMI control pan-

els, with one joint engineering suite to provide solutions for small, medium and high-end applications.

Features and options allow tailoring for various industries and applications including water, building in-

frastructure, data centers, renewable energy, machinery automation and motion control, material han-

dling, marine to name a few.

2.1 AC500 PLC overview

Engineering suite: Automation Builder

Automation Builder is the integrated software suite for machine builders and system integrators requir-

ing state-of-the-art productive machine and system automation. This combines the tools required for

configuring, programming, debugging and maintaining automation projects efficiently from one com-

mon intuitive interface.

Programmable Logic Controllers PLCs:

The platform offers interoperability, and compatibility in hardware and software from compact AC500-

eCo PLCs up to high end AC500 PLC’s.

The newest range of CPU is called V3 as it bases on the V3 CODESYS platform. This range offers different

performance levels together with its wide S500 and S500 eCo IO assortment, while its XC variants cover

extreme environments.

The platform offers interoperability, and compatibility in hardware and software from compact PLCs up

to high end and safety PLCs.

AC500 Motion Control Kits are packages of hardware which make the AC500 the easy to order, perfect

motion controller.

Control panels, visualization:

The CP600-eCo, CP600 and CP600-Pro control panels in combination with the PB610 Panel Builder offer a

wide range of features and functionalities for inter-operability.

ABB control panels are distinguished by their robustness and easy usability, providing all the relevant

information from production plants and machines at one single touch.

14
3ADR011116

14 Motion Controller with AC500 V3

2.2 AC500 / S500 hardware overview

The AC500 platform provides flexibility:

• CM Communication-Modules (1) can be added on the left side to AC500 CPU (4) via the Terminal

Base (3; a TB specific number of slots).

• S500 I/O- modules (6) or S500eco I/O modules (7) can be added on the right side to AC500 (4) via

TU Terminal Units (5) (or to an AC500eCo CPU); max. 10 modules .

(1) Communication modules CM5xx

(2) Safety PLC CPU SM5xx

(3) Terminal base for CPUs and CM5xx

V3: TB5xxx

(4)CPU: AC500 central processing unit

V3: PM5xxx

(5) S500 Terminal unit: TU5xx

(6) S500 I/O-module: XYxxx

(7) S500 eCo I/O-module:

XYxxx

Features of AC500 Platform

• Scalable and expandable system

• Different performance classes of processor modules (CPUs) available

• Several integrated onboard protocols which can run also in parallel

 (e.g. OPC + Modbus + UDP, …), some of them licensed.

• Several additional field busses available via the CM communication modules (AC500 only)

• Parallel connection to several field busses which can be combined arbitrarily

2.3 Selecting an AC500 “V3” CPU as Motion Controller

2.3.1 Identifying AC500 “V3” CPU

In principle there are two CPU ranges the older V2, and the newer V3 version based on the respective

CODESYS Vx platform.

The advanced Motion Control solution with Motion wizard and Cam editor is only supported in AC500 V3

PLC. You can easily find out which type you are looking at either by looking at your used modules or your

Automation Builder configuration.

15
3ADR011116

15 Motion Controller with AC500 V3

CPU type written on the module / Configurator Example type CPU range

CPU type PM + 3 digits PM592 V2

CPU type PM + 4 digits PM5670 V3

Relevant manual can be found at Automation Builder help, under chapter PLC Automation with V2 CPUs &

PLC Automation with V3 CPUs respectively.

2.3.2 Understanding the ABB products type codes and labels:

Each ABB Device has a product type, a version and an ABB ID.

• The “Product Type” is shown normally on the front side of the product in the form PMXXYY-ZETH

for example “PM5650-2ETH”

o XX shows the CPU range, for example if PM56YY = AC500 or if PM50YY = AC500eco,

o YY shows the processor and memory variant, see later chapters for more information on

this.

o ZETH shows the number of supported onboard Ethernet ports for example “PMXXYY”-

“2ETH” shows the CPU supports two onboard Ethernet ports.

• The version index shows which hardware version it is. Different versions of a product over its life-

time might be indexed only on the label next to the ABB ID on the device itself

16
3ADR011116

16 Motion Controller with AC500 V3

by a following capital letter/number (e.g. “PM5630-2ETH “F0”)

• The ABB ID or ‘part- number’ is used in database searches and ordering and is shown in the form

of a code like : e.g. 1SAP131000R0278

Each of above identifies the product uniquely.

The labels on the products and packages also contain an EAN identification number and a serial number

with their 2D/3D codes.

2.3.3 Understanding the Contents of ABB Motion Controller Kits:

For simplified ordering of AC500 parts needed for motion control applications, there are Kits available,

which bundle the minimum parts needed for a motion controller: e.g. EtherCAT communication module,

Terminal base, CPU and Motion License.

AC500 Motion Controller Kits

Product Order code Contains

PM5630-MC-KIT 1SAP131000R0379 PM5630-2ETH 80MB CPU

CM579-ETHCAT communication module

TB5610-ETH terminal base

PS5611-MC PLCopen® motion control runtime license

PM5650-MC-KIT 1SAP141000R0379 PM5650-2ETH 80MB CPU

CM579-ETHCAT communication module

TB5610-ETH terminal base

PS5611-MC PLCopen® motion control runtime license

PM5670-MC-KIT 1SAP151000R0379 PM5670-2ETH 160MB CPU

CM579-ETHCAT communication module

TB5610-ETH terminal base

PS5611-MC PLCopen® motion control runtime license

…

.

Index: e.g. F0

Type: e.g. PM5630

ABB ID: e.g. 1SAP131000R0278
Product Description

2D/code
Serial Nr.

17
3ADR011116

17 Motion Controller with AC500 V3

2.3.4 The CPUs main technical data and limits for motion control selection

1. Minimum EtherCAT cycle time configurable for each PLC type.

PLC Type PM5032 PM5052 PM5072 PM5630 PM5650 PM5670

Min. EtherCAT master cycle time

configurable in ms

2 1 0.5

Min normal Task cycle usable in ms 5 2 1 1 1 0.5

PTO available

(up to 4x100kHz or 2x200kHz)

yes

ETH Ports 1 1 2 2 2 2

Option Slots 2 3 3

2. The maximum configurable number of synchronized axis in each PLC type, is depending on the set

Ethercat cycle time of the master and is therefore scaling as in below table and graph.

This graph shows the scaling of the max. configurable EtherCAT axis number in graphical form:

PLC Type PM5630 PM5650 PM5670

Ethercat axis configuration limits

and max. performance indication

Examples:

Number of synchr. axis in 1 ms - 8 16

Number of synchr. axis in 2 ms 4 16 32

Number of synchr. axis in 4 ms 8 32 64

18
3ADR011116

18 Motion Controller with AC500 V3

2.4 Mechanical installation

Note: For detailed updated information such as technical data of your mounted devices of

AC500 product family - refer to the hardware device description of the appropriate device

from the latest Automation Builder help file.

AC500 V3 and S500 IO main dimensions

A terminal base TB is needed for mounting and connection of the AC500 V3 CPUs and communication

modules. A terminal unit TU is needed for mounting and connection of the S500 I/O and communication

interface modules.

They typically determine the cabinet footprint according below table and picture.

 TB, CPU module TU, I/O module

Type Nr. communication modules Length L mm / inches

TB5600-2ETH 0 67.5 / 2.66

TB5610-2ETH 1 95.5 / 3.76

TB5620-2ETH 2 123.5 / 4.86

TB5640-2ETH 4 179.5 / 7.07

TB5660-2ETH 6 235.5 / 10.5

eCo V3 and S500 eCo main dimensions

19
3ADR011116

19 Motion Controller with AC500 V3

2.4.1 Mounting and demounting

The control system is designed to be mounted to a well-grounded mounting surface such as a metal

panel. Additional grounding connections from the mounting tabs or DIN rail (if used), are not required

unless the mounting surface cannot be grounded. Mounting tabs of AC500 have a max. diameter suited

for 4 mm screws.

Note: During panel or DIN rail mounting of all devices, be sure that all debris (metal chips, wire

strands, etc.) is kept from falling into the controller. Debris that falls into the controller could

cause damage while the controller is energized.

Note: All devices are grounded through the DIN rail to chassis ground. Use zinc plated yellow

chromate steel DIN rail to assure proper grounding. The use of other DIN rail materials (e.g. alu-

minum, plastic, etc.) that can corrode, oxidize, or are poor conductors, can result in improper or

intermittent grounding.

2.4.1.1 Terminal bases / unit mounting and demounting on DIN rail

Mount DIN rail 7.5 mm or 15 mm.

Mount the Terminal Base/Function Module Terminal Base:

The Terminal Base is put on the DIN rail above and then snapped-in below.

20
3ADR011116

20 Motion Controller with AC500 V3

Note: When attaching the devices, make sure the bus connectors are securely locked together to

ensure proper electrical connection. Max. 10 Terminal Units can be attached.

The demounting is carried out in a reversed order.

For separating terminal unit, a screwdriver is inserted in the indicated place to separate the Ter-

minal Units.

2.4.1.2 Terminal bases / Terminal unit mounting with screws

If the Terminal Base should be mounted with screws (max. M4), Wall Mounting Accessories TA526 must

be inserted at the rear side first. These plastic parts prevent bending of the Terminal Base while screwing

on. TB560x and TB561x need one TA526, TB562x, TB564x and TB566x need two TA526.

21
3ADR011116

21 Motion Controller with AC500 V3

Figure - Terminal base, fastening with screws

Figure - Function module terminal base, fastening with screws

Figure - Terminal unit, fastening with screws

Note: By wall mounting, the Terminal Base is earthed through the screws. It is necessary that

The screws have a conductive surface (e.g. steel zinc-plated or brass nickel-plated).

The mounting plate is earthed.

The screws have a good electrical contact to the mounting plate.

2.4.1.3 Mounting and demounting V3 processor (CPU) and S500 IO modules

After mounting the terminal base / terminal unit on the DIN rail, mount the Processor / IO Module.

22
3ADR011116

22 Motion Controller with AC500 V3

Press the Processor / IO Module into the terminal base / terminal unit until it locks in place.

The demounting is carried out in a reversed order. Press above and below, then remove the Processor /

IO Module.

Note: Unused slots for communication modules are not protected against accidental physical

contact.

Unused slots for communication modules must be covered with dummy communication

to achieve IP20 rating.

I/O bus connectors must not be touched during operation.

2.4.1.4 Mounting and deunmounting eCo V3 processor (CPU) and eCo S500 IO modules

Mounting a processor module on a DIN rail

23
3ADR011116

23 Motion Controller with AC500 V3

Demounting a processor module mounted on a DIN rail

1. Remove I/O modules if one is connected.

2. While pressing down processor module pull it away from DIN rail.

24
3ADR011116

24 Motion Controller with AC500 V3

Mounting a processor module on a metal plate

1. Snap in the TA543 at the back side of the processor module

2. Fasten the processor module with two screws (max. diameter: 4 mm) to the metal plate.

25
3ADR011116

25 Motion Controller with AC500 V3

Demounting a processor module mounted on a metal plate

1. Remove I/O modules if connected.

2. Remove the 2 screws.

26
3ADR011116

26 Motion Controller with AC500 V3

Mounting of TA5301-CFA

1. TA5301-CFA cable fixing accessory

2. openings on the PM50x2 processor module

a. Insert the TA5301-CFA cable fixing accessory into the two openings on the PM50x2

processor module marked white in the figure.

Mounting and demounting option boards

Inserting the option board

After mounting the PM50x2 processor module on the DIN rail, mount the option board.

27
3ADR011116

27 Motion Controller with AC500 V3

Press the option board TA51xx (or TA5300-CVR) into the slot of the processor module

PM50x2 until it locks in place.

Removing the option board

1. Push the option board on the side to release the lock.

2. At the same time, pull the option board out of the slot.

Mounting and demounting of S500-eCo I/O modules

S500-eCo I/O modules can be mounted either on a DIN rail or with screws on a metal plate.

Mounting I/O modules on a DIN rail

1. Mount I/O module at the top of the DIN rail, then snap it in below.

28
3ADR011116

28 Motion Controller with AC500 V3

2. Attach I/O module by hand to another module. The serial I/O bus is connected automatically.

Demounting I/O modules mounted on a DIN rail

1. Remove I/O module by hand if connected

29
3ADR011116

29 Motion Controller with AC500 V3

2. While pressing down I/O module pull it away from DIN rail.

Mounting I/O modules on a metal plate

1. Snap in the TA566 at the back side of the I/O module

30
3ADR011116

30 Motion Controller with AC500 V3

2. Attach the I/O module by hand to an other module. The serial I/O bus is connected automatically.

3. Fasten the I/O module with two screws (max. diameter: 4 mm) to the metal plate

31
3ADR011116

31 Motion Controller with AC500 V3

Demounting I/O modules mounted on a metal plate

1. Remove the 2 screws.

32
3ADR011116

32 Motion Controller with AC500 V3

2. Remove the I/O module from the connected module by hand.

2.4.1.5 Mounting and demounting the communication modules (CMxxx-yyyy)

Communication Modules are mounted on the left side of the processor module on the same terminal

base. The electrical connection is established automatically when mounting the communication module.

33
3ADR011116

33 Motion Controller with AC500 V3

After mounting the terminal base, mount the communication modules.

1. First insert the bottom nose of the Communication Module into the dedicated holes of the Termi-

nal Base. Then, rotate the Communication Module on the dedicated Terminal Base slot until it is

locked in place.

2. The demounting is carried out in a reversed order.

3. Press above and below, then rotate the Communication Module and remove it.

2.5 Electrical connection

The PLC is equipped with a switch power supply for internal circuit. Compared with ordinary power sup-

ply, the PLC power supply has the higher stability and interference immunity. A number of PLC products

provide 24 V DC stabilized voltage supply to meet external sensors.

Note: For detailed updated information such as technical data of your mounted devices (AC500

product family) refer to the latest Automation Builder help file hardware device description of

the appropriate device.

2.5.1 Power supply for processor modules

V3 Processor (CPU) power supply

The supply voltage of 24 VDC is connected to a removable 5-pin terminal block on the terminal base.

L+/M exist twice and there for possible to feed e.g., external sensors (up to 8 A max. with 1.5 mm2 con-

ductor) via these terminals.

CPU power supply: AC500 logic controller power supply is provided through terminals L+/M.

34
3ADR011116

34 Motion Controller with AC500 V3

IO module power supply: S500 IO modules process power supply is provided through terminals UP / ZP.

For specific devices electrical connection data refer to the respective device help file from Automation

Builder.

As system power supply for AC500/S500, the wide ABB CP series 24 V power supply models can be used.

There are different ranges within the CP-series for all kinds of requirements and budgets:

CP-C.1, CP-E, CP-S.1 and CP-D.

V3 eCo Processor (CPU) power supply

The processor modules PM50x2 can be connected to the 24 V DC supply voltage via a removable 3-pin

spring terminal block or a 3-pin screw terminal block.

2.6 CPU function keys Display and LED display

AC500 V3 PLC are having a couple of function keys / display and few LED to indicate the PLC status.

For the updated information on function keys and display, please refer to latest Automation Builder help

file.

2.6.1 Description of the function keys

Function Key Description

Run - Toggles between RUN and STOP mode. Switching into RUN mode is only possi-

ble if an error free project has been created and downloaded with Automation Builder.

Value - Shows different state values of the processor module.

35
3ADR011116

35 Motion Controller with AC500 V3

Escape - Quits the current menu, submenu or function without saving.

OK / Acknowledgement -Acknowledges the current value or selects a menu/submenu.

Changes that have been sent to the processor module successfully are confirmed with

done on the display.

Diagnostic - Allows evaluation of error messages in detail.

Configuration - Show/set IP configuration, PLC startup mode and Ethernet address.

Enters submenus.

Count up / navigate in submenu - Press the function key repeatedly in order to in-

crease the value each time by 1, or navigate in submenu to previous entry

Keep the function key pressed in order to count up fast.

Count down / navigate in submenu - Press the function key repeatedly in order to de-

crease the value each time by 1, or navigate in submenu to next entry.

Keep the function key pressed in order to count down fast.

2.6.2 Description of Display

The display shows the status of the PLC and helps while navigating to different configuration using the

function keys on the processor module. For detailed information, please refer the latest Automation

Builder help file.

Below are the few commonly showed display information and its meaning.

2.6.2.1 Start-up procedure of a new PLC from factory

State Description Display

0

Display on system start (power on).

1

PLC is in boot mode.

2

PLC is in initialization mode.

3

No system firmware (System Firmware) is available.

Start updating the firmware using Automation Builder

or memory card.

2.6.2.2 Start-up procedure of a PLC with system firmware

State Description Display

36
3ADR011116

36 Motion Controller with AC500 V3

0

Display on system start (power on).

1

PLC is in boot mode.

2

PLC is in initialization mode.

3

PLC is in STOP mode or RUN mode depending on the

PLC mode and the downloaded project.

2.6.3 Other common display codes

Other than above, the below display is also possible to be shown by the PLC.

Description Display

Text is shown if no communication between CPU and display is

possible due to very high CPU load (e.g., endless loop in user

program and not activated task watchdog).

2.6.4 Description of LED

LED State

PWR (Power LED) When on and green -> the PLC is having 24 V DC present.

RUN (Run LED) When on and green -> the PLC is in RUN mode

ERR (Error LED) When on and red -> PLC is having an active error.

2.7 Accessories (TA521 - Lithium battery)

A description of all additional accessories that can be used to supplement AC500 system can be found in

the Hardware PLC device description. This section only describes Lithium battery that are frequently

used for system assembly, connection, and construction.

The TA521 lithium battery is the only applicable battery for the AC500 processor modules. It cannot be

recharged.

The AC500 battery buffers the following data in case of "control voltage off":

Retentive variables in SRAM (static RAM) (VAR_RETAIN...END_VAR)

Date and time of the real-time clock

37
3ADR011116

37 Motion Controller with AC500 V3

Open the battery compartment with the small locking mechanism, press it down and slip down the door.

The door is attached to the front face of the processor module and cannot be removed.

Remove the TA521 battery from its package and hold it by the small cable.

Insert the battery connector into the small connector port of the compartment. The connector is keyed to

find the correct polarity (red = plus-pole = above).

Insert first the cable and then the battery into the compartment, push it until it reaches the bottom of

the compartment.

Arrange the cable in order not to inhibit the door to close.

Pull-up the door and press until the locking mechanism snaps.

Note for AC500: To ensure proper operation and to prevent data loss, the battery insertion or

replacement must be always done with the system under power. Without battery and power

supply there is no data buffering possible.

Note for Ac500 eCo: No Batterie is needed

Note: To prevent data losses or problems, the battery should be replaced after 3 years of utiliza-

tion or at least as soon as possible after receiving the "low battery warning" indication.

Do not use a battery older than 3 years for replacement, do not keep batteries too long in stock.

2.8 Introduction to ABB PLC Licenses

ABB PLC licensing is built around the Automation Builders integrated licensing system which is designed

for supporting all practical operation scenarios. Two different types of licenses has to be understood:

o Automation Builder software licenses are needed for the engineering tool itself and its options.

During installation it has to be decided where-to-lock them to:

o the PC,

o a special USB dongle,

o or a network license server.

Note: For handling details see chapter 3.2 “Software user licensing of Automation Builder”

AC500 V3 CPU Run-time licenses are needed to run the Motion Control libraries on the PLC they are in-

stalled on and allow use of features in the application program e.g. FW or downloaded libraries. They will

38
3ADR011116

38 Motion Controller with AC500 V3

be locked to the CPU itself and are also handled and installed by Automation Builder (directly connected

or in an offline workflow transferred via SD-card).

Note: For handling details see next chapter “CPU locked Run time license”.

In case of changes in the organization or in the engineering workflows the licenses can easily be trans-

ferred back or to where you need them. The licenses are handled with the help of CodeMeter License

server which is installed on the PC/server.

You can always familiarize yourself with Automation Builder (and CPU Run-time options) using the 30 (10

for run time licenses) -day test licenses, which can be ad-hoc self-issued if not available yet or for a trial.

For further details please check and chapter 6.4 Run time license for PLC Motion Control

39
3ADR011116

39 Motion Controller with AC500 V3

3 AUTOMATION BUILDER OVERVIEW

Configuration and programming of all AC500 CPU you need the engineering software suite Automation

Builder. Automation Builder is available for download from https://new.abb.com/plc/automa-

tionbuilder/platform/software

Features:

o Programming - via Ethernet networks

o Supported Programming languages:

o Standardized programming according to five of IEC 61131-programming languages;

o (Structured Text (ST),

o Function Block Diagram (FBD),

o Instruction List (IL),

o Ladder Diagram (LD),

o Sequential Function Chart (SFC),

o Two additional nonstandard programming languages are supported:

o graphical function chart (CFC),

o Application programming in C/C++

o Debugging and commissioning tools

o Online diagnosis

o Debugging functions for the program test: Single step, Single cycle, Breakpoint

o Offline simulation - simulate commands without PLC being connected

o Sampling trace - timing diagrams for process variables

o Assistants for the Configuration of the communication interface modules (for PROFINET, EtherCAT,

CANopen, Ethernet, Modbus)

o Export and import interfaces for devices, signals, applications, visualization, etc.

o Usability Features

o Multi-user support and project compare

o Project scripting

o Recipe management and watch lists

Visualization (PLC based HMI for web and local debugging)Comprehensive libraries

o Export and import interfaces for devices, signals, applications, visualization, etc.

o Multi-user support and project compare

o Project scripting

3.1 Software installation

Note: For latest updated information on AC500 products, please always refer to latest Automa-

tion Builder online help file.

3.1.1 Preconditions

3.1.1.1 System requirements

For the current system requirements of the Automation Builder, please refer to the latest published re-

lease notes.

https://new.abb.com/plc/automationbuilder/platform/software
https://new.abb.com/plc/automationbuilder/platform/software
https://search.abb.com/library/Download.aspx?DocumentID=9AKK107680A0358&LanguageCode=en&DocumentPartId=&Action=Launch
https://search.abb.com/library/Download.aspx?DocumentID=9AKK107680A0358&LanguageCode=en&DocumentPartId=&Action=Launch

40
3ADR011116

40 Motion Controller with AC500 V3

Note: The latest published release notes can also be found in the Automation Builder menu un-

der “Help -> Automation Builder Release Notes”.

For Automation Builder 2.x the system requirements are:

• 1 gigahertz (GHz) or faster 32-bit (x86) or 64-bit (x64) processor

• 8 GB RAM

• 5-18 GB available hard disk space depending on the selected feature set (in addition to Operating

System (OS) and other applications)

Supported operating systems:

• Windows 10 (32/64 Bit) Professional / Enterprise

• Windows Server 2012 R2 64 bit (all devices have to be directly accessible by the server; requires ena-

bled .NET Framework 3.5)

• Windows Server 2019 (all devices have to be directly accessible by the server; requires enabled .NET

Framework 3.5)

Note: Windows 7 is no longer supported.

Network licenses are required for use of Automation Builder on Windows Server operating systems.

3.1.1.2 Creating project archives before an upgrade installation

To ensure a smooth upgrade of your projects created with former Automation Builder versions its ad-

vised to create project archives of these projects.

Creating project archives

In the Automation Builder menu select “File ➔ Project Archive ➔ Save/Send Archive…” to create an archive

which includes all ABB and third-party devices.

Select the information you want to include

41
3ADR011116

41 Motion Controller with AC500 V3

Enter a file name and location for your archive.

Opening archived projects

In the Automation Builder menu select “File -> Project Archive -> Extract Archive…” to open an archived

project. Otherwise, by just opening the *. project files some devices (e.g. CS31 Bus) might be missing.

Also, this will provide the third-party device description to Automation Builder automatically. So, it´s not

necessary to install all these third-party device descriptions manually.

Select which content you want to extract from your archive.

42
3ADR011116

42 Motion Controller with AC500 V3

3.1.1.3 Check internet connection and firewall settings

Please check that you have a working internet connection.

Best practice is to open an internet site in parallel and leave that open during download or licensing pro-

cess.

In case of errors please check if your firewall has maybe blocked Automation Builder and adapt the fire-

wall settings.

Note: If you have any problems with your internet connection or proxy authentication or firewall

settings, then choose the offline installation and licensing.

3.1.2 Online Installation

Go to https://new.abb.com/plc/automationbuilder/platform/software to access the download page of

Automation Builder.

In the “Latest Automation Builder” section, select “Automation Builder x.x. Download” (x.x. = latest ver-

sion). This downloads the installer on your computer.

https://new.abb.com/plc/automationbuilder/platform/software

43
3ADR011116

43 Motion Controller with AC500 V3

Double click on the downloaded installer -> select language for installation -> click “OK”

Wait for few seconds until Automation Builder installer is open as below and click on “Install Automation

Builder”.

44
3ADR011116

44 Motion Controller with AC500 V3

Accept the license agreement and click “Next” to proceed further

Keep the default type of installation to “Premium Edition”. Select the software packages to be installed

and click “Download and install” and follow the instructions of the installation manager.

Note: – V3 Motion Control (PS5611) is not selected by default. Package path in installer-> ABB

Automation Builder -> PLC -> PLC-AC500 V3 –> Motion Control (PS5611).

45
3ADR011116

45 Motion Controller with AC500 V3

Now Automation Builder will download and install to your computer, and you can watch the download

and installation progress in installation manager.

Note: – Based on the software packages selected in previous step, Automation Builder in-

stallation time varies.

46
3ADR011116

46 Motion Controller with AC500 V3

Note: – You may get once or twice Windows Security popup messages during the installa-

tion while installing packages from “Servo Drives”, please click “Install” to continue the in-

stallation.

After successful installation of all packages selected, you will receive following updates on your installa-

tion manager and click “Finish” to complete the installation.

47
3ADR011116

47 Motion Controller with AC500 V3

Note: – Please refer the chapter “Licensing” to get more information on activating the Auto-

mation Builder license.

3.1.3 Offline Installation

On an online computer go to https://new.abb.com/plc/automationbuilder/platform/software to access

the download page of Automation Builder.

In the “Latest Automation Builder” section, select “Automation Builder x.x. Download” (x.x = latest ver-

sion). This downloads the installer on your computer.

https://new.abb.com/plc/automationbuilder/platform/software

48
3ADR011116

48 Motion Controller with AC500 V3

Double click on the downloaded installer -> select language for installation -> click “OK”

Wait for few seconds until Automation Builder installer is open as below and click on “Prepare Offline In-

stallation Automation Builder”.

49
3ADR011116

49 Motion Controller with AC500 V3

Accept the license agreement and click “Next” to proceed further

Keep the default type of installation to “Premium Edition”. Select the software packages which needs to

be downloaded as offline installation package and click “Download”.

50
3ADR011116

50 Motion Controller with AC500 V3

Note: – Automation Builder offline package is created with the selected software packages.

Which components will be finally installed needs to be selected when performing the offline

installation on the offline computer itself so it might be better to select more / all compo-

nents for this offline installation package to have the choice at the installation later on.

Select a directory where the offline installation package will be saved and now Automation Builder offline

installation packages will be downloaded.

51
3ADR011116

51 Motion Controller with AC500 V3

After successful download of all selected components user will get the following update on your installa-

tion manager and click “Finish” to complete the offline download process.

Transfer the offline installation package to the offline computer.

52
3ADR011116

52 Motion Controller with AC500 V3

Double click on the “start_menu.exe” to start the Automation Builder installation -> select a language for

installation -> click “Ok”

Wait for few seconds until Automation Builder installer is open as below and click on “Install Automation

Builder Offline”.

53
3ADR011116

53 Motion Controller with AC500 V3

Accept the license agreement and click “Next” to proceed further

Installation manager now shows all the offline packages downloaded and user can now make the pack-

ages to be installed in offline computer.

Keep the default type of installation to “Premium Edition” and select the software packages to be in-

stalled and click “Install” and follow the instructions of the installation manager.

54
3ADR011116

54 Motion Controller with AC500 V3

Automation Builder will now install on the computer, and user can watch the installation progress in in-

stallation manager.

Note: – Based on the software packages selected in previous step, Automation Builder in-

stallation time varies.

Note: – You may get once or twice Windows Security popup messages during the installa-

tion while installing packages from “Servo Drives”, please click “Install” to continue the in-

stallation.

After successful installation of all packages selected, you will receive following updates on your installa-

tion manager and click “Finish” to complete the installation.

55
3ADR011116

55 Motion Controller with AC500 V3

Note: – Please refer the chapter “Licensing” to activate the Automation Builder license.

3.1.4 Installing additional tools

Sometimes the installation and activation of additional tools, e.g. OPC Server, Panel Builder 600, is

needed with or without the whole installation of the Automation Builder Suite.

They can be installed separately and independent of the Automation Builder.

Various additional tools are available, e.g.

ABB License Manager

CODESYS OPC DA Server

IP Configuration Tool

MultiOnlineChange Tool

Control Panel – CP600

Panel Builder 600 Runtime for PC

etc.………….

The additional tools must be installed in the same way, as the Automation Builder installation explained

in previous chapters.

56
3ADR011116

56 Motion Controller with AC500 V3

3.2 Software user licensing of Automation Builder

Note: For latest updated information on AC500 products, please always refer to latest Automa-

tion Builder online help file.

Start Automation Builder and a licensing wizard starts and guides you through the licensing procedure.

Click “Next” to continue.

57
3ADR011116

57 Motion Controller with AC500 V3

Enable the option “I have an activation key” and enter the activation key and click “Next”. For further in-

formation on how to receive the activation key, contact ABB sales team.

Select the license lock mode according to your purchased license and select “Next”.

Select the activation mode and click “Next”.

Select “Online Activation” (Refer chapter - Online Activation) if the computer has access to the internet

else

Select “Offline Activation” (Refer chapter - Offline Activation)

58
3ADR011116

58 Motion Controller with AC500 V3

3.2.1 Online Activation

The activation data can be sent to ABB License server if the computer has active internet connection.

Select “Online activation” and click “Next”.

License data now will be transferred to ABB License server.

A successfully ended licensing procedure ends with a success message, click “Finish” to end the proce-

dure.

59
3ADR011116

59 Motion Controller with AC500 V3

3.2.2 Offline Activation

The activation data cannot be sent to the licensing server if the computer does not have internet access.

In this case, the offline activation file is created. This file can be used to transfer activation data to the

licensing server from another computer with internet access.

Select Offline activation and click “Next”

Enter a file name and click “Save”. An activation file is created and stored to the selected directory.

Transfer the activation file to a computer with internet availability and click “Next”

Upload the offline activation response to the licensing website http://lc.codemeter.com/32838/depot

Select the xml file stored previously

Click on “upload request and continue”

http://lc.codemeter.com/32838/depot

60
3ADR011116

60 Motion Controller with AC500 V3

Download the activation response.

Transfer the activation response file to the offline computer. Select the activation response and click “Next”

A successfully ended licensing procedure ends with a success message, click “Finish” to end the procedure.

61
3ADR011116

61 Motion Controller with AC500 V3

Due to security reasons an activation receipt file is created. Save and upload the activation receipt file from

the ABB License manager to the registration website http://lc.codemeter.com/32838/depot to complete the

license activation process.

http://lc.codemeter.com/32838/depot

62
3ADR011116

62 Motion Controller with AC500 V3

3.3 Using Servo Drives with AC500 PLC

When ‘Drives - Servo drives’ is selected in the installation package, the user will get an additional installa-

tions of;

• ‘Mint Workbench’. This is the programming and configuration tool for ABB’s current Servo

Drives offering, the MicroFlex e190 and MotiFlex e180.

• ‘Mint Sidebar’ which is a tool for easy online access and device management.

The following sections will reference these tools. For additional resources on ABB Servo Drives

https://new.abb.com/drives/low-voltage-ac/servo-products.

3.3.1 Setting up ABB Servo Drives for use with EtherCAT Master

This section assumes that you have already commissioned the drive. i.e., You have been through the Mint

Workbench commissioning wizard to define the motor and application settings and have then auto

tuned (and fine-tuned if necessary) the control loops for the drive. Details on commissioning the drive

can be found in the relevant drive installation manual or you can make reference to application note

AN00250 which can be downloaded.

After the drive has been commissioned the user should check that its configured correctly for EtherCAT

control. The first step here is to check that the rotary switches are set correctly. As shown below these

can define multiple modes of operation and should be set to 00H for EtherCAT Mode

Next we must define the correct ControlRefSourceStartUp, this defines the initial operating mode when

the drive is powered up or restarted. The control reference source Start Up can be set using several

methods

• the parameter viewer > Configuration Group – Parameter 1.5

• Command Line using CONTROLREFSOURCESTARTUP(0)= crsRT_ETHERNET_402

• Assistant from main view select

Then set Con-

trolRefSource = RT Ethernet (CiA 402) then press the ‘Finish’ Button

The final step is always to Save the parameters using the save ICON in the tool bar.

Note: Whatever the drives operating mode is set to, when the PLCs EtherCAT master starts it will always

force the drive to Real time Ethernet when EtherCAT is started. Despite this selecting ‘Real Time Ether-

net’ as the drive’s default source is preferable as this then allows means that no change of control mode

is needed.

https://new.abb.com/drives/low-voltage-ac/servo-products/mint-workbench

63
3ADR011116

63 Motion Controller with AC500 V3

3.3.2 Exporting the xml file from the drive

Before starting a new PLC, project and going through the navigation of initial configuration we need to

make sure that the according .xml file of E190 that we need has been installed into the ‘Device Reposi-

tory’, if not, please follow below process:

• Open the Mint Sidebar

• Connect to the E190 which will make it appear in the list with a green colour

• then click the ‘web’ icon. This will open the web server

• Shown at the bottom of the main page a series of files associated with the installed firmware ver-

sion

• Select the EtherCAT file to initiate the .xml file download to your hard drive:

3.3.3 Adding ABB and 3rd party devices to the Device repository

It is recommended to use ABB drives and devices, however the user can also use 3rd party drives and de-

vices by installing the relevant device description files by using Automation Builder. Also this process can

be useful if updates are required in between Automation Builder releases.

To install the device description files, click on the Device Repository under Tools menu.

64
3ADR011116

64 Motion Controller with AC500 V3

This will open the Device Repository window, next click on ‘Install’ and select the device description file

which needs to be installed.

Click ‘Install…’ and then find the location where the desired files are stored. Once selected please click

‘Open’.

The status of the file installation will show at the bottom of the window. If successful the device will be

immediately on the list of installed devices and the After successful installation, user can now add the

installed device under the respective protocol configured in Automation Builder.

After this step is complete, we can use this version into the project as shown next.

65
3ADR011116

65 Motion Controller with AC500 V3

66
3ADR011116

66 Motion Controller with AC500 V3

4 INTRODUCTION TO THE PROJECT

The following steps show how to set-up a project and configure the hardware. A simple project is used as

example to introduce Automation Builder.

The workflow for creation of a visualization is explained, as well as how to set-up a webserver for visuali-

zation.

Note: For latest updated information on AC500 products, please always refer to latest Automation

Builder online help file.

4.1 Project types guidance

When a new project is started, the correct project type must be selected. Before the correct selection can

be done, the project types must be understood.

4.1.1 Different project types

To create a new project the user must Launch Automation Builder either out of the desktop icon or out of

the Windows menu.

Select

“New Project” or go to menu “File ->New Project”.

Now the user will be prompted to select the Project type. There are different ways of starting an AC500

project as shown below in the New Project window:

• AC500 Project: Using this method to build an AC500 project, yourself starting from “scratch”. This

will take longer to achieve a running program but gives the most flexible in choices.

67
3ADR011116

67 Motion Controller with AC500 V3

• CI52x-MODBUS Configuration – Not relevant for this Application note

• Empty Project: Not advised to use this selection.

• Motion Solution wizard: This method with use a guided setup process for configuration of a motion

controller project in V3. This will significantly simplify the motion control project start up with PLCopen

Motion Control by using (see chapter Motion Solution Wizard)

After the user selects the project type, a project name and location it will be saved to needs to be filled in,

then by pressing the ‘OK’ button the hardware selection can be started.

4.1.2 Understanding when to use the different project types

There are three main motion control methods with AC500 PLCs. These are outlined below along with

their characteristics.

Required control

Method

Compatible PLC

Hardware

Compatible

Drive Hardware

Limitation of

Movement

Correct project

type to select in

‘New Project’

Window

EtherCAT CiA402

Control
AC500

Any EtherCAT

CiA402 Drive

Point to Point

Multi Axis

Moves

Motion Solution

Wizard

24v PTO Control AC500eCo
Any 24v PTI

Drive

Point to Point

Multi Axis

Moves

AC500 Project

Motion Solution

Wizard

Modbus GDI
AC500 or

AC500eCo

Only ABB Servo

Drives with Mint
Point to Point AC500 Project

Further information

For further information on the EtherCAT CiA 402 Method see section Add PTO axis of this manual for fur-

ther guidance

For further information on the 24v PTO Control Method see section Add EtherCAT axis of this manual for

Further guidance

For further information on the Modbus GDI got to https://new.abb.com/drives/low-voltage-ac/servo-

products and download Application Note: GDI AN00501 - Generic Drive Interface - AC500 V3 Modbus

4.2 Selecting hardware used in the project

This subchapter describes in short for completeness and reference the general use of AC500 platform.

If you have limited time and want to start directly with Motion Control and AC500 Motion Controller Kits:

It is recommended to jump directly to the chapter 8 for the Motion Solution Wizard.

4.2.1 Select PLC Type

1. To see a list of only AC500 V3 CPU’s first select “PLC - AC500 V3” in the categories window

68
3ADR011116

68 Motion Controller with AC500 V3

2. Select the CPU according to your hardware set-up.

3. Select “Add PLC” to add the CPU to your application.

4. Next

• you will either be prompted to select further hardware options if your project type uses the Motion

Solution Wizard (for Motion Solution see chapter 8)

• or if not will build the Devices tree for the project with the default settings.

Below on the left we can see the hardware tree from an “AC500 project” and on the right, we can see the

same from a “Motion Solution” project (for Motion Solution project see chapter 8):

4.2.2 Saving the project

User can save the created project any time with below options,

• Select menu “File -> Save Project”.

• Alternatively, select the save icon in the tool bar.

69
3ADR011116

69 Motion Controller with AC500 V3

• Alternatively, press [Ctrl] + [S].

4.2.3 Navigating the project

Below highlighted is the Automation Builder default layout, user can add additional objects which will

change the layout accordingly.

Items shown above

1 Select the active application 2 Login & Logout / Run & Stop

3 PLC Type 4 IEC program

5 Task configuration 6 Local IO bus

7 Serial interface 8 Onboard Ethernet

9 Extension bus

 10 Motion Solution Wizard

 Motion Project Specific items: 11 EtherCAT Master Coupler

 12 EtherCAT Slave Devices

4.3 Important CPU parameters

CPU parameter settings should be considered when configuring the Automation Builder projects at least

for demanding cases where defaults are not fitting. Please check and update the parameter as per your

hardware setup and system requirement. To access these settings.

70
3ADR011116

70 Motion Controller with AC500 V3

Double-click “PLC_AC500_V3”.

A tab opens in the editor view.

Select “CPU-Parameters Parameters”.

For example, if your CPU does not have a battery installed, then you can go to the parameter “Check bat-

tery”, choose the value “Off” to avoid the error message in the PLC after downloading the program.

4.3.1 Checking program size and number of configured axis

User can check the program size and the number of configured and supported axis from Statistics tab.

To get the Statistics tab updated user need to perform “Generate Code” from “Build” menu.

Overview resource usage:

This tab shows all the required information (it is collected at latest when the command “Generate Code”

is executed, some of the information is not available before then.)

For the limits of “User program code and data” a [Details] button is available. Clicking this button will

open a window showing a more detailed view of the memory usage.

This tab also shows the configured and maximum supported motion axis. The supported motion axis is

limited based on the PLC type and EtherCAT cycle time (Refer the chapter “Limits on number of synchro-

nized axis” for more details) but has a limit higher by one axis - to account for at least one of the typically

needed virtual axis.

71
3ADR011116

71 Motion Controller with AC500 V3

4.4 Changing CPU type

User can easily switch a project from one PLC / terminal base to another PLC / terminal base using the

using the change PM/TB option in Automation Builder.

Note: When the PLC type is changed with in the same series PLC (V3 to V3), it is expected to work

without any additional effort however depending on the new PLC type, user may need to check the

user program / cycle time to make sure the performance is optimal with new PLC.

Follow the below steps to change the PLC type,

Double-click the PLC_AC500_V3 <...> node and open the “PM5<...> Hardware” tab.

72
3ADR011116

72 Motion Controller with AC500 V3

Select the desired V3 PLC from the “PM5xx Type” drop-down list and the correct terminal based on the

“Terminal Base Type” drop down list.

After selecting both PLC type and terminal base, click on the “Change PM/TB type”.

 If possible, the device configurations from the previous processor module will be kept and switched over

to the new processor module.

The device configurations that cannot be kept are listed in a prompted information dialog.

By default, all device configurations which cannot be switched over will be copied to a "device pool" sec-

tion in the navigation tree (option “Copy all objects that cannot be added to the new PLC into a device

pool for further access”). If required, this backup configuration can be used in another project or in an-

other processor module configuration.

73
3ADR011116

73 Motion Controller with AC500 V3

If the checkbox is deactivated all device configurations that cannot be switched will be lost after the exe-

cution of the target change.

4.5 I/O in AC500 and S500 IO System

For AC500 local or remote I/O can be added out of the S500 I/O System offering (+ integrated I/O are

available in the AC500 eCo CPUs).

Local I/O: up to 10 S500 I/O modules can be added on the right side of AC500 and AC500 eCo via the TU

terminal units.

Remote I/O: the S500 CI communication interfaces (which already have integrated I/O channels!) can

add again up to 10 more I/O modules each.

directly via CPU integrated protocols such as Modbus, CAN ….

or via a chosen field-bus and the matching CM communication modules (left side of AC500 CPU) acting

as a bus coupler.

4.5.1 Configuring local ABB I/O module (S500)

The types and order of modules in the Automation Builder project must match the real hardware

configuration. The position of the modules in the device tree can be changed by drag and drop.

• Right-click “IO_Bus” in the device tree.

• Select “Add object”.

74
3ADR011116

74 Motion Controller with AC500 V3

1. Select S500 modules as per the real hardware available and in the same order how they are physically con-

nected.

Uncheck the box “Close the dialog after each transaction” if you have multiple modules to be added.

2. Select the module and click on “Add object” to add the module to the I/O bus.

3. After adding the IO modules, double click on the added IO module which will then open a tab in the editor

view, click on the Parameter tab for configuring the module parameter.

This view will be different for each module based on the module type and needs to be configured accord-

ingly.

For example, by default all the analog channels will be configured as “Not used” and to be configured as per

the project requirement to use the analog channel.

75
3ADR011116

75 Motion Controller with AC500 V3

4. To add the IO mapping, double click on the added IO module which will then open a tab in the editor view,

click on the IO mapping tab for adding the IO mapping. Here you can add the variable names for the chan-

nels you will need in the program.

The suggested name convention is based on " Hungarian notation". A name prefix is describing

variable type: e.g., "x" = variable of type BOOL, "w" = WORD, "i" = INT (integer) etc. This

increases the code readability and is helpful for program analysis.

76
3ADR011116

76 Motion Controller with AC500 V3

5. There are some additional IO modules setting which can be configured from “PLC Setting” tab.

For example, by default, in AC500 V3 PLC, if the assigned tag in the IO mapping is not used in the program,

tags will not be updated. If the IO mapping to be updated always, user can change the setting in the “PLC

Setting” or in the “IO Mapping”.

4.5.2 Configuring to ABB Remote IO

To configure ABB remote IO’s user need to configure the protocol in Automation Builder device tree.

User can either use CPU integrated protocols such as Modbus, CAN or via a chosen fieldbus and the

matching CM communication modules (left side of AC500 CPU) acting as a bus coupler.

Below is a sample configuration for EtherCAT based IO module.

To add the communication couplers on Automation Builder, follow the below steps,

In the Automation Builder device tree under “Extension_Bus”, right-click “Slot_1”.

Select “Add object”.

Select the communication module required by the user

77
3ADR011116

77 Motion Controller with AC500 V3

Select “Replace object” to add the selected module to Automation Builder device tree.

After adding the communication module, user can now configure the added protocol by double clicking

on the same which will then open a separate tab in the editor interface and user can configure.

Based on the protocol added, user can add supported devices below and can configure the same by dou-

ble clicking on the same.

For a properly working EtherCAT system, the Topology of the configuration must match to the one of the

setup.

78
3ADR011116

78 Motion Controller with AC500 V3

4.5.3 Configuring to 3rd Party Remote IO

It is recommended to use ABB remote IO’s, however user can also use 3rd party remote IO’s by installing

the relevant device descriptions using Automation Builder.

To install the device descriptions, click on the Device Repository under Tools menu.

This will launch the Device Repository, click on install and select the 3rd part device description file which

needs to be installed. Successful installation of the file will show the device immediately on the list of in-

stalled devices.

79
3ADR011116

79 Motion Controller with AC500 V3

After successful installation, user can now add the installed device under the respective protocol config-

ured in Automation Builder.

4.6 Fieldbus protocol types

AC500 PLC supports many communication protocols via onboard interface or additional coupler mod-

ules. Based on the application requirement, user can select the respective protocols and configure it us-

ing Automation Builder.

Note: For details on supported protocols license requirements, refer latest AC500 catalog or Auto-

mation Builder online help file.

4.6.1 Communication using Onboard Ethernet Ports

AC500 V3 PLC are having two Ethernet interface and one serial interface which are all configurable for

different protocols and one dedicated CAN interface onboard. By default, these ports are not configured,

and user need to configure them using Automation Builder. To configure the interface,

Right click on the respective interface on the Automation Builder device tree.

Click on “Add object”. This will then open a separate window with supported protocols on the selected

interface.

Select the protocol which needs to be configured.

80
3ADR011116

80 Motion Controller with AC500 V3

Click on the “Add object” on the window to add the selected protocol on the interface.

Some protocols may need additional configuration and programing after adding the protocol on to the

interface, double click on the added protocol, which will then open a separate tab in the editor interface

for additional configuration.

To add Client protocols under ETH ports, right click on the “Protocols (Client protocols)” object and fol-

low the same above steps. Client protocols are applicable for both ETH ports.

Note: For more details on configuration and programing needed for the respective protocol, please

refer Automation builder online help or ABB library

4.6.2 Communication via a coupler Communications module

Communication modules (CM) act as couplers or coprocessors and can be added on the left side in slots

of the CPU´s terminal base. These CM modules then provide additional interfaces and protocols which

can be configured dependent on the CM module chosen. Based on the CPU type and terminal base se-

lected, user can add up to six CM modules.

If a Motion Solution Project is selected, then an EtherCAT communications module will be automatically

added to the project in Slot 1. The below section will explain how to add modules manually.

https://library.abb.com/

81
3ADR011116

81 Motion Controller with AC500 V3

Note: For details on supported protocols license requirements, refer latest AC500 catalog or Auto-

mation Builder online help file.

4.6.2.1 Manually adding a communications module

To add a communications couplers to the Automation Builder project, follow the below steps,

In the Automation Builder device tree under “Extension_Bus”, right-click “Slot_1”.

Select “Add object”.

Select the communication module required by the user

Select “Replace object” to add the selected module to Automation Builder device tree.

After adding the communication module, user can now configure the added protocol by double clicking

on the same which will then open a separate tab in the editor interface and user can configure.

82
3ADR011116

82 Motion Controller with AC500 V3

4.6.2.2 Manually adding a communications Slave node

Based on the protocol added, user can add supported devices below by right clicking, selecting “add ob-

ject” and selecting the required devices from the pop up list..

4.7 Programming and compiling AC500 code

In the default device tree configuration, there is one call of a POU (program organization unit) i.e.,

"PLC_PRG". User can keep the default POU which is created with structure text language or remove the

same and create own POU’s in any one of the supported languages.

To remove the POU, simply click on the POU and delete.

Please note, this will only delete the POU from device tree, to remove the POU call from task configura-

tion, select the POU name under the “Task configuration” and delete. If the POU is called in other places

in the program, user need to manually remove all of them.

83
3ADR011116

83 Motion Controller with AC500 V3

To add a new POU, user can right click on the “Application” and select “Add object”

Add object window will be open with all supported objects and user can select POU and click on “Add ob-

ject”.

84
3ADR011116

84 Motion Controller with AC500 V3

This will open “Add POU” window and user can provide POU a name, type and language and click on

“Add” button to add the new POU on the device tree.

User can add as many as POU’s needed in different languages by following the above steps and add ex-

tensions of the IEC 61131-3 standard by right clicking on the POU and “Add Object” and write the logic

here.

Before logging-in to the CPU, you need to compile the complete code without any errors.

85
3ADR011116

85 Motion Controller with AC500 V3

The result of the compiling is shown in the “Messages” field at the bottom of the screen. Select menu

“Build” -> “Generate code”.

If you skip the compiling and select “Login”, the Automation Builder will automatically trigger compiling

in advance to logging-in.

4.8 Library Manager Introduction

The Library Manager is added to Automation Builder Project by default and adding all the relevant default

libraries automatically. The library manager offers a wide array of functionality for the user and few of

the main functionalities are described here. For all details on the Library Manager and its functionalities,

please refer to the latest Automation Builder help file.

To open the Library Manger, user can double click on the same from Automation Builder device tree

which opens the library manager in editor’s view.

4.8.1 Add or Search function

In the Library Manager the search function allows you to quickly find any library or function and add the

same to Library manager if this is not yet added.

To search for a library or function:

Click on Add Library

Enter the name of the library or function in the search area, which will list all the possible combinations.

Select the function or library and click OK to add the library-to-library manager.

Incase if the library is already added to the library manager, it will show a message saying the same.

86
3ADR011116

86 Motion Controller with AC500 V3

4.8.2 Placeholders and handling different library versions

In the library manager when you add a library it always adds the latest library version referenced in the

specified Automation Builder.

When the user has multiple library versions installed, has many Automation Builder versions profiles or if

the current project is referencing the wrong library version, the user can change the library version to the

correct version using the library place holder.

To do this click on the “Placeholders” button which will open the Placeholder window. Double click on a

library which needs to be referenced to a different version, this will show all the installed library versions.

Select the library version which user want to use in the project and click OK to update the library version

in the current project.

87
3ADR011116

87 Motion Controller with AC500 V3

4.8.3 Library Repository

Using Library Repository, user can browse all the installed libraries and its version. Additionally, user can

install and uninstall the libraries.

4.8.4 View embedded documentation of all libraries

In the Library Manager you can view embedded documentation of any ABB and 3S libraries.

The full scope of CODESYS library documentation is also available online.

To access any documentation:

• Select a library.

• The contents of the library are shown below.

• From the contents select an object.

• The corresponding documentation is opened on the right side.

https://help.codesys.com/webapp/f_libraries;product=codesys

88
3ADR011116

88 Motion Controller with AC500 V3

4.9 Task configuration

Tasks are used to define “program calls” for section(s) of code that can be executed in parallel with other

tasks. This allows distinct processes to be isolated, hence assisting maintainability.

4.9.1 Understanding Task Configuration.

A task is a time unit in the processing of a user program (IEC application), which defines by parameters

the way and the speed the CPU is executing the user program.

In the device tree, you see the objects “Task configuration” and “Task”. Both created automatically with

the project.

Double-click “Task” in the device tree -> A tab opens in the editor view.

• Priority - This is how the CPU prioritizes the task, when more than one task is defined.

o Priority 0...15 - Realtime tasks*

o Priority 16 - Non-Realtime task.

• Type - In the CPU you can run tasks dependent on the demands of the process

• Interval - For cyclic tasks you can set the cyclical execution time. It is usually set in milliseconds

with IEC time syntax.

• Watchdog - To keep track of the time it takes to complete the task.

• Calls - You can call in one or more program POUs in one single task

89
3ADR011116

89 Motion Controller with AC500 V3

4.9.2 Task types and task monitor

There are different task types configurable based on the application requirement and user can set the

task type, time and priority for each task and the program will be called accordingly.

User can monitor all tasks statuses when online with the PLC by double clicking on the Task configura-

tion object on the device tree to open the task monitor window which is showing all configured task and

its running status details.

This helps the user to monitor task time usage and -statistics in order to set the task parameters to suite

the application requirement. It is also possible to read these values from the project during runtime into

the project to allow in depth diagnostic e.g. during test and commissioning . After start-up it should be

reset once to avoid e.g. max. values from the start-up phase with a right click.

4.10 Real time clock and battery

The real-time clock operates as a computer clock. It saves date and time to a DWORD in DT format

(DATE AND TIME FORMAT), i.e., in seconds passed since the start time: 1 January 1970 at 00:00. If a bat-

tery is connected and full, the real-time clock continues to run even if the control voltage is switched off.

If no battery is inserted or the battery is empty, the real-time clocks start with the value 0 (=1970-01-01,

00:00:00).

When switching on the control voltage, the system clock of the operating system is set to the value of the

real-time clock. The clock can be flexibly synchronized via NTP/SNTP to a network master clock.

4.11 Integrated project visualization

A visualisation is an integrated visual aide that can be used to create a suitable user interface for your

application. The user can link the visualization to the application variables and in this way they can ani-

mate and display data. When creating a visualization and an application, you use common functions, for

example, as library and source code management or find/replace throughout the project.

4.11.1 Add the Visualization

1. Right-click “Application” in the device tree.

2. Select “Add object”.

3. Select “Visualization”.

90
3ADR011116

90 Motion Controller with AC500 V3

4. Select “Add object” to add the Visualization to the project.

5.

Dialog “Add Visualization” opens.

6. Give a name to visualization and click on “Add”.

You added the objects “Visualization”, “Visualization Manager” and “VISU-TASK” to the device tree.

91
3ADR011116

91 Motion Controller with AC500 V3

User can add the visualizations in the visualization page and add more visualizations pages as per the

requirement.

4.11.2 Set-up the Visualization Manager

The Visualisation manager allows the user to difine whether they want to download the visualisation

to the PLC’s webpage and other settings relating to this.

1. Double-click Visualization Manager in the device tree.

➢ A tab opens in the editor view.

2. Select “Settings”.

3. Open the drop-down menu “Selected style”.

4. Select “Default, x.x.x” (exemplary).

5. Open the drop-down menu “Selected language”.

6. Select “en” for English language in the visualization.

7. Enable “Visible” for advanced settings.

8. Keep the file transfer to enable the visualization on the PLC (mandatory for web server function)

4.11.3 Enable web visualization

To add a web server to the project, follow the steps below:

92
3ADR011116

92 Motion Controller with AC500 V3

4.11.3.1 Add a web server object to the device tree

Ethernet ports can be configured for web server protocol. This description deals with ETH1 configuration

for the webserver

Right-click “ETH1” in the device tree.

Select “Add object”.

Select “Web Server”.

Select “Add object”.

 You added and activated a web server on Ethernet port 1 on the AC500 V3 CPU.

4.11.3.2 Set-up the web server

Double-click “WebVisu” in the device tree.

93
3ADR011116

93 Motion Controller with AC500 V3

Under “Start Visualization”, select “...”.

A list opens.

Select the “PLC_VISU” screen from the list.

Keep all further settings with default values.

Select the link “Show used visualizations”.

The Visualization Manager editor and there the tab “Visualizations” opens. All screens and dialog ele-

ments created in the project are visible.

Here, you can select which screens are enabled or disabled for web visualization.

94
3ADR011116

94 Motion Controller with AC500 V3

If you want to select another screen as a start visualization, you must modify the adequate parameter in

the webvisu.htm file: <param name="STARTVISU" value="PLC_VISU">

95
3ADR011116

95 Motion Controller with AC500 V3

5 AC500 COMMUNICATION PROTOCOLS

5.1 Supported Protocols Overview

The subchapters below focus on the protocols used in motion control applications only: EtherCAT, Mod-

bus RTU and TCP and OPC UA.

AC500 V3 and AC500-eCo V3 have a both lot more of usable protocols for different types of communica-

tion needs, either on the onboard ethernet ports or for AC500 also via communication modules (“cou-

plers”) on the left side of the AC500 CPU with additional ports and performance.

Therefore the below picture gives an overview only - for further details and more detailed tabular over-

view please check the catalog or online help.

5.2 EtherCAT

EtherCAT is currently available in AC500 only via the communication module (coupler) CM579-ETHCAT

which is included in the Motion-Kits.

5.2.1 Configuring the CM579-ETHCAT EtherCAT master in the project

This section allows us to configure the behaviour of the Comms module. From here we can define how

the hardware will behave. It’s important to understand the EtherCAT master once added is split into two

parts in the project tree. These two parts are described below.

5.2.2 CM579-ETHCAT

The label will normally be in the format of ‘[name](CM579-ETHCAT)’ this can be changed by the user but is

normally left as default. If so the name will be CM579 (CM579-ETHCAT)

This first part of the EtherCAT master defines the general behavior of the hardware. The following pa-

rameters are available:

Param-

eter
Default value Value Description

96
3ADR011116

96 Motion Controller with AC500 V3

Run on

config

fault

No

No
In case of a configuration error, the user program is

not started.

Yes

The user program is started independent of a faulty

configuration of the EtherCAT Communication Mod-

ule.

Max

wait run
3000 3000

Maximum wait time for the Master to build up the

communication relation to the slaves.

A restart to build up the communication is initiated

as long as BootUpTime has not run out.

Min up-

date

time

10 0...20000

Priority of the data exchange between CPU and

Communication Module.

This parameter should never be set to values under

10, otherwise important sequences in the CPU might

be influenced.

Broken

slave

behav-

ior

Leave all broken

slaves down

Leave all broken

slaves down
Broken slaves will not be served.

Leave addressless

slaves down
Only slaves without address will be left down.

Leave no slaves

down
Broken slaves will be ignored.

Distrib-

uted

clocks

Inaktiv

Inactive Distributed clocks are inactive.

Active Distributed clocks are active.

BootUp-

Time
10000 10000

Maximum wait time for the slaves to boot com-

pletely. This absolute time value must be a multiple

of Max wait run. It defines the time in which Max

wait run is restarted to wait for the slaves to boot

up completely. The multiplication ratio between Max

wait run and BootUpTime can be interpreted as

number of trials to boot up the slaves.

In most cases these settings can be left at default but occasionally the user might need to change these

to fit the program requirements.

5.2.3 EtherCAT Master Settings

The label will normally be in the format of ‘[name](ETHCAT-Master)’ this can be changed by the user but

is normally left as default. If so the name will be ETHCAT_Master (ETHCAT-Master)

This second part of the EtherCAT master defines the specific settings that define the behavior of the

EtherCAT operation. Here we can set couple of CM579-ETHCAT specific parameters. These parameters

will all be set automatically to correct start values, if the motion solution wizard is used

The EtherCAT bus behavior has to be set for real-time/synchronized motion application to “Sync mode

1”. With the usage of a synchronize bus behavior, the Task configuration must be configured as “external

Event”.

The configuration of EtherCAT modules is based on the device description files for the master and slave

devices employed and can be adapted in the project in configuration dialogs. To ensure the simplest and

most error-free use possible, we recommend for standard applications that you activate the option for

the “Automatic Configuration” of the master, so that the majority of the configuration settings are per-

formed automatically.

97
3ADR011116

97 Motion Controller with AC500 V3

5.2.3.1 “General” Tab

This tab is for the configuration of the basic settings for the EtherCAT master. The preset basic settings origi-

nate from the device description file.

5.2.3.1.1 EtherCAT NIC setting

Autoconfigure Master/Slaves

The auto-configuration mode (“Autoconfig Master/Slaves” option) is activated by default and is ade-

quate for standard applications.

If the mode is not activated, all configuration settings for master and slave(s) must be made manually,

for which expert knowledge is required!

The auto-configuration mode option must be switched off for the configuration of slave-to-slave com-

munication.

Even if this option of the master is activated, an expert mode can be activated explicitly for each individ-

ual slave that permits the manual editing of the automatically generated process data configuration.

Destination address

MAC address of the device in the EtherCAT network that is to receive telegrams. If set as Broadcast, no

“destination address (MAC)” need be specified.

Source address

MAC address of the EtherCAT master device.

Network name

Name or MAC of the network, depending on which of the following options is activated:

Select network by MAC

Network is specified by the MAC-ID. The project then cannot be used on another device, since each net-

work adaptor has a unique MAC-ID.

98
3ADR011116

98 Motion Controller with AC500 V3

Select network by Name

Network is identified by the network name and the project is device independent.

5.2.3.1.2 Distributed clock

Cycle time

Time interval after which a new data telegram is dispatched on the bus. If the “Distributed clocks” func-

tion is activated in the slave, the master cycle time specified here is transferred to the slave clocks. In this

way a precise synchronization of the data exchange can be achieved, which is important if spatially dis-

tributed processes require simultaneous actions.

Simultaneous actions are, for example, applications in which several axes must execute coordinated

movements at the same time. A very precise, network-wide time base with a jitter of substantially less

than 1 microsecond can be achieved in this way.

Sync offset

Parameter for setting the delay time between the DC time base of the EtherCAT Slave and the cycle start

of the PLC. With the default value of 20%, the PLC cycle starts 20% of the bus cycle time after the sync

interrupt of the slave.

Sync window monitoring

Synchronization of the slaves can be monitored.

Sync window

Time for Sync window monitoring. When the synchronization of all slaves is within this time window, the

variable xSyncInWindow (IoDrvEtherCAT) is set to TRUE, otherwise to FALSE.

5.2.3.1.3 Options

Use LRW instead of LWR/LRD

 Direct communication from slave to slave is possible. Combined read/write commands (LRW) are used

instead of separate read commands (LRD) and write commands (LWR).

Messages per task

 Read and write commands (the handling of the input and output messages) can be controlled by means

of various tasks.

Automatically restart slaves

 The master immediately attempts to restart the slaves in the case of a communication breakdown.

5.2.3.1.4 Master Settings

These settings can be edited only when the “Autoconfig master/slaves” option is deactivated. Otherwise,

this is done automatically, and they are not visible here.

Image In Address - First logical address of the first slave for input data.

Image Out Address -First logical address of the first slave for output data.

5.2.3.2 “Sync Unit Assignment” Tab

The tab shows all slaves that are inserted below a specific master with an assignment to the sync units.

With the EtherCAT sync units, multiple slaves are configured into groups and subdivided into smaller

units. For each group, the working counter can be monitored for an improved and more exact error de-

tection. As soon as a slave is missing in a sync unit group, the other slaves in the group are also shown as

missing. Detection occurs immediately in the next bus cycle because the working counter is checked con-

tinuously. With the device diagnostics, the missing group can be remedied as quickly as possible.

Unaffected groups remain operable without any interference.

Device name

Name of the slave

Sync unit

Name of the selected sync unit. You can combine single devices or entire groups (multiple selection) into

on sync unit group.

Add

99
3ADR011116

99 Motion Controller with AC500 V3

When you type a name in the text field, you can create a new sync unit.

Delete

Deletes the selected sync unit. When slaves are assigned to the group to be deleted, a warning dialog

opens. If you click Yes to acknowledge the dialog, then these devices are reassigned to the default group.

5.2.3.3 “IO mapping list” Tab

This tab shows all the EtherCAT IO mapping from both EtherCAT master and from all the slaves.

5.2.3.4 ”EtherCAT IO mapping” Tab

This tab shows the working counter variables and this can be used to monitor the EtherCAT bus in the

IEC program.

5.2.3.5 Online Diagnosis and State control Tabs

When online with PLC, user gets additional diagnosis tabs which can be used to monitor the EtherCAT

master and slave status

100
3ADR011116

100 Motion Controller with AC500 V3

5.2.4 EtherCAT Slave Settings

5.2.4.1 General

The basic settings for the EtherCAT Slave are configured on this tab. The basic settings are preset from

the device description file.

Address

Fields can be edited only when the auto-configuration mode of the EtherCAT Master is disabled.

 “AutoInc address”

Self-incrementing address (16-bit) that results from the position of the slave in the network. The address

is used only during the system boot process when the master assigns the EtherCAT addresses to its

slaves. When the first message runs through all the slaves for this purpose, each slave increments its Au-

toInc address by 1. The slave with address 0 then gets the data. A possible input here is “-8”.

101
3ADR011116

101 Motion Controller with AC500 V3

EtherCAT address

Final address of the slaves, assigned by the master during bootup. The address is independent of the

position of the slave in the network.

5.2.4.1.1 Additional

Expert settings

Additional settings are possible for the startup checking and time monitoring (see below). The Expert

Process Data tab is also available in the device editor to add additional PDO mapping.

However, expert settings are not required for standard applications. The auto-configuration mode is rec-

ommended and sufficient for standard applications.

Optional

At the start of the stack, the system checks whether optional devices are available.

The slave is defined as optional and no error message is generated if the device is missing from the bus

system. If a device is not found, then it is disabled automatically and displayed in gray in the device tree.

A corresponding message is displayed in the logger.

Note: If you define a slave as “optional”, then it has to have a unique identification. You can change this

by means of the three possible settings in the Identification section.

Available only when the “Autoconfig master/slaves” option is selected in the settings of the EtherCAT

Master and the EtherCAT Slave supports this function.

5.2.4.1.2 Distributed Clock

Select DC

List box with all settings for the distributed clocks of the device description file

Enable

Cycle time for the data exchange. It is displayed in the Sync unit cycle (µs) input field and determined by

the cycle time of the master. As a result, the master clock can synchronize the data exchange in the net-

work.

5.2.4.1.3 Sync0 and Sync1

The Sync0 and Sync1 settings described here are slave dependent.

Enable Sync 0/1

Synchronization unit Sync0/1 is used. A synchronization unit describes a set of process data that is ex-

changed synchronously.

Sync unit cycle

The master cycle time (multiplied by the factor selected from the list box) is used as the synchronization

cycle time for the slave. Cycle time (µs) displays the cycle time currently set.

User-defined

A custom cycle time (in microseconds) can be specified in the Cycle time (µs) field.

5.2.4.1.4 Diagnosis

This area section appears in online mode only.

Current State

State of the slave. Possible states: Init, Preoperational, Safe Operational, and Operational

The state Operational indicates that the slave configuration has been correctly completed and that pro-

cess data (inputs and outputs) are being accepted.

5.2.4.1.5 Start-up Checking

Check vendor ID and Check product ID

By default, the vendor ID and product ID of the device are checked against the current configuration set-

tings when the system boots up. If they do not agree, then the bus is stopped, and no further actions are

executed. This is done to prevent an incorrect configuration from being loaded onto the bus system.

102
3ADR011116

102 Motion Controller with AC500 V3

Options for deactivating the corresponding check.

Check revision number

The revision number is checked during the system bootup according to your selection in the list box.

Download expected slot configuration

For online verification of the configured and actual module configuration. If the configurations do not

match, then the device still switches to “Run”. In this case, an entry is made in the device logbook.

5.2.4.1.6 Timeouts

By default, watchdog is not defined for the following actions. If necessary, an appropriate timeout can be

specified here (in milliseconds):

SDO access

Transmits the SDO list at system start. Specified in milliseconds.

I -> P

Switch from Init mode to Preoperational mode. Specified in milliseconds.

P -> S / S -> O

Switch from Preoperational mode to Safe Operational mode, or from Safe Operational mode to Opera-

tional mode. Specified in milliseconds.

5.2.4.1.7 DC Cyclic Unit Control: Assign to Local µC

One or more options for the Distributed Clock function can be activated here that should be used on the

local microprocessor. The check is performed in the registry at 0x980 in the EtherCAT Slave. Possible set-

tings:

Cycle unit

Latch unit 0

Latch unit 1

5.2.4.1.8 Watchdog

Set multiplier

The PDI watchdog and SM watchdog receive their impulses from the local terminal clock divided by the

watchdog multiplier.

Set PDI watchdog

This watchdog triggers when there is no PDI communication with the EtherCAT Slave controller for

longer than the PDI (Process Data Interface) watchdog time which has been set and activated.

Set SM watchdog

This watchdog triggers when there is no EtherCAT process data communication with the terminal for

longer than the SM (Sync Manager) watchdog time that has been set and activated.

5.2.4.1.9 Identification

In this section, you set the device identification of the slave. As a result, you can make the address of the

slave independent of its position in the bus.

The following options are visible only when the Activate expert settings option or Optional option is se-

lected.

If you have identified the slave as Optional, then you have to assign a unique ID to it.

Disabled

The identification of the slave is not checked.

Configured station alias (ADO 0x0012)

Address that is stored in the EEPROM of the device.

You can change the value in the Scan Devices dialog or in online mode. For stock devices, you need to as-

sign this number one time. This means that you have to connect the device one time to an EtherCAT Mas-

ter and save the number.

103
3ADR011116

103 Motion Controller with AC500 V3

Write to EEPROM

Visible in online mode only for Configured station alias. Writes the defined address for Value to the

EEPROM of the slave.

Explicit device identification (ADO 0x0134)

The device identification is hard set on the hardware (for example, by DIP switches). It is displayed in Ac-

tual address.

Data Word (2 Bytes)

A 2-byte value for the identification is saved in the slave.

Value

Expected value for the check. If the actual value does not correspond to this setting, then an error is is-

sued.

ADO (hex)

Initial value from the device description. You can change this value in the Data word option.

Actual address

Visible in online mode only. Displays the address of the slave. You can use this display for checking the

success of the Write to EEPROM command.

5.2.4.2 FMMU/Sync

The tab shows the FMMUs and Sync Manager of the EtherCAT Slave as they are defined in the device de-

scription file. There is an option to edit the FMMUs and Sync Manager (for example, for the configuration

of slave-to-slave communication).

Requirement: The auto-configuration mode in the EtherCAT Master is disabled.

Note that these are expert settings which are not usually required for standard applications.

5.2.4.3 Expert Mode Process Data

The tab provides another more detailed view of the process data, which is also displayed in the Process

Data dialog. Moreover, the download of the PDO assignment and the PDO configuration is enabled here.

Requirement: The expert settings for the slave are selected.

5.2.4.3.1 Sync Manager

List of the Sync Managers with data size and PDO type

5.2.4.3.2 PDO assignment (16#1C12/16#1C13)

List of the PDOs assigned to the selected Sync-Manager.

When a check box is selected, the PDOs are enabled and I/O channels are created. This is similar to the

simple PDO configuration view.

5.2.4.3.3 PDO list

List of the PDOs assigned to the selected Sync-Manager.

You can add new entries or edit or delete existing entries by executing the respective commands (Add,

Delete, Edit) in the command bar or context menu.

Edit PDO list

Name

Index

Direction

TxPDO (input): The PDO is transmitted from the slave to the master.

RxPDO (output): The PDO is transmitted from the master to the slave.

Flags

Mandatory: The PDO is required and cannot be disabled in the PDO assignment.

104
3ADR011116

104 Motion Controller with AC500 V3

Fixed content: The contents of the PDO are fixed and cannot be modified. It is then not possible to add

entries in PDO contents.

Virtual PDO: Reserved for future use

Exclude PDOs

It is possible to define an exclusion list. When a PDO is enabled in the PDO assignment, others are disa-

bled and cannot be enabled.

Sync unit

ID of the Sync Manager to which the PDO is to be assigned

5.2.4.3.4 PDO Contents

Displays the contents of the PDOs selected in the PDO list. You can add new entries or edit or delete ex-

isting entries by executing the respective commands (Add, Delete, Edit) in the command bar or context

menu. You can change the PDO order by clicking Move Up and Move Down.

Note: That you only need to use this if the PDO option you require is not listed in the Axis objects Mapping
Tab.

5.2.4.3.5 Download

PDO assignment

Specific CoE commands for initializing the 0x1cxx objects are generated and written to the slave.

PDO configuration

The CoE commands for 0x16xx or 0x1axx are generated, and then the PDO mapping is downloaded to the

slave. Normally, the default values originate from the ESI file and the device has to support this function-

ality. For example, if a device has a fixed configuration, then these commands are regarded as flawed.

Load PDO info from the device

The current PDO configuration is read from the slave and entered into the configuration. The lists in the

upper and lower right are then deleted and filled with the read data. This is especially useful when the ESI

file is incomplete and the configuration is available only on the slave.

5.2.4.4 Process Data

The tab of the EtherCAT configurator displays the process data for the inputs and outputs of the slave.

The data is preset from the device description file.

Select the Outputs

The table shows the outputs of the slave defined by Start address, Type, and Index.

If outputs of the device are enabled here (for writing), then these outputs can be assigned to project vari-

ables in the EtherCAT I/O Mapping dialog.

Select the Inputs

The table shows the inputs of the slave defined by Name, Type, and Index.

If inputs of the device are enabled here (for reading), then these inputs can be assigned to project varia-

bles in the EtherCAT I/O Mapping dialog.

5.2.4.5 Startup Parameters

On the tab, the SDOs (service data objects) for ‘CAN over EtherCAT’ (CoE) or the IDNs (identification

numbers) for ‘Servodrive over EtherCAT’ (SoE) are defined for the current slave. These parameters are

determined for the device when the system is started.

The object directory with the required data objects is described in the EtherCAT XML description file or in

an EDS (Electronic Device Description) file that is referenced in the XML file.

Requirement: The device supports ‘CAN over EtherCAT’ or ‘Servodrive over EtherCAT’.

Some modules that are inserted below a slave have their own startup parameters. These parameters are

also displayed in this list but cannot be edited here. The parameters are modified in the editor of the cor-

responding module.

105
3ADR011116

105 Motion Controller with AC500 V3

5.2.4.6 EoE Settings

This tab is used to configure the communication settings for the individual slaves that support Ethernet

over EtherCAT (EoE).

Note: EoE is supported by ABB Servo Drives MicroFlex e190 and MotiFlex e180.

5.2.4.6.1 Settings

Virtual Ethernet Port

 Enables the EOE (Ethernet Over EtherCAT) functionality of the slave. A unique Virtual MAC ID has to be

defined.

Virtual MAC ID

Input field for the Virtual MAC ID

Switch port

The device acts as a switch. No additional network settings are required.

IP port

The device acts as an IP port. The IP Settings have to be configured.

5.2.4.6.2 IP Settings

The Ethernet communication parameters have to be set according to the parameters of the virtual Ether-

net adapter.

IP address

IP address of the slave in the network (length: 4 bytes)

The IP port has to be in the same range as the virtual Ethernet adapter. For example, if the address of the

network adapter is 192.168.1.1 and the subnet mask is 255.255.255.0, then the IP port has to be in the

range from 192.168.1.2 to 192.168.1.254.

Subnet mask

Subnet mask (length: 4 bytes)

Default gateway

Default gateway (length: 4 bytes)

DNS (Domain Name Services) server

IP address of the DNS server

DNS name

Name of the DNS server

5.2.5 Setting up the PLC and ABB Servo EtherCAT Slave for EoE Comms

5.2.5.1 How to configure e1x0 drive

1. Open workbench

2. Connect to drives over USB!

3. Go Online

4. Configuration

5. Start new configuration

106
3ADR011116

106 Motion Controller with AC500 V3

6. Network

7. Set up the standard Ethernet E1 to be on a different network subnet and IP address to that of Ether-

net network we are connecting to. Eg 192.168.10.1

1. Set up E2 EoE to be on the same network subnet and IP to that of Ethernet network we are con-

necting to. Eg 192.168.0.1

2. Apply these changes to the Drive using the Apply button

3. Do the same for all other drives but indexing the IP address in each case.

5.2.5.2 How to configure Automation Builder Project

1. Open Automation Builder and set up your EtherCAT network as per other APP notes

2. Select the EtherCAT drive you have configured for the EtherCAT slave list

3. Select EoE Settings

4. Tick the box for Virtual Ethernet Port

5. Enter the same settings you have defined above in the drive.

107
3ADR011116

107 Motion Controller with AC500 V3

6. Complete and Build your project

7. Open up CODESYS and Download project

5.2.5.3 How to connect your Network

For our example we will configure a remote I/O system that looks like this:

5.2.5.4 How to use this configuration

Once we have a running configured network (set up as shown above) we can use it to connect to the

drives on the network,

1. but first we must turn OFF our PC’s firewall so workbench can scan the connected drives.

2. Once this is done, we can reopen workbench and we should see that our configured drives have ap-

peared.

3. We can connect to the drives now and configure them as normal.

108
3ADR011116

108 Motion Controller with AC500 V3

Modbus RTU

The Modbus RTU protocol is implemented in the AC500 Processor Modules. Modbus RTU is a master-

slave protocol. The Master sends a request to the Slave(s)and receives the response(s). The Modbus op-

erating mode of a serial interface is set in the PLC configuration.

To enable Modbus RTU on a serial, interface the protocol setup per default must be replaced by either

Modbus RTU Client (Master) or Server (Slave), depending on required operation mode.

A serial interface supports only one protocol/operation mode at once.

109
3ADR011116

109 Motion Controller with AC500 V3

5.2.6 How to add a Serial Protocol

Right click node “COM (<Empty>)” and click “Add object”

Select COM 1and click on Replace object. This will add COM_1 and “CAA_SerialCom” node.

Right-click node “CAA_SerialCom” and click “Add object”.

Select “Modbus RTU Client” or “Modbus RTU Server” and click “Add object”.

“CAA_SerialCom” is replaced by your selection.

Serial parameters to be set selecting the interfaces node COM_1. They are common for both operating

modes client and server.

The parameter “Data bits” always has to be set to “8” for Modbus.

To realize the Modbus client functionality, user need to use the function blocks in the application pro-

gram.

Note: For the detailed information on Modbus RTU communication please refer the Automation Builder

online help file.

5.2.7 Modbus RTU Server (Slave)

In this operating mode, no Function Block is required for Modbus communication. Sending and receiving

Modbus telegrams is performed automatically as controlled by the communications Master.

110
3ADR011116

110 Motion Controller with AC500 V3

Server specific parameters to be set selecting the protocol’s node “Modbus_RTU_Server”.

Address: Bus address of the PLC as Modbus RTU Server on that interface

Byte Order:

Format/Endianness for the transmission of WORD values (register) within the request/response tele-

gram (default: Big Endian)

Disable:

Parameter Default Value Description

Disable write to %MB

from

0 0 ... 65535 Disable write access

starting at %MBx

Disable write to %MB

to

0 0 ... 65535 Disable write access

up to %MBx

Disable read from

%MB from

0 0 ... 65535 Disable read access

starting at %MBx

Disable read from

%MBx to

0 0 ... 65535 Disable read access

up at %MBx

It is possible to disable read and/or write access to individual segments. Reading/writing is disabled

beginning at the set start address and is valid up to the set end address (inclusive).

In this operating mode, no Function Block is required for Modbus communication. Sending and

receiving Modbus telegrams is automatically.

5.2.8 Modbus RTU Client (Master)

“Modbus RTU Client” does not have any protocol parameters. In this operating mode, the telegram traffic

with the server(s) is handled via the Function Block. This Function Block sends Modbus request telegrams

to the server(s) via the set interface and receives Modbus response telegrams from the server(s) via this

interface.

The Modbus Client functionality then must be realized with Function blocks (such as ModRtuMast) in the

application program.

5.2.9 HMI Modbus RTU communication

5.2.9.1 CP600 HMI Modbus RTU communication

For CP600 HMI configuration, user must have installed Panel Builder software using Automation Builder

Installation manage.

111
3ADR011116

111 Motion Controller with AC500 V3

For CP600 communication with an AC500 PLC the internal “AC500 / Codesys protocol” is recommended.

If the CP600 panel HMI should communicate via Modbus, user need to configure AC500 COM port as

ModbusRTU Server and the respective protocol selection and configuration needs to be done on the

Panel builder software to establish the communication successfully.

More details on the CP600 configuration and communication with the AC500, please refer to the latest

panel builder help file.

5.2.9.2 3rd Party HMI’s and Modbus RTU communication

If the user is using a 3rd Party HMI, its advised to take great care when using CoDeSys protocols. These 3rd

party protocols sometimes have no data flow control and can poll the PLC too fast so that they can over-

load the communication line (“send next when finished” which means PLC is always sending when no de-

lay is entered). If using this protocol is unavoidable then check the settings for things such as ‘Command

delay’ which can be used to add delays between Comms events.

5.3 Modbus TCP/IP

The Modbus TCP protocol is implemented in the AC500 Processor Modules. Modbus is a master/slave

(client-server) protocol. The client sends a request to the server(s) and receives the response(s).

Each Ethernet interface (ETH1, ETH2 etc.) can work as Modbus client and server interface in parallel if re-

quired.

For detailed information on Modbus TCP communication please refer to the Automation Builder online

help file.

Note: Multiple protocols can be added in parallel.

112
3ADR011116

112 Motion Controller with AC500 V3

5.3.1 Modbus TCP/IP Server

In this Sending and receiving Modbus telegrams is performed automatically.

– A Modbus TCP/IP Server instance can be added to any specific Ethernet interface / IP address.

Each interface supports max. one instance of “Modbus TCP/IP Server”. Right click on ETH interface

and click “Add object”.

– The window “Add object below: ETH” appears. Select “Modbus TCP/IP Server” and click “Add ob-

ject”.

– The node “Modbus_TCP_IP_Server” is added.

Server specific parameters to be set selecting the protocol’s node “Modbus_TCP_IP_Server” under the

respective ETH1 or ETH2.

Byte Order: Format/Endianness for the transmission of WORD values (register) within the request/re-

sponse telegram (default: “Big Endian”).

Port:

TCP Port on which the Server listens.

Startup Behavior:

This parameter specifies how the Server behaves when configuration data is loaded (e.g. on download).

It's default value is “Active”. This means the Server is immediately addressable after configuration has

been performed. In case the Server should be activated later on during runtime by means of Function

113
3ADR011116

113 Motion Controller with AC500 V3

Block “ModTcpServOnOff” this parameter value has to be set to “No activity”. Parameter behavior in

state inactive then specifies the Server's behavior during the inactive phase.

Behavior in state “inactive”:

This parameter specifies how the Server behaves in an inactive state. This state may be set at the very

beginning (parameter Startup Behavior = “No activity”) and/or requested during runtime calling Function

Block “ModTcpServOnOff”. It's default value is “No activity”. This means the Server is not addressable at

all (no listening socket on TCP/IP) when it is inactive. Using this setting, any requests by Modbus TCP

Clients lead to the result Failed to connect to Server or Timeout. All other parameter values make the

Server respond with an exception code to any requests by Modbus TCP Clients.

Disable Registers Section

It is possible to disable read and/or write access to individual segments. Reading/writing is disabled be-

ginning at the set start address and is valid up to the set end address (inclusive).

Parameter Default Value Description

Disable write to %MB from 0 0 ... 65535 Disable write access starting at

%MBx

Disable write to %MB to 0 0 ... 65535 Disable write access up to %MBx

Disable read from %MB

from

0 0 ... 65535 Disable read access starting at

%MBx

Disable read from %MBx to 0 0 ... 65535 Disable read access up at %MBx

5.3.2 Modbus TCP/IP Client

In this operating mode, the telegram traffic with the server(s) is handled via the Function Block. This

Function Block sends Modbus request telegrams to the server(s) via the set interface and receives Mod-

bus response telegrams from the server(s) via this interface.

The “Modbus_TCP_IP_Client” instance has to be added to the common Ethernet Client protocols’ node.

This node supports max. one instance of Modbus TCP/IP Client. Other protocols can be added in parallel.

– Right click on the node “Protocols” and click “Add object”.

– The window “Add object below: Protocols” appears.

– Select “Modbus TCP/IP Client” and click “Add object

– The node “Modbus_TCP_IP_Client” is added.

114
3ADR011116

114 Motion Controller with AC500 V3

Depending on a Server’s IP-Address the Client sends its requests via the Ethernet interfaces available.

Modbus TCP/IP Client does not have any parameters.

The Modbus Client functionality then must be realized with Function blocks (such as ModTcpMast) in the

application program.

5.3.3 HMI’s and Modbus TCP/IP communication

5.3.3.1 CP600 HMI Modbus TCP/IP communication

For CP600 HMI configuration, user must have installed Panel Builder software using Automation Builder

Installation manager.

For CP600 communication with AC500 PLC, the internal AC500 / Codesys protocol is recommended. If

the CP600 HMI should communicate via Modbus the user needs to configure AC500 ETH port as a Mod-

busTCP Server and the respective protocol selection and configuration needs to be done on the Panel

builder software to establish the communication successfully.

115
3ADR011116

115 Motion Controller with AC500 V3

More details on the CP600 configuration and communication with the AC500, please refer to the latest

panel builder help file.

5.3.3.2 3rd Party Modbus TCP/IP HMI communication

If the user is using a 3rd Party HMI, its advised to take great care when using CoDeSys protocols. These 3rd

party protocols sometimes have no data flow control and can poll the PLC so much that they can over-

load the communication line. If using this protocol is unavoidable then check the settings for things such

as ‘Command delay’ which can be used to add delays between Comms events.

5.4 OPC UA

OPC UA server can be added as an object below the Ethernet interfaces ETH1 or ETH2.The user can ac-

cess the variable interface of the PLC via a client. At the same time, communication can be protected by

means of encryption.

The OPC UA server supports the following features:

• Browsing of data types and variables

• Standard read/write services

• Notification for value changes: subscription and monitored item services

• Encrypted communication according to "OPC UA standard (profile: Basic256SHA256)"

116
3ADR011116

116 Motion Controller with AC500 V3

• Imaging of the IEC application according to "OPC UA Information Model for IEC 61131-3"

• Supported profile: Micro Embedded Device Server Profile

• By default, there is no restriction in the number of sessions, monitored items, and subscriptions.

The number depends on the performance of the respective platform.

• Sending of events according to the OPC UA standard.

To add OPC UA to your application user needs to add the OPC UA Server and create the symbol configu-

ration for the same. Follow the steps below to add the OPC UA into your application.

An Application Example is available to gain a deeper understanding of the OPC UA protocol and to con-

figure AC500 V3 accordingly How to use OPC Server V3 - for DA and UA

Right-click on node ETH1 or ETH2 in your Automation Builder project and “Add object”.

Choose OPC UA Server in the dialog and click [Add object].

Declare some variables of different types in the program.

Right-click “Application” then click “Add object”. Choose Symbol configuration and click [Add object].

https://search.abb.com/library/Download.aspx?DocumentID=3ADR010407&LanguageCode=en&DocumentPartId=&Action=Launch

117
3ADR011116

117 Motion Controller with AC500 V3

Enable checkbox Support OPC UA Features in the dialog Add symbol configuration.

Double-click “Symbol configuration” in the Devices tree to open the editor Symbol configuration.

Click [Build].

The variables are displayed in a tree structure.

Activate the variables that you want to publish to an OPC UA client. Specify the access rights.

Download the project to the PLC.

Now use a OPC UA Client and browse for the OPC UA Server PLC to access the variables.

For more details on OPC UA configuration and other functionality please refer to the latest Automation

Builder online help file.

118
3ADR011116

118 Motion Controller with AC500 V3

6 GETTING ONLINE AND MANAGING THE PLC

6.1 Getting online to the PLC

6.1.1 Set-up communication parameters in windows

To set-up the communication between the PC and the PLC, e.g., for downloading the compiled program,

you have to set-up the communication parameters.

The IP address of your PC must be in the same class as the IP address of the CPU.

The factory setting of the IP address of the CPU is 192.168.0.10.

The IP address of your PC should be 192.168.0.X. Avoid X = 10 to prevent an IP conflict with the CPU. Sub-

net mask should be 255.255.255.0.

6.1.1.1 Change the windows IP address

Open Windows Control Panel. Click “Ethernet Settings”.

Click Change adapter Options.

Right-click Local Area Connection (Ethernet) and select Properties.

119
3ADR011116

119 Motion Controller with AC500 V3

Double-click Internet Protocol Version 4 (TCP/IPv4).

Enter your desired IP address and subnet mask.

6.1.2 Configuration of the PLC IP settings

The factory setting of the IP address of the CPU is 192.168.0.10 and subnet mask is 255.255.255.0. The

user can change the same using IP Configuration tool.

6.1.3 Set-up the communication gateway

Make sure the CPU and computer are connected with an Ethernet cable.

6.1.3.1 PLC IP Address is known to the user

1. In the Automation Builder device tree right-click “PLC_AC500_V3”.

2. Select “Communication Settings”.

120
3ADR011116

120 Motion Controller with AC500 V3

3. Keep the default value in the IP address of the CPU or type in the current IP address, if differs.

4. Select “OK” to implement the IP address

6.1.3.2 PLC IP Address is not known to the user (Network scan)

If you need to scan the network for the CPU or if you have multiple CPUs on the same network.

Right-click “PLC_AC500_V3” in the device tree.

Select “Communication Settings”.

Select “...”.

Pick IP Address for "PLC_AC500_V3"” opens.

The automatic scan runs.

The results will appear in this field.

121
3ADR011116

121 Motion Controller with AC500 V3

Select the CPU in the field and select “OK” to implement the needed communications gateway.

6.1.4 Check communication settings

If you need to check the communications settings or if you want to see more information about the cur-

rent selected CPU follow below steps.

Double-click “PLC_AC500_V3” in the device tree.

Select “Communication Settings”.

The selected IP address is shown.

If the IP address is not visible, enter the IP address manually.

To test the connection and/or to see the CPU information press [Enter] or click on the black dot next to

the PLC picture. If the connection is proper, PLC information will be shown below and the black dot will

turn to green.

6.1.5 Change PLC IP address

User can change the PLC IP address by using Automation Builder or by using the function keys and dis-

play on the processor module. For more details on how to use the function keys and display to read the

current IP address or to change the IP address, please refer the latest Automation Builder help file.

6.1.5.1 IP configuration using Automation Builder / IP Configuration tool

User can launch the integrated IP configuration tool from Automation Builder by clicking on menu “Tools

“-> IP-Configuration.

This will open the IP configuration tool

Click on the “Scan” button to start scanning the devices.

After finishing the scanning, all the connected devices will be listed with the Device name and Ip address.

122
3ADR011116

122 Motion Controller with AC500 V3

Click on the ETH port to change the IP address and enter the new IP address.

Note: Make sure the PLC is in STOP mode. Check the Run led is not glowing / LED display is showing

STOP.

If the PLC is in RUN mode, press the function key “run” once to STOP the PLC.

Click on “Send setting” to send the new IP address to PLC and a warning message will be appeared as

below since after setting the new IP address the PLC will be restarted once automatically.

After sending the IP address successfully a “Send succeeded” will be appeared on the bottom.

123
3ADR011116

123 Motion Controller with AC500 V3

After restarting the PLC automatically user can “scan” the devices using “IP configuration” and find the

ETH port with new IP address.

For more details on IP configuration tool, please refer the Automation Builder help file.

6.2 Login to the CPU and download the program

Logging-in to the CPU will load the project into the AC500 V3 CPU. The first log-in will also load the hard-

ware set-up.

Before logging-in to the CPU, you need to compile the complete code without any errors. Select menu

“Build -> Generate code”. The result of the compilation is shown in the “Messages” field at the bottom of

the screen.

If you skip the compiling and select “Login”, the Automation Builder will automatically trigger compiling

in advance to logging-in.

In the Automation Builder menu select “Online -> Login [PLC_AC500_V3]”.

A pop-up will appear

Select “Yes” to download the application to the AC500V3 CPU.

PLC in STOP mode

Menu select “Debug -> Start [PLC_AC500_V3]” to RUN the PLC .

By default, a download generates the following actions in the CPU:

The project is stored in the RAM memory. The project is stored in the flash EEPROM, if boot application

was created. Select menu “Online -> Create Boot Application”.

Alternatively, the user can also use the Download Manager from menu “Online -> Download man-

ager”.Check the options needed by the user and click on the Download button.

User can also use Download manager for downloading multiple projects to different PLC’s.

124
3ADR011116

124 Motion Controller with AC500 V3

6.3 Firmware update

The PLC firmware can be updated via Automation Builder.

A very new CPU has no pre-installed firmware. To guarantee the authenticity of delivered AC500 firm-

ware, V3 CPUs are delivered with a boot loader only. You need to download a valid firmware to the CPU.

After download, the functionality of the CPU is given.

• An Automation Builder project with an AC500 V3 CPU is open.

• CPU is in "stop" mode or shows “uPdAtE” (update) on the display.

• After an update, the CPU shows either “donE” or “StoP” on the display

• For new modules: IP address is set. (The default IP address is 192.168.0.10)

• Double-click CPU “PLC_AC500_V3”.

• Select “Version information”.

• Select “Update Firmware”. While the update process is running, the RUN and ERR LEDs are toggling,

i.e., they are flashing alternating.

125
3ADR011116

125 Motion Controller with AC500 V3

• Wait for the PLC to finish the update.

A completed update is indicated by a message on the display. Either “donE”, or “StoP”.

Note: Do not disconnect the power supply during the update process! The PLC could be damaged.

“StoP” indicates a restart has been performed by the CPU. When “donE” is displayed sometimes it is nec-

essary to re-boot the CPU manually, e.g., by powering-off. Manual re-boot might be needed, e.g., for

some older CPU versions or if downgrading to an older firmware version according to application set-

tings.

The CPU display shows "stop" after re-boot. The update process is finished.

• If necessary, refresh the version information by switching to another tab and back.

Successful firmware update:

6.3.1 Behaviour of LEDs during firmware update

LED LED flashes Status

RUN and ERR Toggling Update pending

RUN Flashing slow Done successful

ERR Flashing slow Done failed

126
3ADR011116

126 Motion Controller with AC500 V3

6.4 Run time license for PLC for Motion Control

6.4.1 What is Run time licensing

The use of some libraries, CPU features and devices requires the PLC to have a CPU locked runtime li-

cense activated inside the CPU.

There are many ways to activate and remove the run time license from CPU. User can activate or remove

the license from CPU when it is online or offline with a computer or when the computer is having an inter-

net connection or not. Some of the commonly used CPU run time license activation or license removal

method is explained in below chapters. For more options on license activation, refer to the Automation

Builder help file.

6.4.2 Activating PLC license with internet connection

Right-click on the PLC and select “PLC runtime licensing” from the “Runtime Licensing” menu.

 A wizard starts. Follow the instructions.

Enter the license activation key and select “Next” to finish the licensing procedure.

The license is activated on the PLC device.

127
3ADR011116

127 Motion Controller with AC500 V3

6.4.3 Downloading and activating PLC license without internet connection

If an error occurs when communicating with the ABB license server, or if Automation Builder is running on

a computer without internet connection, then it is possible to manually complete the ABB license server

interaction by using another computer (with internet connection).

In the error dialog select “Next” and save the license activation request file to a storage location the other

computer can access, e.g. a file share.

In the dialog the web address of the ABB license server is displayed (http://lc.codemeter.com/32838/de-

pot/index.php). From the computer with internet connection, upload the license activation request file.

128
3ADR011116

128 Motion Controller with AC500 V3

After the upload, download and save the license activation file from the ABB license server. Transfer this

file to the PC without Internet connection.

Select “Next” to continue the license activation process. Click “Cancel” to continue the license activation

process later.

Select “Browse” and select the license activation file (*.WibuCmRaU) from the defined storage location.

The license is validated by the ABB license server and afterwards activated on the PLC device.

If the license shall be used on another PLC device, the installed license can be returned.

To complete the licensing process, a license receipt file must be uploaded to the ABB license server.

Save the license receipt file and upload it manually from a PC with internet connection to http://lc.code-

meter.com/32838/depot/index.php.

http://lc.codemeter.com/32838/depot/index.php
http://lc.codemeter.com/32838/depot/index.php

129
3ADR011116

129 Motion Controller with AC500 V3

A license confirmation is returned.

6.4.4 Downloading and activating PLC license via memory card

When you have no connection between your PC and the PLC device the licensing procedure

can be done via a memory card.

Note: There is a connection to the internet.

A memory card which can be used with AC500 V3 products.

On the PC: Create a license request

Place the memory card in the PC.

Right-click on the PLC node and select “Prepare PLC license SD memory card” from the “Runtime Licens-

ing” menu.

From the filesystem select the root folder of the memory card.

A success message is displayed when the creation of the memory card files is completed.

The license request files are stored to the selected folder.

On the PLC: Transfer the license data

Insert the memory card into the PLC device and reboot the PLC.

When the license request file is successfully created by the PLC, “done” is shown on the display of the

PLC.

Remove the memory card from the PLC.

On the PC: Enter the license activation key

1. Place the memory card into the PC.

2. Open the PLC project in Automation Builder. Ensure the PLC is logged out.

3. Right-click on the PLC node and select “PLC runtime licensing” from the “Runtime Licensing”

menu.

a. A wizard is started. Follow the instructions.

4. Enter the license activation key.

5. From the filesystem, select the root folder of the memory card.

130
3ADR011116

130 Motion Controller with AC500 V3

a. The previously created license request files are sent to the ABB license server. A license

activation is created on the memory card.

6. Remove the memory card from the PC.

On the PLC: Complete license activation for the PLC

Insert the memory card into the PLC device and reboot the PLC.

done is displayed on the PLC if license activation was successful.

Remove the memory card from the PLC

On the PC: Complete license activation on the license server

To complete the licensing process, the license receipt file must be uploaded to the ABB license server.

1. Place the memory card into the PC.

2. Upload the license receipt file manually from a PC with internet connection to

http://lc.codemeter.com/32838/depot/index.php.

A license confirmation is returned.

6.4.5 Activating a demo license

It is possible to try out device features or library features by using a Demo license on the PLC. With this,

you can use the features for a limited time.

Right-click on the PLC node and select “PLC runtime licensing” from the “Runtime Licensing” menu. A wiz-

ard is started. Follow the instructions.

Select the option “Create a demo license” and click “Next” to finish the licensing procedure. The demo

license is validated by the ABB license server and afterwards activated on the PLC device.

The demo license is valid for all licensed features and the duration of the demo license is 10 days PLC in

run. After expiration, further demo licenses can be activated. As it is a demo license, there is no grace pe-

riod after expiration (product licenses do not have an expiration date)

For standard AC500 V3 it is visible on the display, if the PLC is running on demo license

6.4.6 Returning a license from a PLC

A license which has been installed on a PLC can be returned and installed on another PLC.

6.4.6.1 Returning a license using Automation Builder

1. Right-click on the PLC node and select “Return active license” from the “Runtime Licensing” menu.

A wizard is started. Follow the instructions.

http://lc.codemeter.com/32838/depot/index.php

131
3ADR011116

131 Motion Controller with AC500 V3

2. Enter the license activation key and click “Return license”.

132
3ADR011116

132 Motion Controller with AC500 V3

The results of the return process will be displayed in the dialog.

The license from the PLC device is removed/returned and can be used now for another PLC.

6.4.6.2 Returning a license using SD card

When the PLC is not connected to the PC (PLC logged out) it is possible to return a license via memory

card.

1. Place the memory card into the PC.

2. Right-click on the PLC node and select “Return active license” from the “Runtime Licensing” menu.

A wizard is started. Follow the instructions.

3. Enter the license activation key and click “Return license”.

4. Click “Browse” and select the root folder of the memory card.

Returning of the license is started.

5. Place the memory card in the PLC device and reboot the PLC.

The license from the PLC device is removed and can be used now for another PLC device.

6. To complete the licensing process, a license receipt file must be uploaded to the ABB license

server.

7. Save the license receipt file and upload it manually from a PC with internet connection to

http://lc.codemeter.com/32838/depot/index.php.

A license confirmation is returned

133
3ADR011116

133 Motion Controller with AC500 V3

7 GENERAL PLC PROGRAM BASICS

This chapter is covering limited program basics and program editor features which is supported by

AC500 PLC. User can refer to latest Automation Builder helpfile chapter “Programming with IEC 61131-3

editor” for detailed information on programing AC500 PLC’s and all supported functionalities while pro-

graming AC500 PLC.

7.1 Programming languages and editors

Automation Builder offers a text editor for ST and graphic editors for SFC, FBD/LD/IL and CFC. You can

program a POU in each case in the editor for the implementation language that you selected when creat-

ing the POU. The editor opens with a double-click on the POU in the device tree or in the POUs view.

Each of the programming language editors consists of two sub-windows:

In the upper part you make declarations in the “declaration editor”, in text or tabular form depending on

the setting. In the lower part you insert the implementation code in the respective language.

You can configure the display and the behavior of each editor project-wide on the associated tab of the

options.

7.2 Variable classifications

The scope of a variable defines how and where you can use a variable. You define the scope in the varia-

ble declaration.

7.2.1 Local Variables - VAR

Local variables are declared between the keywords VAR and END_VAR in the declaration part of pro-

gramming objects.

You have read-only access to local variables by using the instance path.

You can extend local variables with an attribute keyword.

Example

VAR

 iVar1 : INT;

END_VAR

7.2.2 Input Variables - VAR_INPUT

Input variables are used at the inputs of function blocks. VAR_INPUT variables are declared between

the keywords VAR_INPUT and END_VAR in the declaration part of programming objects.

You can extend input variables with an attribute keyword.

Example

VAR_INPUT

 iIn1 : INT; (* 1st input variable *)

END_VAR

7.2.3 Output Variables - VAR_OUTPUT

Output variables are used at the outputs of function blocks.

VAR_OUTPUT variables are declared between the keywords VAR_OUTPUT and END_VAR in the decla-

ration part of programming objects. CODESYS returns the values of this variable to the calling POU.

There you can retrieve the values and continue using them.

You can extend output variables with an attribute keyword.

Example

134
3ADR011116

134 Motion Controller with AC500 V3

VAR_OUPUT

 iOut1 : INT; (*1st output variable *)

END_VAR

7.2.4 Input/Output Variable (VAR_IN_OUT)

A VAR_IN_OUT variable is an input/output variable, which is part of a POU interface and serves as a

formal pass-by-reference parameter.

Syntax declaration

<keyword> <POU name>

VAR_IN_OUT

 <variable name> : <data type> (:= <initialization value>)? ;

END_VAR

<keyword> : FUNCTION | FUNCTION_BLOCK | METHOD | PRG

You can declare an input/output variable in the VAR_IN_OUT declaration section in the POUs PRG,

FUNCTION_BLOCK, METHOD, or FUNCTION. As an option, a constant of the declared data type can

be assigned as an initialization value. The VAR_IN_OUT variable can be read and written.

7.2.5 Global Variables - VAR_GLOBAL

Global variables are ordinary variables, constants, external or remanent variables that are recognized

within the entire project.

You declare global variables in global variable lists or in the declaration section of programming ob-

jects between the keywords VAR_GLOBAL and END_VAR.

The system recognizes a global variable when you prepend the variable name with a dot (for example,

.iGlobVar1).

Example

VAR_GLOBAL

 iVarGlob1 : INT;

END_VAR

7.2.6 Temporary Variable - VAR_TEMP

This function is an extension of the IEC 61131-3 standard.

You declare temporary variables locally between the keywords VAR_TEMP and END_VAR.

VAR_TEMP declarations are possible only in program blocks and function blocks.

CODESYS initializes temporary variables each time the block is called.

The application can access the temporary variables only in the implementation section of a program

block or a function block.

Example

VAR_TEMP

 iVarTmp1 : INT; (*1st temporary variable *)

END_VAR

135
3ADR011116

135 Motion Controller with AC500 V3

7.2.7 Static Variables - VAR_STAT

This function is an extension of the IEC 61131-3 standard.

You declare static variables locally between the keywords VAR_STAT and END_VAR. CODESYS initial-

izes static variables the first time each block is called.

You can access static variables only from within the namespace where the variables are declared

(like static variables in C). But static variables retain their values when the application leaves the

block. For example, you can use static variables as counters for function calls.

You can extend static variables with an attribute keyword.

Example

VAR_STAT

 iVarStat1 : INT;

END_VAR

7.2.8 Constant Variables - ‘CONSTANT’

Constant variables are declared in global variable lists or in the declaration part of programming

objects. In implementations, constant variables can be accessed as read-only via the instance path.

Always assign an initialization value when declaring a constant variable. Then the constant cannot be

written any more.

Example

Declaration

VAR CONSTANT

 c_rTAXFACTOR : REAL := 1.19;

END_VAR

Call

rPrice := rValue * c_rTAXFACTOR;

You have read-only access to constant variables in an implementation. Constant variables are lo-

cated to the right of the assignment operator.

7.2.9 Persistent Variable - PERSISTENT

Persistent variables are declared in the declaration section VAR_GLOBAL RETAIN PERSISTENT in the

persistent global variable list. For variables that are marked with the PERSISTENT keyword outside

of the persistence editor, instance paths are added there.

Syntax of the declaration in the global persistent variable list PersistentVars:

VAR_GLOBAL PERSISTENT RETAIN

 <identifier> : <data type> (:= <initialization>)?;

 <instance path to POU variable>

END_VAR

Syntax of the declaration in POUs

<scope> PERSISTENT RETAIN

 <identifier> : <data type> (:= <initialization>)?; // (...)? : Optional

END_VAR

136
3ADR011116

136 Motion Controller with AC500 V3

<scope> : VAR | VAR_INPUT | VAR_OUTPUT | VAR_IN_OUT | VAR_STAT | VAR_GLOBAL

7.2.10 Retain Variable - RETAIN

Retain variables are declared by the keyword RETAIN is added in programming objects in the scope VAR,

VAR_INPUT, VAR_OUTPUT, VAR_IN_OUT, VAR_STAT, or VAR_GLOBAL.

Syntax for the declaration

<scope> RETAIN

 <identifier>: <data type> (:= <initialization>)? // (...)? : Optional

END_VAR

<scope> : VAR | VAR_INPUT | VAR_OUTPUT | VAR_IN_OUT | VAR_STAT | VAR_GLOBAL

Example

In a POU:

VAR RETAIN

 iVarRetain: INT;

END_VAR

In a GVL:

VAR_GLOBAL RETAIN

 g_iVarRetain: INT;

END_VAR

7.2.11 Handling of remanent variables for AC500 V3 products

Maintaining data after power ON/OFF, is only possible, if a battery is connected for AC500 CPU and the

buffering will take place in AC500 V3 CPU. The following data can be buffered completely or in parts:

– Data in the addressable flag area (%M area)

– RETAIN variable

– PERSISTENT variable (number is limited, no structured variables)

– PERSISTENT area

To prevent data loss when using the AC500 battery, the battery status should be periodically monitored

by the user program.

The battery status can be monitored either with the help of a user program on the PLC or in Automation

Builder.

7.3 Data types

7.3.1 BOOL

Data Type Value Memory

BOOL TRUE (1), FALSE (0) 8 bit

7.3.2 INTEGER

CODESYS provides the following integer data types. Information can be lost when converting

from larger to smaller types.

137
3ADR011116

137 Motion Controller with AC500 V3

Data Type Lower Limit Upper Limit Memory

BYTE 0 255 8 bit

WORD 0 65535 16 bit

DWORD 0 4294967295 32 bit

LWORD 0 264-1 64 bit

SINT -128 127 8 bit

USINT 0 255 8 bit

INT -32768 32767 16 bit

UINT 0 65535 16 bit

DINT -2147483648 2147483647 32 bit

UDINT 0 4294967295 32 bit

LINT -263 263-1 64 bit

ULINT 0 264-1 64 bit

7.3.3 REAL / LREAL

The data types REAL and LREAL are floating-point types according to IEEE 754. They are necessary

when using decimal numbers and floating-point numbers in decimal notation or exponential nota-

tion.

Data type Smallest value number Largest value number Storage space

REAL 1.00E-44 3.40E+38 32 bit

LREAL 4.94065645841247E-324 1.7976931348623157E+308 64 bit

7.3.4 STRING

A variable of data type STRING can have contain any character string. The amount of memory that

is reserved during a declaration refers to characters and is shown in parentheses or brackets. If a

size is not defined, then CODESYS allocates 80 characters by default.

As a rule, CODESYS does not limit the string length. However, the string function processes

lengths of 1–255 only. If a variable is initialized with a string that is too long for the data type,

then CODESYS truncates the string accordingly from the right.

The memory required for a STRING variable is always one byte per character plus one additional

byte (for example, 81 bytes for a "STRING(80)" declaration).

Example of a string declaration with 35 characters:

str : STRING(35):= 'This is a String';

7.3.5 TIME

The data type is treated internally as DWORD. TIME is resolved in milliseconds.

Data type Lower limit Upper limit Storage space Resolution

TIME T#0d0h0m0s0ms T#49d17h2m47s295ms 32 bit Milliseconds

138
3ADR011116

138 Motion Controller with AC500 V3

7.3.6 LTIME

You can use the data type LTIME as a time base for high-resolution timer. A high-resolution timer

has a resolution in nanoseconds.

Data Type Lower Limit Upper Limit Memory

LTIME LTIME#0NS LTIME#213503D23H34M33S709MS551US615NS 64 bits

Syntax:

LTIME#<long time declaration>

The time declaration can include units of time that apply for the TIME constant as well as:

◾"US": microseconds

◾"NS": nanoseconds

Example:

LTIME1 := LTIME#1000D15H23M12S34MS2US44NS

7.3.7 Date and Time

The data types DATE, DATE_AND_TIME (DT), and TIME_OF_DAY (TOD) are handled internally like a

DWORD (32-bit value).

The data types LDATE, LDATE_AND_TIME (LDT), and LTIME_OF_DAY (LTOD) are treated internally

like an LWORD (64-bit value).

The values of these data types are measured in seconds, milliseconds, and nanoseconds since

01/01/1970.

139
3ADR011116

139 Motion Controller with AC500 V3

Data Type Lower Limit Upper Limit Memory Resolution

DATE DATE#1970-01-01 DATE#2106-02-07 32-bit Seconds (alt-

hough only the

day is displayed) D#1970-01-01 D#2106-02-07

DATE_AND_T

IME

DATE_AND_TIME

#1970-1-1-0:0:0

DATE_AND_TIME#2106-02-

07-06:28:15

32-bit Seconds

DT DT#1970-1-1-0:0:0 DT#2106-02-07-06:28:15

TIME_OF_DA

Y

TIME_OF_DAY#0:

0:0

TIME_OF_DAY#23:59:59.99

9

32-bit Milliseconds

TOD TOD#0:0:0 TOD#23:59:59.999

LDATE LDATE#1970-1-1 LDATE#2554-7-21 64-bit Nanoseconds

(although only

the day is dis-

played)

LD#1970-1-1 LD#2554-7-2

LDATE_AND_

TIME

LDATE_AND_TIME

#1970-1-1-0:0:0

LDATE_AND_TIME#2554-7-

21:23:59:59.99999999

64-bit Nanoseconds

LDT LDT#1970-1-1-

0:0:0

LDT#2554-7-21-

23:59:59.99999999

LTIME_OF_D

AY

LTIME_OF_DAY#0

:0:0

LTIME_OF_DAY#23:59:59.9

99999999

64-bit Nanoseconds

LTOD LTOD#0:0:0 LTOD#23:59:59.99999999

9

7.3.8 BIT

The data type BIT is valid only in structures for the declaration of structure members or in a function

block for the declaration of variables. A BIT variable can have the values TRUE (1) and FALSE (0). In

this case, the variable requires exactly one bit of memory.

As a result, you can symbolically address individual bits by a name. BIT variables that are declared in

succession are bundled in bytes. In this way, you can optimize memory use as opposed to BOOL

types, which reserve 8 bits each. On the other hand, bit access is significantly more time-consuming.

Therefore, you should use the BIT data type only when you need to define data in a predefined for-

mat.

7.3.9 Pointers

A pointer stores the memory address of objects, such as variables or function block instances, at

runtime.

Syntax of the pointer declaration:

<pointer name>: POINTER TO <data type | data unit type | function block>;

Example

FUNCTION_BLOCK FB_Point

140
3ADR011116

140 Motion Controller with AC500 V3

VAR

 piNumber: POINTER TO INT;

 iNumber1: INT := 5;

 iNumber2: INT;

END_VAR

piNumber := ADR(iNumber1); // piNumber is assigned to address of iNumber1

iNumber2 := piNumber^; // value 5 of iNumber1 is assigned to variable iNumber2 by dereferencing

of pointer piNumber

Dereferencing a pointer means obtaining the value to which the pointer points. A pointer is derefer-

enced by appending the content operator ^ to the pointer identifier (for example, piNumber^ in the

example above). To assign the address of an object to a pointer, the address operator ADR is ap-

plied to the object: ADR(iNumber1).

In online mode, you can click Edit ➔ Browse ➔ Go to Reference to jump from a pointer to the decla-

ration location of the referenced variable.

Index access to pointers

CODESYS permits the index access [] to variables of type POINTER TO, as well as to the data types

STRING or WSTRING.

The data, which the pointer points to, can also be accessed by appending the bracket operator [] to

the pointer identifier(for example, piData[i]). The base data type of the pointer determines the data

type and the size of the indexed component. In this case, the index access to the pointer is done

arithmetically by adding the index dependent offset i * SIZEOF(<base type>) to the address of the

pointer. The pointer is dereferenced implicitly at the same time.

Calculation: piData[i] := (piData + i * SIZEOF(INT))^;

This is not: piData[i] != (piData + i)^.

Index access STRING

When you use the index access with a variable of the type STRING, you get the character at the off-

set of the index expression. The result is of type BYTE. For example, sData[i] returns the i-th charac-

ter of the character string sData as SINT (ASCII).

Index access WSTRING

When you use the index access with a variable of the type WSTRING, you get the character at the off-

set of the index expression. The result is of type WORD. For example, wsData[i] returns the “i”th

character of the character string as INT (Unicode).

Subtracting pointers

The result of the difference between two pointers is a value of type DWORD, even on 64-bit plat-

forms when the pointers are 64-bit pointers

7.3.10 ARRAY

An array is a collection of data elements of the same data type. CODESYS supports one- and multi-

dimensional arrays of fixed or variable length.

Array of fixed length

You can define arrays in the declaration part of a POU or in global variable lists.

141
3ADR011116

141 Motion Controller with AC500 V3

Syntax of the declaration of a one-dimensional array

<variable name> : ARRAY[<dimension>] OF <data type> (:= <initialization>)? ;

<dimension> : <lower index bound>..<upper index bound>

<data type> : elementary data types | user defined data types | function block types

// (...)? : Optional .

Syntax of the declaration of a multi-dimensional array

<variable name> : ARRAY[<1st dimension> (, <next dimension>)+] OF <data type> (:= <initializa-

tion>)? ;

<1st dimension> : <1st lower index bound>..<1st upper index bound>

<next dimension> : <next lower index bound>..<next upper index bound>

<data type> : elementary data types | user defined data types | function block types

// (...)+ : One or more further dimensions

// (...)? : Optional

The index limits are integers; maximum of the data type DINT.

Syntax for data access

<variable name>[<index of 1st dimension> (, <index of next dimension>)*]

// (...)* : 0, one or more further dimensions

Example 1

One-dimensional array of 10 integer elements

VAR

 aiCounter : ARRAY[0..9] OF INT;

END_VAR

 Lower index limit: 0

Upper index limit: 9

Initialization

aiCounter : ARRAY[0..9] OF INT := [0, 10, 20, 30, 40, 50, 60, 70, 80, 90];

 Data access

iLocalVariable := aiCounter[2];

 The value 20 is assigned to the local variable.

Example 2

2-dimensional array

VAR

 aiCardGame : ARRAY[1..2, 3..4] OF INT;

END_VAR

 1st dimension: 1 to 2

2nd dimension: 3 to 4

142
3ADR011116

142 Motion Controller with AC500 V3

Initialization

aiCardGame : ARRAY[1..2, 3..4] OF INT := [2(10),2(20)]; // Short notation for [10, 10, 20, 20]

Data access

iLocal_1 := aiCardGame[1, 3]; // Assignment of 10

iLocal_2 := aiCardGame[2, 4]; // Assignment of 20

 Example 3

3-dimensional array

VAR

 aiCardGame : ARRAY[1..2, 3..4, 5..6] OF INT;

END_VAR

 1st dimension: 1 to 2

2nd dimension: 3 to 4

3rd dimension: 5 to 6

2 * 2 * 2 = 8 array elements

Initialization

aiCardGame : ARRAY[1..2, 3..4, 5..6] OF INT := [10, 20, 30, 40, 50, 60, 70, 80];

Data access

iLocal_1 := aiCardGame[1, 3, 5]; // Assignment of 10

iLocal_2 := aiCardGame[2, 3, 5]; // Assignment of 20

iLocal_3 := aiCardGame[1, 4, 5]; // Assignment of 30

iLocal_4 := aiCardGame[2, 4, 5]; // Assignment of 40

iLocal_5 := aiCardGame[1, 3, 6]; // Assignment of 50

iLocal_6 := aiCardGame[2, 3, 6]; // Assignment of 60

iLocal_7 := aiCardGame[1, 4, 6]; // Assignment of 70

iLocal_8 := aiCardGame[2, 4, 6]; // Assignment of 80

 Initialization

aiCardGame : ARRAY[1..2, 3..4, 5..6] OF INT := [2(10), 2(20), 2(30), 2(40)]; // Short notation for

[10, 10, 20, 20, 30, 30, 40, 40]

 Data access

iLocal_1 := aiCardGame[1, 3, 5]; // Assignment of 10

iLocal_2 := aiCardGame[2, 3, 5]; // Assignment of 10

iLocal_3 := aiCardGame[1, 4, 5]; // Assignment of 20

iLocal_4 := aiCardGame[2, 4, 5]; // Assignment of 20

iLocal_5 := aiCardGame[1, 3, 6]; // Assignment of 30

iLocal_6 := aiCardGame[2, 3, 6]; // Assignment of 30

iLocal_7 := aiCardGame[1, 4, 6]; // Assignment of 40

iLocal_8 := aiCardGame[2, 4, 6]; // Assignment of 40

143
3ADR011116

143 Motion Controller with AC500 V3

Example 4

3-dimensional arrays of a user-defined structure

TYPE DATA_A

STRUCT

 iA_1 : INT;

 iA_2 : INT;

 dwA_3 : DWORD;

END_STRUCT

END_TYPE

PROGRAM PLC_PRG

VAR

 aData_A : ARRAY[1..3, 1..3, 1..10] OF DATA_A;

END_VAR

 The array aData_A consists of a total of 3 * 3 * 10 = 90 array elements of data type DATA_A.

Initialize partially

aData_A : ARRAY[1..3, 1..3, 1..10] OF DATA_A := [(iA_1 := 1, iA_2 := 10, dwA_3 := 16#00FF),(iA_1 :=

2, iA_2 := 20, dwA_3 := 16#FF00),(iA_1 := 3, iA_2 := 30, dwA_3 := 16#FFFF)];

 In the example, only the first 3 elements are initialized explicitly. Elements to which no initial-

ization value is assigned explicitly are initialized internally with the default value of the basic

data type. This initializes the structure components at 0 starting with the element

aData_A[2, 1, 1].

Data access

iLocal_1 := aData_A[1,1,1].iA_1; // Assignment of 1

dwLocal_2 := aData_A[3,1,1].dwA_3; // Assignment of 16#FFFF

Example 5

Array of a function block

FUNCTION BLOCK FBObject_A

VAR

 iCounter : INT;

END_VAR

...

PROGRAM PLC_PRG

VAR

 aObject_A : ARRAY[1..4] OF FBObject_A;

END_VAR

The array aObject_A consists of 4 elements. Each element instantiates a FBObject_A func-

tion block.

Function call

144
3ADR011116

144 Motion Controller with AC500 V3

aObject_A[2]();

Example 6

Implementation of FB_Something with method FB_Init

FUNCTION_BLOCK FB_Something

VAR

 _nId : INT;

 _lrIn : LREAL;

END_VAR

...

METHOD FB_Init : BOOL

VAR_INPUT

 bInitRetains : BOOL;

 bInCopyCode : BOOL;

 nId : INT;

 lrIn : LREAL;

END_VAR

_nId := nId;

_lrIn := lrIN;

The function block FB_Something has a method FB_Init that requires 2 parameters.

Instantiation of the array with initialization

PROGRAM PLC_PRG

VAR

 fb_Something_1 : FB_Something(nId := 11, lrIn := 33.44);

 a_Something : ARRAY[0..1, 0..1] OF FB_Something[(nId := 12, lrIn := 11.22), (nId := 13, lrIn :=

22.33), (nId := 14, lrIn := 33.55),(nId := 15, lrIn := 11.22)];

END_VAR

7.3.10.1 Array of arrays

The declaration of an "array of arrays" is an alternative syntax for multidimensional arrays. A collec-

tion of elements is nested instead of dimensioning the elements. The nesting depth is unlimited.

Syntax for declaration

<variable name> : ARRAY[<first>] (OF ARRAY[<next>])+ OF <data type> (:= <initialization>)? ;

<first> : <first lower index bound>..<first upper index bound>

<next> : <lower index bound>..<upper index bound> // one or more arrays

<data type> : elementary data types | user defined data types | function block types

// (...)+ : One or more further arrays

// (...)? : Optional

 Syntax for data access

<variable name>[<index of first array>] ([<index of next array>])+ ;

// (...)* : 0, one or more further arrays

145
3ADR011116

145 Motion Controller with AC500 V3

 Example 7

PROGRAM PLC_PRG

VAR

 aiPoints : ARRAY[1..2,1..3] OF INT := [1,2,3,4,5,6];

 ai2Boxes : ARRAY[1..2] OF ARRAY[1..3] OF INT := [[1, 2, 3], [4, 5, 6]];

 ai3Boxes : ARRAY[1..2] OF ARRAY[1..3] OF ARRAY[1..4] OF INT := [[[1, 2, 3, 4], [5, 6, 7, 8], [9,

10, 11, 12]], [[13, 14, 15, 16], [17, 18, 19, 20], [21, 22, 23, 24]]];

 ai4Boxes : ARRAY[1..2] OF ARRAY[1..3] OF ARRAY[1..4] OF ARRAY[1..5] OF INT;

END_VAR

aiPoints[1, 2] := 1200;

ai2Boxes[1][2] := 1200;

 The variables aiPoints and ai2Boxes collect the same data elements, however the syntax for

the declaration differs from that of the data access.

Array of variable length

In function blocks, functions, or methods, you can declare arrays of variable length in the

VAR_IN_OUT declaration section.

The LOWER_BOUND and UPPER_BOUND operators are provided for determining the index

limits of the actual used array at runtime.

Syntax of the declaration of a one-dimensional array of variable length

<variable name> : ARRAY[*] OF <data type> (:= <initialization>)? ;

<data type> : elementary data types | user defined data types | function block types

// (...)? : Optional

 Syntax of the declaration of a multi-dimensional array of variable length

<variable name> : ARRAY[* (, *)+] OF <data type> (:= <initialization>)? ;

<data type> : elementary data types | user defined data types | function block types

// (...)+ : One or more further dimensions

146
3ADR011116

146 Motion Controller with AC500 V3

// (...)? : Optional

 Syntax of the operators for calculating the limit index

LOWER_BOUND(<variable name> , <dimension number>)

UPPER_BOUND(<variable name> , <dimension number>)

 Example 8

The SUM function adds the integer values of the array elements and returns the calculated sum as a

result. The sum is calculated across all array elements available at runtime. As the actual number of

array elements will only be known at runtime, the local variable is declared as a one-dimensional ar-

ray of variable length.

FUNCTION SUM: INT;

VAR_IN_OUT

 aiData : ARRAY[*] OF INT;

END_VAR

VAR

 diCounter, diResult : DINT;

END_VAR

diResult := 0;

FOR diCounter := LOWER_BOUND(aiData, 1) TO UPPER_BOUND(aiData, 1) DO // Calculates

the length of the current array

 diResult := diResult + A[i];

END_FOR;

7.3.11 SUM := diResult;Structure (STRUCT)

A structure is a user-defined data type, which combines multiple variables of any data type into a

logical unit. The variables declared within a structure are called members.

You make the type declaration of a structure in a “DUT” object which you create in the Project ➔

Add Object ➔ DUT menu or in the context menu of an application.

Syntax

TYPE <structure name> :

STRUCT

 (<variable declaration optional with initialization>)+

END_STRUCT

END_TYPE

 <structure name> is an identifier which is valid in the entire project so that you can use it like a

standard data type. Moreover, you can declare any number of variables (at least one) which are

supplemented optionally by an initialization.

Structures can also be nested. This means that you declare a structure member with an existing

structure type. Then the only restriction is that you must not assign any address to the variable

(structure member). (The AT declaration is not permitted here.)

Example 1

Type declaration

TYPE S_POLYGONLINE :

147
3ADR011116

147 Motion Controller with AC500 V3

STRUCT

 aiStart : ARRAY[1..2] OF INT := [-99, -99];

 aiPoint1 : ARRAY[1..2] OF INT;

 aiPoint2 : ARRAY[1..2] OF INT;

 aiPoint3 : ARRAY[1..2] OF INT;

 aiPoint4 : ARRAY[1..2] OF INT;

 aiEnd : ARRAY[1..2] OF INT := [99, 99];

END_STRUCT

END_TYPE

 Extension of a type declaration

An additional structure is declared from an existing structure. In addition to its own members,

the extended structure also has the same structure members as the base structure.

Syntax

TYPE <structure name> EXTENDS <basis structure> :

STRUCT

 (<variable declaration optional with initialization>)+

END_STRUCT

END_TYPE

Example 2

Type declaration

TYPE S_PENTAGON EXTENDS S_POLYGONLINE :

STRUCT

 aiPoint5 : ARRAY[1..2] OF INT;

END_STRUCT

END_TYPE

Declaration and initialization of structure variables

Example

PROGRAM progLine

VAR

 sPolygon : S_POLYGONLINE := (aiStart:=[1,1], aiPoint1:=[5,2], aiPoint2:=[7,3], aiPoint3:=[8,5],

aiPoint4:=[5,7], aiEnd:=[1,1]);

 sPentagon : S_PENTAGON := (aiStart:=[0,0], aiPoint1:=[1,1], aiPoint2:=[2,2], aiPoint3:=[3,3],

aiPoint4:=[4,4], aiPoint5:=[5,5], aiEnd:=[0,0]);

END_VAR

You must not permitted to use initializations with variables. For an example of initializing an

array of a structure, see the help page for the data type ARRAY.

Access to a structure member

You access structure members with the following syntax:

<variable name> . <component name>

148
3ADR011116

148 Motion Controller with AC500 V3

Example 3

PROGRAM prog_Polygon

VAR

 sPolygon : S_POLYGONLINE := (aiStart:=[1,1], aiPoint1:=[5,2], aiPoint2:=[7,3], aiPoint3:=[8,5],

aiPoint4:=[5,7], aiEnd:=[1,1]);

 iPoint: INT;

END_VAR

// Assigns 5 to aiPoint

iPoint := sPolygon.aiPoint1[1];

 Result: iPoint = 5

Symbolic bit access in structure variables

You can declare a structure with variables of data type BIT to combine individual bits into a logi-

cal unit. Then you can symbolically address individual bits by a name (instead of by a bit index).

Syntax declaration

TYPE <structure name> :

STRUCT

 (<bit name> : BIT;)+

END_STRUCT

END_TYPE

 Syntax of bit access

<structure name> . <bit name>

 Example 4

Type declaration

TYPE S_CONTROL :

STRUCT

 bitOperationEnabled : BIT;

 bitSwitchOnActive : BIT;

 bitEnableOperation : BIT;

 bitError : BIT;

 bitVoltageEnabled : BIT;

 bitQuickStop : BIT;

 bitSwitchOnLocked : BIT;

 bitWarning : BIT;

END_STRUCT

END_TYPE

 Bit access

FUNCTION_BLOCK FB_Controller

VAR_INPUT

 xStart : BOOL;

149
3ADR011116

149 Motion Controller with AC500 V3

END_VAR

VAR_OUTPUT

END_VAR

VAR

 ControlDriveA : S_CONTROL;

END_VAR

IF xStart = TRUE THEN

 // Symbolic bit access

 ControlDriveA.bitEnableOperation := TRUE;

END_IF

PROGRAM PLC_PRG

VAR

 fbController : FB_Controller;

END_VAR

fbController();

fbController.xStart := TRUE;

7.3.12 Enumerations (ENUM)

An enumeration is a user-defined data type composed of a series of comma-separated components

(enumeration values) for declaring user-defined variables. Moreover, you can use the enumeration

components like constants whose identifier <enumeration name>.<component name> is recognized

globally in the project.

You declare an enumeration in a DUT object, which you have already created in the project by click-

ing “Add Object”.

Declaration

Syntax

({attribute 'strict'})? // Pragma optional but recommended

TYPE <enumeration name> :

(

 <first component declaration>,

 (<component declaration> ,)+

 <last component declaration>

)(<basic data type>)? (:= <default variable initialization>)? ;

END_TYPE

(...)? : Optional

<component declaration> : <component name> (:= <component initialization>)?

<basic data type> : INT | UINT | SINT | USINT | DINT | UDINT | LINT | ULINT | BYTE | WORD | DWORD |

LWORD

<variable initialization> : <one of the component names>

150
3ADR011116

150 Motion Controller with AC500 V3

In an enumeration declaration, at least 2 components are usually declared. However, you can declare

as many as you want. Every single component can be assigned its own initialization. Enumerations

automatically have the basic data type INT, but you can specify another basic data type. Moreover,

you can specify a component in the declaration with which an enumeration variable is then initial-

ized.

The pragma {attribute 'strict'} causes a strict type test to be performed as described below.

Example 1

{attribute 'qualified_only'}

{attribute 'strict'}

TYPE COLOR_BASIC :

(

 yellow,

 green,

 blue,

 black

)

; // Basic data type is INT, default initialization for all COLOR_BASIC variables is yellow

END_TYPE

Enumeration with explicit basic data type

Extensions to the IEC 61131-3 standard

The basic data type for an enumeration declaration is INT by default. However, you can also declare

enumerations that are based explicitly on another integer data type.

<basic data type> : INT | UINT | SINT | USINT | DINT | UDINT | LINT | ULINT | BYTE | WORD | DWORD |

LWORD

Example 2

Enumeration with basic data type DWORD

TYPE COLOR :

(

 white := 16#FFFFFF00,

 yellow := 16#FFFFFF00,

 green := 16#FF00FF00,

 blue := 16#FF0000FF,

 black := 16#88000000

) DWORD := black; // Basic data type is DWORD, default initialization for all COLOR variables

is black

END_TYPE

 The strict programming rules are activated when adding the pragma {attribute 'strict'}.

.The following code is considered a compiler error:

Arithmetic operations with enumeration components

For example, an enumeration variable cannot be used as a counter variable in a FOR loop.

151
3ADR011116

151 Motion Controller with AC500 V3

Assignment of a constant value, which does not correspond to an enumeration value, to an enu-

meration component

Assignment of a non-constant variable, which has another data type as the enumeration, to an

enumeration component

Arithmetic operations can lead to undeclared values being assigned to enumeration components. A

better programming style is to use SWITCH/CASE statements for processing component values.

Declaration and initialization of enumeration variables

Syntax

<variable name> : <enumeration name> (:= <initialization>)? ;

 For a declaration of an enumeration variable with user-defined data type <enumeration name>, this

can be initialized with an enumeration component.

Example 3

PROGRAM PLC_PRG

VAR

 colorCar: COLOR;

 colorTaxi : COLOR := COLOR.yellow;

END_VAR

The variable colorCar is initialized with COLOR.black. That is the default initialization for all enumera-

tion variables of type COLOR and defined this way in the type declaration. The variable colorTaxi has

its own initialization.

If no initializations are specified, then the initialization value is 0.

Example 4

PROGRAM PLC_PRG

VAR

 cbFlower : COLOR_BASIC;

 cbTree: COLOR_BASIC := COLOR_BASIC.green;

END_VAR

The variable cbFlower is initialized with COLOR_BASIC.yellow. That is the default initialization for all

enumeration variables of type COLOR_BASIC. Because the enumeration declaration does not specify

a component for initialization, the system automatically initializes with the component that has the

value 0. This is usually the first of the enumeration components. However, it can also be another

component that is not in the first position but explicitly initialized with 0.

The variable cbTree has an explicit initialization.

If no value is specified for both the type and the variable, then the following rule applies: If an enu-

meration contains a value for 0, then this value is the default initialization, and if not, then the first

component in the list.

Example 5

Initialization with the 0 component

TYPE ENUM :

152
3ADR011116

152 Motion Controller with AC500 V3

(

 e1 := 2,

 e2 := 0,

 e3

)

;

END_TYPE

PROGRAM PLC_PRG

VAR

 e : ENUM;

END_VAR

 The variable e is initialized with ENUM.e2.

Initialization with the first component

TYPE ENUM2 :

(

 e1 := 3,

 e2 := 1,

 e3

)

;

END_TYPE

PROGRAM PLC_PRG

VAR

 e2 : ENUM2;

END_VAR

The variable e2 is initialized with ENUM.e1.

Unique access to enumeration components

Extensions to the IEC 61131-3 standard

The enumeration components can also be used as constant variables with the identifier <enumera-

tion name>.<component name>. Enumeration components are recognized globally in the project

and access to them is unique. Therefore, a component name can be used in different enumerations.

Example 6

Component blue

PROGRAM PLC_PRG

VAR

 cbFlower : COLOR_BASIC;

 colorCar : COLOR;

END_VAR

153
3ADR011116

153 Motion Controller with AC500 V3

(* unambiguous identifiers although the component names are identical *)

cbFlower := COLOR_BASIC.blue;

colorCar := COLOR.blue;

(* invalid code *)

cbFlower := blue;

colorCar := blue;

7.4 ST Statements

7.4.1 IF

The IF statement is used for checking a condition and, depending on this condition, for executing

the subsequent statements.

A condition is coded as an expression that returns a Boolean value. If the expression returns TRUE,

then the condition is fulfilled and the corresponding statements after THEN are executed. If the ex-

pression returns FALSE, then the following conditions, which are identified with ELSIF, are evalu-

ated. If an ELSIF condition returns TRUE, then the statements are executed after the corresponding

THEN. If all conditions return FALSE, then the statements after ELSE are executed.

Therefore, at most one branch of the IF statement is executed. ELSIF branches and the ELSE branch

are optional.

SyntaxIF <condition> THEN

 <statements>

(ELSIF <condition> THEN

 <statements>)*

(ELSE

 <statements>)?

END_IF;

// (...)* None, once or several times

// (...)? Optional

Example

PROGRAM PLC_PRG

VAR

 iTemp: INT;

 xHeatingOn: BOOL;

 xOpenWindow: BOOL;

END_VAR

IF iTemp < 17 THEN

 xHeatingOn := TRUE;

ELSIF iTemp > 25 THEN

 xOpenWindow := TRUE;

ELSE xHeatingOn := FALSE;

END_IF;

154
3ADR011116

154 Motion Controller with AC500 V3

The program is run as follows at runtime:

For the evaluation of the expression iTemp < 17 = TRUE, the subsequent statement is executed and

the heating is switched on. For the evaluation of the expression iTemp < 17 = FALSE, the subsequent

ELSIF condition iTemp > 25 is evaluated. If this is true, then the statements in ELSIF are executed

and the view is opened. If all conditions are FALSE, then the statement in ELSE is executed and the

heating is switched off.

7.4.2 FOR

The FOR loop is used to execute instructions with a certain number of repetitions.

Syntax:

FOR <counter> := <start value> TO <end value> {BY <increment> } DO

<instructions>

END_FOR;

 The section inside the curly parentheses {} is optional.

CODESYS executes the <instructions> as long as the <counter> is not greater, or - in case of neg-

ative increment - is not smaller than the <end value>. This is checked before the execution of the

<instructions>.

Every time the instructions <instructions> have been executed, the counter <counter> is auto-

matically increased by the increment <increment>. The increment <increment> can have any inte-

gral value. If you do not specify an increment, the standard increment is 1.

Example

FOR iCounter := 1 TO 5 BY 1 DO

iVar1 := iVar1*2;

END_FOR;

Erg := iVar1;

If you have pre-configured iVar1 with 1, iVar1 has the value 32 after the FOR loop.

The end value <end value> may not attain the same value as the upper limit of the data type of

the counter.

If the end value of the counter is equal to the upper limit of the data type of the counter, an end-

less loop results. For example, an endless loop results in the above example if iCounter is of the

data type SINT and the <end value> equals 127, since the data type SINT has the upper limit 127.

7.4.3 CASE

Use this dialog box for pooling several conditional instructions containing the same condition

variable into a construct.

Syntax:

CASE <Var1> OF

<value1>:<instruction1>

<value2>:<instruction2>

<value3, value4, value5>:<instruction3>

<value6 ... value10>:<instruction4>

...

<value n>:<instruction n>

155
3ADR011116

155 Motion Controller with AC500 V3

{ELSE <ELSE-instruction>}

END_CASE;

The section within the curly brackets {} is optional.

Processing scheme of a CASE instruction.

If the value of the variable <Var1> is <value i>, then the instruction <instruction i> is executed.

If the variable <Var1> has non of the given values, then the <ELSE-instruction> is executed.

If the same instruction is executed for several values of the variable, then you can write the values in se-

quence, seperated by commas.

Example 1

CASE iVar OF

1, 5: bVar1 := TRUE;

 bVar3 := FALSE;

2: bVar2 := FALSE;

 bVar3 := TRUE;

10..20: bVar1 := TRUE;

 bVar3= TRUE;

ELSE

 bVar1 := NOT bVar1;

 bVar2 := bVar1 OR bVar2;

END_CASE;

7.4.4 WHILE

The WHILE loop is used like the FOR loop in order to execute instructions several times until the abort

condition occurs. The abort condition of a WHILE loop is a boolean expression.

Syntax:

WHILE <boolean expression> DO

 <instructions>

 END_WHILE;

 CODESYS repeatedly executes the <instructions> for as long as the <boolean expression> returns

TRUE. If the boolean expression is already FALSE at the first evaluation, then CODESYS never exe-

cutes the instructions. If the boolean expression never adopts the value FALSE, then the instructions

are repeated endlessly, as a result of which a runtime error results.

Example

WHILE iCounter <> 0 DO

Var1 := Var1*2

iCounter := iCounter-1;

END_WHILE;

156
3ADR011116

156 Motion Controller with AC500 V3

You must ensure by programming means that no endless loops are caused.

In a certain sense the WHILE and REPEAT loops are more powerful than the FOR loop, since you don't

need to already know the number of executions of the loop before its execution. In some cases it is

thus only possible to work with these two kinds of loop. If the number of executions of the loop is

clear, however, then a FOR loop is preferable in order to avoid endless loops.

7.5 REPEAT

The REPEAT loop is used like the WHILE loop, but with the difference that CODESYS only checks the

abort condition after the execution of the loop. The consequence of this behavior is that the REPEAT

loop is executed at least once, regardless of the abort condition.

Syntax:

REPEAT

<instructions>

 UNTIL <boolean expression>

 END_REPEAT;

CODESYS executes the <instructions> until the <boolean expression> returns TRUE.

If the boolean expression already returns TRUE at the first evaluation, CODESYS executes the instruc-

tions precisely once. If the boolean expression never adopts the value TRUE, then the instructions are

repeated endlessly, as a result of which a runtime error results.

Example

REPEAT

Var1 := Var1*2;

iCounter := iCounter-1;

UNTIL

iCounter = 0

END_REPEAT;

In a certain sense the WHILE and REPEAT loops are more powerful than the FOR loop, since the num-

ber of executions of the loop doesn't already need to be known before its execution. In some cases

you can only work with these two kinds of loop. If the number of executions of the loop is clear, how-

ever, then a FOR loop is preferable in order to avoid endless loops.

7.5.1 RETURN

Use the RETURN statement in order to exit from a function block. You can make this dependent on a

condition, for example.

Example

IF xIsDone = TRUE THEN

 RETURN;

END_IF;

iCounter := iCounter + 1;

If the value of xIsDone is equal to TRUE, then the function block is exited immediately and the state-

ment iCounter := iCounter + 1; is not executed.

7.5.2 JMP

The JMP instruction is used to execute an unconditional jump to a program line that is marked by a

jump label.

Syntax:

157
3ADR011116

157 Motion Controller with AC500 V3

<label>: <instructions>

JMP <label>;

 The jump label <label> is any unique identifier that you place at the beginning of a program line. On

reaching the JMP instruction, a return to the program line with the <label> takes place.

Example

iVar1 := 0;

_label1: iVar1 := iVar1+1;

(*instructions*)

IF (iVar1 < 10) THEN

JMP _label1;

END_IF;

7.5.3 EXIT

The EXIT instruction is used in a FOR, WHILE or REPEAT loop in order to end the loop regardless of

other abort conditions.

7.5.4 CONTINUE

CONTINUE is an instruction of the Extended Structured Text (ExST).

The instruction is used inside FOR, WHILE and REPEAT loops in order to jump to the beginning of

the next execution of the loop.

Example

FOR Counter:=1 TO 5 BY 1 DO

INT1:=INT1/2;

 IF INT1=0 THEN

 CONTINUE; (* to avoid a division by zero *)

 END_IF

Var1:=Var1/INT1; (* executed, if INT1 is not 0 *)

END_FOR;

Erg:=Var1;

7.5.5 Function Block Call

Syntax

<FB-instance>(<FB input variable>:=<value or address>|, <other FB input variables>);

Example

 TMR:TON;

 TMR (IN:=%OX5, PT:=T#300ms);

 varA:=TMR.Q;

The timer function block TON is instanced in TMR:TON and called with assignments for the parame-

ters IN and PT.

The output Q is addressed with TMR.Q and assigned to the variable varA.

158
3ADR011116

158 Motion Controller with AC500 V3

8 MOTION SOLUTION PROJECT

This section is an introduction to the key features and tools, which will be used during the Motion Solu-

tion Project.

8.1 Introduction

8.1.1 Understanding the Motion Solution Project

The project type “Motion Solution Project” is an AC500 project with inbuilt wizards which help the user by

intuitively guiding step by step process to add the motion axis and help the user to configure it in few

simple steps. These include code writing, adding Hardware and intuitively setting up PDO mapping.

8.1.2 Understanding the Motion Solution Wizard

The Motion Solution wizard is a tool which helps the user to efficiently configure the motion axis. The

motion wizard helps the user to configure the axis based on PTO or EtherCAT using Automation Builder .

Afterwards users can proceed by adding further PLCopen function blocks based on their application

needs.

8.1.3 Understanding the Axis Objects

When using the motion solution to commission the user will come across the axis objects. These are pro-

gram elements which allow the user to;

• define the motor drive type,

• mechanical units, gearing, and Scaling

• control settings

• PLC Limits (Speed, Acceleration etc)

• PDO mapped data (Only for EtherCAT axis)

• Drive Control Mode (Only for EtherCAT axis)

8.2 Installing the latest Motion Control Wizard and Libraries

As described earlier, during the Automation Builder installation process the user will be prompted to se-

lect and install “Motion Control (PS5611)”. As long as this step is carried out the user will have the latest

version of libraries and Motion control tools such as the Motion Control wizard and Cam editor.

8.3 Creating new Motion Solution project

Now we understand the installation process and the elements that will be used in the configuration we

can go through the process of using the “Motion Solution Project” to create a new configuration.

8.3.1 Creating new project

Start Automation Builder and select “New Project”.

159
3ADR011116

159 Motion Controller with AC500 V3

Select the “Motion Solution Project” icon as shown below. Click “OK” button and a new project will be cre-

ated in the specified location with the specified name.

8.3.2 Add PLC types

Automation Builder will now pop up a “Select PLC” window and from here user can select one of the V3

PLC.

Select one of the AC500 PLC type and click “Add PLC” button to get it added to Automation Builder hard-

ware tree.

The Motion Solution Wizard then assumes automatically the 1 slot Terminal base and Ethercat coupler in

addition the PLC chosen, (these)are included in the PS56xx-MC-Kits.

Note: The PLC type can be changed at any time using the steps outlined earlier.

160
3ADR011116

160 Motion Controller with AC500 V3

PM50xx-T-ETH support only PTO axis and PM56xx-2ETH support only EtherCAT axis.

Note: PM5012-x-ETH and all the PM50xx-R-ETH eCo PLC are not supported by motion

solution wizard.

After selecting the PLC type, Motion Solution Wizard will guide the user to add PTO / EtherCAT axis

based on the selected PLC type.

8.3.3 Add PTO axis

After creating the hardware tree, Automation Builder will now pop up “Add Motion PTO Drive” window.

Here user can configure the number of PTO drives needed for the application. A maximum of four PTO

axis can be configured based on the PTO axis frequency.

User can also add the PTO axis by right clicking on the “OnBoard_IO” object and select the “Add Object”

option or by using the Add PTO axis button from “Motion Solution Wizard” overview page.

Due to differences in the performance of CPU types, there are different limits on:

the minimum cycle time configurable in each PLC type.

PLC Type PM5032 PM5052 PM5072

Min. cycle time 5 ms 2 ms 1 ms

161
3ADR011116

161 Motion Controller with AC500 V3

Number of PTO axis per PLC

Below are the maximum PTO axes combinations possible based on the PTO frequency configured.

• Max 4 PTO axis - 100Khz

• Max 3 PTO axis - Two 100Khz & one 200Khz

• Max 2 PTO axis - 200Khz

100Khz (default) PTO axis

When the axis is configured as 100Khz, output channel O0 to O3 (Value = PTOx Dir)are configured as di-

rection output and O4 to O7 (Value = PTOx LS Pulse) are configured as pulse. Users need to connect the

PTI drive cables accordingly.

Below table shows the user an overview of the hardware channels configured based on the number of

axes configured, this can be used as a reference for the pulse and direction wiring to PTI drive.

For example, when two PTO axes are configured as 100Khz, the motion solution wizard set the onboard

output configuration. For the first axis, direction as Output0 and pulse as Output4 and for the second

axis direction as Output1 and pulse as Output5.

200Khz PTO axis

When the axis is configured as 200Khz, output channel O4 (Value = PTOx HS Pulse) and O5 (Value = PTOx

HS Dir) are configured as pulse and direction output for the first axis and O6 and O7 is configured as

pulse and direction output for the second axis.

Below table shows the user an overview of the hardware channels configured based on the number of

axes configured, this can be used as a reference for the pulse and direction wiring to PTI drive.

Axis1 100 100 100 100

Axis2 100 100 100

Axis3 100 100

Axis4 100

DO0 PWM/PTO0 Dir PWM/PTO0 Dir PWM/PTO0 Dir PWM/PTO0 Dir PWM/PTO0 Dir

DO1 PWM/PTO1 Dir PWM/PTO1 Dir PWM/PTO1 Dir PWM/PTO1 Dir

DO2 PWM/PTO2 Dir PWM/PTO2 Dir PWM/PTO2 Dir

DO3 PWM/PTO3 Dir PWM/PTO3 Dir

DO4

PWM/PTO0 LS Pulse

PTO0 HS Pulse / Cw PWM/PTO0 LS Pulse PWM/PTO0 LS Pulse PWM/PTO0 LS Pulse PWM/PTO0 LS Pulse

DO5

PWM/PTO1 LS Pulse

PTO0 HS Dir / Ccw PWM/PTO1 LS Pulse PWM/PTO1 LS Pulse PWM/PTO1 LS Pulse

DO6

PWM/PTO2 LS Pulse

PTO1 HS Pulse / Cw PWM/PTO2 LS Pulse PWM/PTO2 LS Pulse

DO7

PWM/PTO3 LS Pulse

PTO1 HS Dir / Ccw PWM/PTO3 LS Pulse

Axis frequency in Khz

H
W

 C
ha

nn
el

 S
el

ec
ti

o
n

162
3ADR011116

162 Motion Controller with AC500 V3

For example, when two PTO axes are configured as 200Khz, the motion solution wizard set the onboard

output configuration. For the first axis, Pulse as Output4 and direction as Output5 and for the second

axis pulse as Output6 and direction as Output7.

100Khz and 200Khz PTO axis

When some axes are configured as 100Khz and some are configured as 200Khz frequency, user must take

care following points,

Make sure the 200Khz axis is configured as first or last axis and not in between 100Khz axis.

When the first axis is 200Khz, Automation Builder will configure the O4 and O5 channels and for 100Khz

O6 and O7 is configured as Pulse and O2 & O3 are configured as direction.

Below table shows the user an overview of the hardware channels configured based on the number of

axes configured.

8.3.3.1 PTO Axis Object

Nested underneath the OnBoard_IO object is the PTO Axis object. From here users can configure each

axis separately as per the application requirement by opening the axis object which is added under the

OnBoard_IO. To do this double click on the object to open “Settings” page. Here user can update settings

as per the application requirement.

Axis1 200 200

Axis2 200

Axis3

Axis4

DO0 PWM/PTO0 Dir

DO1 PWM/PTO1 Dir

DO2 PWM/PTO2 Dir

DO3 PWM/PTO3 Dir

DO4

PWM/PTO0 LS Pulse

PTO0 HS Pulse / Cw PTO0 HS Pulse / Cw PTO0 HS Pulse / Cw

DO5

PWM/PTO1 LS Pulse

PTO0 HS Dir / Ccw PTO0 HS Dir / Ccw PTO0 HS Dir / Ccw

DO6

PWM/PTO2 LS Pulse

PTO1 HS Pulse / Cw PTO1 HS Pulse / Cw

DO7

PWM/PTO3 LS Pulse

PTO1 HS Dir / Ccw PTO1 HS Dir / Ccw

Axis frequency in Khz

H
W

 C
ha

nn
el

 S
el

ec
ti

o
n

Axis1 100 200 100 200 100

Axis2 200 100 100 100 200

Axis3 200 100 100

Axis4

DO0 PWM/PTO0 Dir PWM/PTO0 Dir PWM/PTO0 Dir

DO1 PWM/PTO1 Dir PWM/PTO1 Dir

DO2 PWM/PTO2 Dir PWM/PTO2 Dir PWM/PTO2 Dir

DO3 PWM/PTO3 Dir PWM/PTO3 Dir

DO4

PWM/PTO0 LS Pulse

PTO0 HS Pulse / Cw PWM/PTO0 LS Pulse PTO0 HS Pulse / Cw PWM/PTO0 LS Pulse PTO0 HS Pulse / Cw

DO5

PWM/PTO1 LS Pulse

PTO0 HS Dir / Ccw PTO0 HS Dir / Ccw PWM/PTO1 LS Pulse PTO0 HS Dir / Ccw

DO6

PWM/PTO2 LS Pulse

PTO1 HS Pulse / Cw PTO1 HS Pulse / Cw PWM/PTO2 LS Pulse PTO1 HS Pulse / Cw PWM/PTO2 LS Pulse

DO7

PWM/PTO3 LS Pulse

PTO1 HS Dir / Ccw PTO1 HS Dir / Ccw PTO1 HS Dir / Ccw PWM/PTO3 LS Pulse

Axis frequency in Khz

Configuration

not allowded.

Please keep

200Khz axis

as first or last

axis

H
W

 C
ha

nn
el

 S
el

ec
ti

o
n

163
3ADR011116

163 Motion Controller with AC500 V3

Later when downloading the application, the wizard will use these settings to define the operation and

scaling of this axis object.

8.3.3.2 PTO Axis Object settings

All settings related to the application and axis specific will be done here and needs to be carefully up-

dated for each axis. Based on the inputs provided here, wizard will compile and generated the code.

Axis Type

The user can select the type of Axis to be configured based on the application requirement. Below is the

list of settings which user can configure from the Motion Control wizard along with their meanings.

Modulo (rotary) Default setting in the wizard.

By selecting the Modulo (Rotary) your axis will be configured as a roll-

over axis and the desired modulo range can be configured later.

Finite (rotary) Your axis will be configured as a roll-over axis where in modulo range is

non editable by the user and calculated based on the “Unit” selection,

Inc_Per_R, U_Per_Rev_Nominator and U_Per_Rev_Denominator setting.

Linear (rotary screw) This needs to be configured when the user having a rotary motor with

linear movements (linear axis).

Linear (linear motor) This needs to be configured when the user axis is a linear motor.

Axis simulation mode This option is read only from here and needed when the user config-

ured the axis but not have the real hardware yet. This can be selected

from the motion solution wizard overview page.

For virtual axis configuration please refer to the chapter “Add and con-

figure virtual axis”.

PTO

User can set the PTO axis related settings here: i.e., user can configure the PTO axis frequency, closed

loop or open loop, encoder channel and average sample.

User can configure the PTO channel as 100Khz or 200Khz. Based on the PTO axis frequency selection, the

onboard IO configuration will be updated, and the user need to connect the PTO pulse and Direction sig-

nal to the correct hardware channels.

164
3ADR011116

164 Motion Controller with AC500 V3

By default, the PTO axis is open loop and however user can also configure a maximum of two PTO axis as

closed loop. To configure the axis as closed loop, user need to check the “Closed loop” and select the en-

coder channel and filter samples if needed. Based on the Encoder Channel selected, user need to connect

the encoder signal at the correct hardware channels.

Filter sample will enable a moving average for the output using 2,3 or 4

Unit

Based on the application requirement user can select the desired unit in the wizard and the wizard will

update the subsequent parameters to the selected user unit. From the below picture user can find the

currently supported unit formats.

 As an example, when the user selects the axis type as Modulo(rotary) and unit as degree, the wizard will

update the subsequent parameters to the selected user unit and fill with default values, ex: modulo range

= 360 degree (default). However please make sure the user updates the subsequent parameters as per

the actual application requirement.

Note: For rotary axis the units mm, µm, nm, and inch might lead to inaccuracy.

Pulses per revolution scaling

When the axis is open loop, user can update the “Pulses per revolution scaling” with the steps per revolu-

tion.

Please note , when the PTO axis is open loop, it is important that the user set the Steps per revolution

and Maximum Rpm by keeping the PTO frequency limits into consideration. For example, for an 100Khz

PTO axis if the steps per revolution is 2000 , the maximum RPM the axis can support is 3000 RPM. (=

2000 * 3000/60 = 100Khz)

When the axis is closed loop, user can update the “Pulses per revolution scaling” with the actual encoder

increments per motor revolution.

Application gearing

Based on the actual application requirement, here user can check / uncheck the “Application has gearing”

check box. Here the user can also update the required tool travel distance per motor revolution.

When the user unchecks the “Application has gearing”, user can update the “tool travel distance per mo-

tor revolution” as per the application requirement as shown in the below picture.

165
3ADR011116

165 Motion Controller with AC500 V3

When the user checks the “Application has gearing”, user will be prompted to provide the gear box de-

tails additionally as shown in the below picture and during the generate application, the wizard will up-

date the same accordingly.

Modulo range

The user can provide the modulo range here. This is the value at which the axis position will wrap back to

zero. This window will be active only when the user selects the axis type as any of the “rotary” axis.

Software Limits

The user can configure some of the common “Software Limits” from the wizard itself. Below is the list of

software limits which user can configure from the wizard in the selected application units.

By default, software limits in wizard are not enabled and user need to enable the same by enabling the

check box “Enable Limits”.

Direction correction

In some of the application we need to change the ax relationship between its real direction and that

within the PLC program. By default, the check box will be unchecked, and the direction will be normal. By

166
3ADR011116

166 Motion Controller with AC500 V3

selecting the check box “Invert direction” both actual and reference position will be inverted, and the axis

will move in opposite direction.

Position control (cyclic sync mode)

Here the user can configure the parameters related to position control and supervision. Details of each

parameter is explained well in our system technology chapter “Position control loop” and “Supervision”

under Axis parameter chapter (PLC Automation with V3 CPUs > Libraries and solutions > Motion control

library > PLC-based motion control > Axis parameters).

Dynamic limits

Users can update the maximum limits here. Some parameters depend on the drive settings and needs to

be set correctly to get the desired result.

The user can set the maximum application velocity to a desired value to limit the maximum application

speed.

Drive based limits

It is recommended to keep the same Maximum speed at the drive and at the PLC parameter.

Currently the applications torque limits in the wizard are not valid for PTO axis and this is ignored.

Please note , when the PTO axis is open loop, it is important that the user set the Steps per revolution

and Maximum Rpm by keeping the PTO frequency limits into consideration. For example, for an 100Khz

PTO axis if the steps per revolution is 2000, the maximum RPM the axis can support is 3000 RPM. (= 2000

* 3000/60 = 100Khz)

When closed loop, please set the Maximum RPM for the axis to reach when the maximum PTO Axis fre-

quency is provided. For example, if the axis is configured as 200Khz and closed loop, set the Maximum

RPM for the axis to reach when the 200Khz frequency is achived.

Results (calculated)

Based on the inputs provided, wizard will calculate the results and can be viewed immediately at the end

of the configuration page.

167
3ADR011116

167 Motion Controller with AC500 V3

8.3.4 Add EtherCAT axis

Limits on number of synchronized EtherCAT axis

Due to differences in the performance of CPU types, there are different limits on:

the minimum EtherCAT cycle time configurable in each PLC type.

PLC Type PM5630 PM5650 PM5670/PM5675

Min. EtherCAT master cycle time 2 ms 1 ms 0.5 ms

the configurable number of synchronized axis in each PLC type.

These limits are based on the EtherCAT Master cycle time configured in the EtherCAT master.

PLC Type PM5630 PM5650 PM5670/PM5675

Number of synchronized axis in 1 ms - 8 16

Number of synchronized axis in 2 ms 4 16 32

Number of synchronized axis in 4 ms 8 32 64

The “Number of axis” is counted in Automation Builder and based on the number of Kernel function block

instance declared in the IEC program. therefore also virtual axis are counted.

Note: User can increase the EtherCAT cycle time to accommodate more “number of axis”

in the same PLC type.

The “Statistics” tab from Automation Builder can be used to see how many axis are supported and how

many are already used for the particular PLC type and for the EtherCAT master cycle time configured.

Once the axis are configured/changes done the Statistics tab has to be refreshed by “Generate Code” to

get the updated projects information.

The Automation Builder allows one additional axis than what is the catalog or mentioned limit in the

above table to account for e.g. one virtual axis additionally.

Note: Please make sure to remove any Kernel function block instance which is declared

but not used in the application to get the expected number of axis calculated by Automa-

tion Builder under the “Statistics” tab.

After creating the hardware tree, Automation Builder will now pop up “Add Motion Drive” window. Here it

shows all the installed EtherCAT drives.

Select the servo drive type you will use, then give a name to the axis and click “Add motion drive” button.

This will add the specified servo drive under EtherCAT master module. Each servo drive added under the

EtherCAT master will be counted as a motion axis in Automation Builder.

After adding all the drives, click on “Close” button to come out from the pop-up window.

168
3ADR011116

168 Motion Controller with AC500 V3

Note: If user wants to add multiple servo drives, please uncheck the “Close this dialog af-
ter each transaction” check box (in left bottom corner) and add multiple drives as per the

application requirement in a sequence how it is connected.

If the user wants to add more drives later, the user can always right click on the EtherCAT master object

and select add object option which will then pop up the window with supported EtherCAT devices and

add the drives as per the requirement.

8.3.4.1 Configuring the CM579-ETHCAT EtherCAT master

This section allows us to configure the behaviour of the Communication module. From here we can de-

fine how the hardware will behave. It’s important to understand the EtherCAT master once added is split

into two parts in the project tree. These two parts are described below.

CM579-EtherCAT

The label will normally be in the format of ‘[name](CM579-ETHCAT)’ this can be changed by the user but is

normally left as default. If so, the name will be CM579 (CM579-ETHCAT)

In most cases these settings can be left at default but occasionally the user might need to change these

to fit the application requirements. Below you can see Run On Config Fault is set to yes meaning the

CM579-ETHCAT will not go into error if a slave is lost. Also “Optimize I/O update” is also set to “On”

meaning that any EtherCAT PDO I/O will only be updated if used in the code.

169
3ADR011116

169 Motion Controller with AC500 V3

EtherCAT_Master

The label will normally be in the format of ‘[name](ETHCAT-Master)’ this can be changed by the user but

is normally left as default. If so the name will be ETHCAT_Master (ETHCAT-Master)

This second part of the EtherCAT master defines the specific settings that define the behavior of the

EtherCAT operation.

If the “auto-config master/slaves” mode is activated, then the parameters are set automatically here in

accordance with the default settings. This setting is recommended unless the user is very familiar with

the setup of EtherCAT networks.

The Default EtherCAT cycle time is 4000 μs but based on the application requirement, user can adapt the

EtherCAT cycle time as as shown below.

Please note, EtherCAT cycle time will directly influence the PLC load. If your PLC load is higher than de-

sired, please increase the cycle time or upgrade the PLC type to a higher one.

There are limit on the minimum cycle time for each PLC type and limit on the number of servo drives can

be connected for each PLC type based on the cycle time configured. Please refer the help file for more

details (PLC Automation with V3 CPUs > Libraries and solutions > Motion control library > Preconditions

for the use of the libraries) and adapt the cycle time or PLC Type accordingly to avoid error messages

during program download.

User can also check the number of servo axes configured for the given project by checking the slider at

the bottom of the Motion Solution Wizard overview page:

8.3.4.2 Configuring the EtherCAT Slave axis

This section allows us to configure the behaviour of the Comms Slave module. From here we can define

how the hardware will behave. It’s important to understand the EtherCAT Slave Axis once added is split

into two parts in the project tree. These two parts are described below.

170
3ADR011116

170 Motion Controller with AC500 V3

EtherCAT Slave Object

The label will normally be in the format of ‘[Drive name](Drive Type)’ this can be changed by the user but

is normally left as default. If so, the name could be MicroFlex_e190 (MicroFlex-e190)

In most cases these settings can be left at default but occasionally the user might need to change these

to fit the application requirements. Useful settings may be to enable Expert Settings to add additional

PDO mappings, to check and set mappings or to check the status of the device once online.

If the user wants to add additional PDO mapped objects First enable the expert settings, then the user

will get an additional tab called “Expert Process Data” below the general tab and here user can add / edit

/ delete the mapping.

EtherCAT Axis Object

Nested underneath the EtherCAT slave object is the Axis object. From here users can configure each axis

separately as per the application requirement by opening the motion axis object which is added under

the servo drive. To do this double click on the object to open the configuration page which then has two

separate tabs, one for “Settings” and the other one for “Mapping”. User can update both the pages as

per the application requirement.

Later during the “Generate application” process, the wizard will use these settings to define the opera-

tion and scaling of this axis object.

EtherCAT Axis Object settings

All settings related to the application and axis specific will be done here and needs to be carefully up-

dated for each axis. Based on the inputs provided here, wizard will compile and generated the code.

Axis Type

The user can select the type of Axis to be configured based on the application requirement. Below is the

list of settings which user can configure from the Motion Control wizard along with their meanings.

171
3ADR011116

171 Motion Controller with AC500 V3

Modulo (rotary) Default setting in the wizard.

By selecting the Modulo (Rotary) your axis will be configured as a roll-

over axis and the desired modulo range can be configured later.

Finite (rotary) Your axis will be configured as a roll-over axis where in modulo range is

non editable by the user and calculated based on the “Unit” selection,

Inc_Per_R, U_Per_Rev_Nominator and U_Per_Rev_Denominator setting.

Linear (rotary screw) This needs to be configured when the user having a rotary motor with

linear movements (linear axis).

Linear (linear motor) This needs to be configured when the user axis is a linear motor.

Axis simulation mode This option is read only from here and needed when the user config-

ured the axis but not have the real hardware yet. This can be selected

from the motion solution wizard overview page.

This is different than a virtual axis. For virtual axis configuration please

refer to the chapter “Add and configure virtual axis”.

Unit

Based on the application requirement user can select the desired unit in the wizard and the wizard will

update the subsequent parameters to the selected user unit. From the below picture user can find the

currently supported unit formats.

 As an example, when the user selects the axis type as Modulo(rotary) and unit as degree, the wizard will

update the subsequent parameters to the selected user unit and fill with default values, ex: modulo range

= 360 degree (default). However please make sure the user updates the subsequent parameters as per

the actual application requirement.

Note: For rotary axis the units mm, µm, nm, and inch might lead to inaccuracy.

Pulses per revolution scaling

User can update the “Pulses per revolution scaling” with the actual encoder increments per motor revolu-

tion.

Application gearing

Based on the actual application requirement, here user can check / uncheck the “Application has gearing”

check box. Here the user can also update the required tool travel distance per motor revolution.

When the user unchecks the “Application has gearing”, user can update the “tool travel distance per mo-

tor revolution” as per the application requirement as shown in the below picture.

172
3ADR011116

172 Motion Controller with AC500 V3

When the user checks the “Application has gearing”, user will be prompted to provide the gear box de-

tails additionally as shown in the below picture and during the generate application, the wizard will up-

date the same accordingly.

Modulo range

The user can provide the modulo range here. This is the value at which the axis position will wrap back to

zero. This window will be active only when the user selects the axis type as any of the “rotary” axis.

Software Limits

The user can configure some of the common “Software Limits” from the wizard itself. Below is the list of

software limits which user can configure from the wizard in the selected application units.

By default, software limits in wizard are not enabled and user need to enable the same by enabling the

check box “Enable Limits”.

Direction and Homing Type

Invert Direction: This needs to be set for the application which needs to change the axis relationship be-

tween its real direction and that within the PLC program. By default, the check box will be unchecked, and

173
3ADR011116

173 Motion Controller with AC500 V3

the direction will be normal. By selecting the check box “Invert direction” both actual and reference posi-

tion will be inverted, and the axis will move in opposite direction.

Homing using Drive IO Touch probe: Selecting this will make the axis to home to a Touch Probe using

EtherCAT. Selecting this also by default make the PDO mapping preselected for the user, and this can be

later changed based on the application need.

Position control (cyclic sync mode)

Here the user can configure the parameters related to position control and supervision. Details of each

parameter is explained well in system technology chapter “Position control loop” and “Supervision” under

Axis parameter chapter (PLC Automation with V3 CPUs > Libraries and solutions > Motion control library

> PLC-based motion control > Axis parameters).

Dynamic limits

Users can update the maximum limits here. Some parameters depend on the drive settings and needs to

be set correctly to get the desired result.

The user can set the maximum application velocity to a desired value to limit the maximum application

speed.

For example, if user is using an ABB Servo drive with, 131072 Encoder increments per revolution and a

Maximum speed is 6000 RPM

Maximum application velocity = Max application velocity in RPM * Tool travel distance per revolution

/ 60 * Gearbox nominator / gearbox denominator

 = 6000 * 360 / 60 * 1 / 1 = 36000 degree / sec

174
3ADR011116

174 Motion Controller with AC500 V3

For easy calculation of parameters user can use the excel “AC500_V3_MotionControl_Startup guide for

MC parameterization.xlsx” from example program folder at C:\Users\Public\Documents\Automa-

tionBuilder\Examples\PS5611-Motion\Documentation.

Drive based limits

It is recommended to keep the same Maximum speed at the drive and at the PLC parameter.

Currently users can define the applications torque limits in the wizard and they will be written to the SDO

startup parameter only if the user selects “Torque limits” in “Mapping” page. These parameters are

not used in the program by default.

Results (calculated)

Based on the inputs provided, wizard will calculate the results and can be viewed immediately at the end

of the configuration page.

Axis control type and object mapping

The Mapping and Control Type tab can be selected if the user wants to set a Control Type other than CSP

(Default) and mappings other than default (Control Word, Set Position, Status Word, Actual Position). It

can be found under the axis object here:

Control type

By default, wizard is selected for cyclic synchronous position mode (CSP). User can change the same

based on the application requirement. Currently we support below control modes,

Cyclic synchronous position mode (CSP).

Cyclic synchronous velocity mode (CSV).

Cyclic synchronous velocity mode for load control (CSVL).

Note: CSVL is an ABB specific mode to achieve load control / profiling. By using this mode, the user can

use the Motion Control Load library which is implemented based on the “PLCOpen Motion Part 6 – Fluid

Power Extensions”. For more details on load / torque control please refer to the library integrated docu-

mentation, system technology in online help file and the example program / description from example

program folder.

175
3ADR011116

175 Motion Controller with AC500 V3

8.3.4.3 Additional PDO mapping

If the application needs additional PDO mapping the wizard helps the user to add most used PDO map-

ping just by selecting them here.

Based on the control type selected, a few of the mandatory PDO mapping are generated automatically

and from additional mapping area in wizard user can find the most common PDO mapping and user can

add the same based on the application requirement.

Please note, the user can add additional PDO mapping which are not listed here manually by enabling the

expert settings from the slave device general configuration page (as described earlier).

 SDO start-up parameter mapping

By default, two of the SDO startup parameters are selected and it is recommended not to change these

unless the user has expert level knowledge of DS 402 control modes or intends to do none standard start

up coding as it will change the expected operation of the axis at start up.

The user can select the Torque limits and the torque values set from the “settings” page will be written to

the respective slave drives startup parameters list.

Once these settings are made and the Generate code is executed you can see that these settings have

change the drives EtherCAT Slave configuration as shown in the picture below:

176
3ADR011116

176 Motion Controller with AC500 V3

8.3.5 Adding encoder axis

The application which needs an encoder axis to be configured, users can add encoder axis under “Motion

Solution Wizard” object either by open the “Motion Solution Wizard” object by doubling clicking on the

same and clicking on the “Add encoder axis” button on the bottom of the page as shown below or by

right clicking on the “Motion Solution Wizard” and select “Add object” option.

After adding the encoder axis, user can find the same object under “Motion Solution Wizard” in Automa-

tion Builder. Users can double click on the added encoder axis object to get the settings page and config-

ure it as per the requirement. Settings here is like any other motion axis expect here user need to config-

ure encoder source.

When an Encoder Axis is added, user must configure the Encoder source channel and Encoder Source.

8.3.5.1 Drive Encoder

When there is an EtherCAT axis, user will have a chance to use the EtherCAT Servo Drives master encoder

(16#400C) as a source for the Encoder axis. For this, user must have an EtherCAT axis configured and

“Master encoder” PDO mapping is checked.

177
3ADR011116

177 Motion Controller with AC500 V3

8.3.5.2 PLC Encoder (OBIO)

When there is an PTO axis, user will have an option to use the onboard encoder channels from eCo PLC as

a source for the Encoder axis.

8.3.5.3 Data Source

 User can use the “Data source” and define a variable which will then create the variable in the mentioned

name as data type “DINT”. User must make sure the encoder value is feed into the generated or mapped

variable in the project.

178
3ADR011116

178 Motion Controller with AC500 V3

or connect an existing variable from the project to Encoder axis. Please make sure the variable which is

connect is type “DINT”

Other Encoder Axis parameters are same as EtherCAT or PTO axis and for details please refer to the pre-

vious chapters.

8.3.6 Adding virtual axis

The applications which needs an virtual axis , users can add virtual axis under “Motion Solution Wizard”

object either by open the “Motion Solution Wizard” object by doubling clicking on the same and clicking

on the “Add virtual axis” button on the bottom of the page as shown below.

or by right clicking on the “Motion Solution Wizard” object and by selecting add object option as shown

below.

179
3ADR011116

179 Motion Controller with AC500 V3

After adding the virtual axis, user can find the same object under “Motion Solution Wizard” in Automation

Builder. Users can double click on the added virtual axis object to get the settings page and configure it

as per the requirement. Settings here is like the motion axis and details for how to configure the parame-

ters, please refer to the previous chapters.

8.4 Motion Axis generation

Once all the configuration is done, user can generate the application which will then update its settings,

generate PDO/SDO mapping, motion task configuration for user application automatically based on the

settings and parameters provided to the wizard.

To do this action, go to Build menu and click on Generate Code

180
3ADR011116

180 Motion Controller with AC500 V3

Wait for few seconds until Automation Builder will generate the axis configuration based on the para-

metrization done by the user. Once completed successfully, Automation Builder will generate the mes-

sage “Motion Solution Generation successful” in the message window. This can take some time based on

the number of axis configured in the project and PDO mapping selection.

8.4.1 PTO axis

8.4.1.1 PTO axis onboard IO (OBIO) configuration

Based on the PTO axis frequency configured, the motion solution wizard configures the onboard IO out-

puts and assign the variables to the output channels. The configuration is done automatically by the wiz-

ard based on the axis configuration in Automation Builder.

The axes are counted from axis 1 to 4 based on the order it is configured on the Automation Builder de-

vice tree. User can change the axis configured order in Automation Builder by renaming the axis name

and during “Generate code” the new configuration will be updated, and user need to connect the pulse

and direction cables accordingly.

100Khz (default) PTO axis

When the axis is configured as 100Khz, output channel O0 to O3 (Value = PTOx Dir)are configured as di-

rection output and O4 to O7 (Value = PTOx LS Pulse) are configured as pulse. Users need to connect the

PTI drive cables accordingly.

Below table shows the user an overview of the hardware channels configured based on the number of

axes configured, this can be used as a reference for the pulse and direction wiring to PTI drive.

For example, when two PTO axes are configured as 100Khz, the motion solution wizard set the onboard

output configuration. For the first axis, direction as Output0 and pulse as Output4 and for the second

axis direction as Output1 and pulse as Output5.

Axis1 100 100 100 100

Axis2 100 100 100

Axis3 100 100

Axis4 100

DO0 PWM/PTO0 Dir PWM/PTO0 Dir PWM/PTO0 Dir PWM/PTO0 Dir PWM/PTO0 Dir

DO1 PWM/PTO1 Dir PWM/PTO1 Dir PWM/PTO1 Dir PWM/PTO1 Dir

DO2 PWM/PTO2 Dir PWM/PTO2 Dir PWM/PTO2 Dir

DO3 PWM/PTO3 Dir PWM/PTO3 Dir

DO4

PWM/PTO0 LS Pulse

PTO0 HS Pulse / Cw PWM/PTO0 LS Pulse PWM/PTO0 LS Pulse PWM/PTO0 LS Pulse PWM/PTO0 LS Pulse

DO5

PWM/PTO1 LS Pulse

PTO0 HS Dir / Ccw PWM/PTO1 LS Pulse PWM/PTO1 LS Pulse PWM/PTO1 LS Pulse

DO6

PWM/PTO2 LS Pulse

PTO1 HS Pulse / Cw PWM/PTO2 LS Pulse PWM/PTO2 LS Pulse

DO7

PWM/PTO3 LS Pulse

PTO1 HS Dir / Ccw PWM/PTO3 LS Pulse

Axis frequency in Khz

H
W

 C
ha

nn
el

 S
el

ec
ti

o
n

181
3ADR011116

181 Motion Controller with AC500 V3

200Khz PTO axis

When the axis is configured as 200Khz, output channel O4 (Value = PTOx HS Pulse) and O5 (Value = PTOx

HS Dir) are configured as pulse and direction output for the first axis and O6 and O7 is configured as

pulse and direction output for the second axis.

Below table shows the user an overview of the hardware channels configured based on the number of

axes configured, this can be used as a reference for the pulse and direction wiring to PTI drive.

Axis1 200 200

Axis2 200

Axis3

Axis4

DO0 PWM/PTO0 Dir

DO1 PWM/PTO1 Dir

DO2 PWM/PTO2 Dir

DO3 PWM/PTO3 Dir

DO4

PWM/PTO0 LS Pulse

PTO0 HS Pulse / Cw PTO0 HS Pulse / Cw PTO0 HS Pulse / Cw

DO5

PWM/PTO1 LS Pulse

PTO0 HS Dir / Ccw PTO0 HS Dir / Ccw PTO0 HS Dir / Ccw

DO6

PWM/PTO2 LS Pulse

PTO1 HS Pulse / Cw PTO1 HS Pulse / Cw

DO7

PWM/PTO3 LS Pulse

PTO1 HS Dir / Ccw PTO1 HS Dir / Ccw

Axis frequency in Khz

H
W

 C
ha

nn
el

 S
el

ec
ti

o
n

182
3ADR011116

182 Motion Controller with AC500 V3

For example, when two PTO axes are configured as 200Khz, the motion solution wizard set the onboard

output configuration. For the first axis, Pulse as Output4 and direction as Output5 and for the second

axis pulse as Output6 and direction as Output7.

100Khz and 200Khz PTO axis

When some axes are configured as 100Khz and some are configured as 200Khz frequency, user must take

care following points,

Make sure the 200Khz axis is configured as first or last axis and not in between 100Khz axis.

When the first axis is 200Khz, Automation Builder will configure the O4 and O5 channels and for 100Khz

O6 and O7 is configured as Pulse and O2 & O3 are configured as direction.

Below table shows the user an overview of the hardware channels configured based on the number of

axes configured.

Axis1 100 200 100 200 100

Axis2 200 100 100 100 200

Axis3 200 100 100

Axis4

DO0 PWM/PTO0 Dir PWM/PTO0 Dir PWM/PTO0 Dir

DO1 PWM/PTO1 Dir PWM/PTO1 Dir

DO2 PWM/PTO2 Dir PWM/PTO2 Dir PWM/PTO2 Dir

DO3 PWM/PTO3 Dir PWM/PTO3 Dir

DO4

PWM/PTO0 LS Pulse

PTO0 HS Pulse / Cw PWM/PTO0 LS Pulse PTO0 HS Pulse / Cw PWM/PTO0 LS Pulse PTO0 HS Pulse / Cw

DO5

PWM/PTO1 LS Pulse

PTO0 HS Dir / Ccw PTO0 HS Dir / Ccw PWM/PTO1 LS Pulse PTO0 HS Dir / Ccw

DO6

PWM/PTO2 LS Pulse

PTO1 HS Pulse / Cw PTO1 HS Pulse / Cw PWM/PTO2 LS Pulse PTO1 HS Pulse / Cw PWM/PTO2 LS Pulse

DO7

PWM/PTO3 LS Pulse

PTO1 HS Dir / Ccw PTO1 HS Dir / Ccw PTO1 HS Dir / Ccw PWM/PTO3 LS Pulse

Axis frequency in Khz

Configuration

not allowded.

Please keep

200Khz axis

as first or last

axis

H
W

 C
ha

nn
el

 S
el

ec
ti

o
n

183
3ADR011116

183 Motion Controller with AC500 V3

8.4.1.2 General PLC configuration changes

Compare with standard AC500 project, when the user is using the motion solution wizard, a couple of

default settings are changed during Generate code. These settings are always overwritten as long as

there is a change in axis configuration or added a new axis. Below are the settings which are updated by

motion solution wizard,

1. IO bus – Run on congif fault to “Yes”

2. Always update variable – Enabled 1

It is recommended that user change the above settings manually based on the actual application require-

ment. To update these setting manually, user need to change the setting after all the axis changes are

done and at least once Generate Code is executed.

8.4.1.3 Task configuration

Motion wizard will generate a task configuration to run the PTO motion axis. The cycle time for the task

needs to be specified at Motion Solution Wizard overview page.

The Motion Solution Wizard will automatically configure all the axis configuration function blocks, and

call them from withing the task, “MotionSolution_Task” . It is possible to call parts of the motion applica-

tion in the same “MotionSolution_Task” task - however it is recommended to use a different cyclic task

for the PLCopen Motion function blocks with a cycle time double or higher than MotionSolution_Task.

This will reserve more capacities for better performance on the EtherCAT by the PLC.

Please note that some PLCopen function blocks must be called in the MotionSolution_Task.

For non-real time motion parts of the program, it is advised that this part of the program can be called in

a separate cyclic task with a lower priority and a longer cycle time. For example, if some code referring to

the HMI variables update is needed, it is recommended to set longer cycle time such as 200ms.

It is recommended to use separate cyclic task for customer application / PLC open function blocks since

this will reduce unnecessary load.

8.4.2 EtherCAT motion axis

8.4.2.1 General PLC configuration changes

Compare with standard AC500 project, when the user is using motion solution wizard, couple of default

settings are changed during Generate code. These settings are always over written as long as there is a

change in axis configuration or added a new axis. Below are the settings whcih are updated by motion

solution wizrad,

1. IO bus – Run on congif fault to “Yes”

2. CM579-ETHERCAT - Run on congif fault to “Yes”

3. CPU-Parameters – Check battery to “Off”

4. Always update variable – Enabled 1

It is recommended that user change the above settings manually based on the actual application require-

ment. To update these setting manually, user need to change the setting after all the axis changes are

done and atleast once Generate Code is executed.

184
3ADR011116

184 Motion Controller with AC500 V3

8.4.2.2 Task configuration

Motion wizard will generate a task configuration which is synchronized with the EtherCAT cycle time con-

figured in the EtherCAT master and the Priority is set as “0”.

The Motion Solution Wizard will automatically configure all the axis configuration function blocks, and

call them from withing the task, “MotionSolution_Task” . It is possible to call parts of the motion applica-

tion in the same “MotionSolution_Task” task - however it is recommended to use a different cyclic task

for the PLCopen Motion function blocks with a cycle time double or higher than MotionSolution_Task.

This will reserve more capacities for better performance on the EtherCAT by the PLC.

Please note that some PLCopen function blocks must be called in the MotionSolution_Task.

For non-real time motion parts of the program, it is advised that this part of the program can be called in

a separate cyclic task with a lower priority and a longer cycle time. For example, if some code referring to

the HMI variables update is needed, it is recommended to set longer cycle time such as 200ms.

It is recommended to use separate cyclic task for customer application / PLC open function blocks since

this will reduce unnecessary load, especially in the larger applications with many axis.

Note: PLC tasks must set a higher watchdog time if the PLC is stopping due to an excep-

tion error.

Note: It is recommended not to update the task configuration here manually since this will

be lost next time when the user click on the” Generate Code”.

The Motion wizard also set the EtherCAT IO Mapping to the Motion Solution task which is synchronized

with the EtherCAT cycle.

It is highly recommended to set a task for Bus cycle task rather than keeping default setting <un-

specificed>. Recommended to set a non-motion task for better overall PLC performance.

185
3ADR011116

185 Motion Controller with AC500 V3

8.4.2.3 Motion solution libraries

Based on the control type selection under motion axis -> mapping, mandatory libraries will be added to

the library manager. The libraries added depend on the Control Type Selected

See the table below for the libraries added dependent on Control Type selected

Control Type AC500_Ecat_CiA402 AC500_Mo-

tionControl

AC500_Mo-

tionControl-

Load

CSP Added Added

CSV Added Added

CSVL Added Added Added

For example, when the user selects control type as CSVL we can see the below libraries indicated in the

library manager,

Note: additional libraries can always be added later manually.

186
3ADR011116

186 Motion Controller with AC500 V3

8.4.2.4 EtherCAT bus behaviour

The wizard will update the EtherCAT bus behavior in CM579 module parameter setting by updating the

Asynchronous (default value) to Sync mode 1.

8.4.2.5 PDO and Startup Parameters (SDO)

Based on the selection under motion axis -> mapping, PDO and startup parameters are generated auto-

matically as shown below.

Based on the control type and PDO mapping selected in the wizard, it will update the Process Data tab

from the slave axis object and assign the autogenerated name to each object which is added.

Like PDO mapping, SDO startup will be updated based on the control type and the mapping selected in

the wizard.

Note: Based on the application requirement, user can add more PDO / startup parameters

manually.

8.4.3 Axis program generated (Hidden by default)

The axis programs which are generated for each axis is hidden by default but for expert users can modify

the same if needed.

It is recommended not to change the program manually if not an expert user and any changes which will

be done later the axis object will overwrite all the changes done by the user if the “Generate” check box is

checked.

187
3ADR011116

187 Motion Controller with AC500 V3

To view the generated axis program, user need to uncheck the “Hide generated code” from motion solu-

tion wizard overview page.

Once unchecked the “Hide generated code”, user can find the folder name” MotionSolution_Generated”,

which has sub folders for each of the axis configured using the wizard. Each subfolder is having a GVL

and a PRG respectively. Name of the folder / GVL / PRG / Function Blocks / variable are generated based

on the axis name provided.

Below is the example from EtherCAT axis, for other axis it follows the similar structure.

8.4.3.1 Axis parameters generated (GVL)

GVL which is generated by the wizard maps the parameters set from the wizard with the library variables

in the Axis_Ref structure and the Axis_IO declaration is initiated here.

188
3ADR011116

188 Motion Controller with AC500 V3

The Parameters names in the generated code (Function block / Library) are different. Please refer the

below table to find the name in wizard and respective name in the generated code (Function block / Li-

brary).

Name from Wizard Name in generated code

Forward limit (Axis

stop)

paraSWLimitPos

Reverse limit (Axis stop) paraSWLimitNeg

Forward limit (Warning) paraSWLimit2DecPos

Reverse limit (Warning) paraSWLimit2DecNeg

Invert direction paraReverseDirection

Position lag supervision paraEnablePosLagMonitoring

Maximum application

velocity

paraMaxVelocityAppl

Maximum acceleration paraMaxAccelerationSystem

Maximum deceleration paraMaxDecelerationSystem

Maximum jerk paraMaxJerk

Following error percent-

age

Pos_Lag_percentage

Delay time velocity

check

V_Check_Time

Control time Control_Time

Feed forward percent-

age

FF_Percentage

189
3ADR011116

189 Motion Controller with AC500 V3

Setting from EtherCAT

master

Cycle = Cycle time set in the EtherCAT master in

ms

Axis type EN_Modulo = TRUE , when Modulo(Rotary) , Finite

(Rotary) is selected.

Modulo Range (0-Value) Modulo_Range = entered value from wizard is con-

verted to encoder increment

Encoder increments per

motor revolution

Inc_Per_R

Gearbox output turns U_PER_REV_Nominator

Gearbox input turns U_PER_REV_Denominator

Maximum speed refer-

ence value

Ref_MAX

Maximum speed MAX_RPM

Note: It is recommended not to add/edit the program here manually since this will be lost

next time when the user click on the ”Generate Code” and if there was any modification

done on the particular axis reference.

8.4.3.2 Generated Program (PRG)

Program which is generated by the wizard initiates the CMC_Axis_Control_Parameter, CMC_Basic_Kernel

/ CMC_Load_Motion_Kernel and ECAT_CiA402_Control_App function blocks and set the inputs based on

the configuration done in the wizard.

For CSP and CSV control type, CMC_Basic_Kernel function block will be called and for CSVL control type

CMC_Load_Motion_Kernel function block will be called.

Note: It is recommended not to add/edit the program here manually since this will be lost

next time when the user click on the ”Generate Code” and if there was any modification

done on the particular axis reference.

190
3ADR011116

190 Motion Controller with AC500 V3

8.5 Writing Application program

It is recommended to the user to write the application by inserting new POU’s and adding the POU’s to a

new task and set a cycle time and task priority higher than MotionSolution_Task. Dependent on the code

writing guidelines mentioned earlier.

An exception to the above general guideline is for the function blocks which needs to be called in the

same task where the axis is running and, in such cases, user need to call those FBs in a separate POU add

call the POU in MotionSolution_Task.

If a function block needs to be called inside the real time task (MotionSolution_Task), this is mentioned in

the function block help file.

Example for the function blocks which needs to be called in the MotionSolution_Task are “MCA_Move-

ByExternalReference” , “MCA_MoveByExtRefRelative” & MC_CombineAxes.

191
3ADR011116

191 Motion Controller with AC500 V3

192
3ADR011116

192 Motion Controller with AC500 V3

9 CAM EDITOR

The cam is integrated in the development interface of Automation Builder. In the cam editor, cams and

tappets can be implemented graphically or by means of tables. As soon as code is generated for the cor-

responding application, global data structures ("Cam Data") are created which the IEC program can ac-

cess.

9.1 Definition of a Cam

A cam describes the functional dependency of one drive (slave) on another drive (master). The relation-

ship is described by a continuous function (or curve) that maps a defined range of master values to slave

values.

You may also add tappets (binary switches) to the cam at any position. In this way, you can create cam

tables which contain tappets.

9.2 Structure of the Cam Editor

Open the cam editor by double-clicking the “Cam” object in the device tree.

The editor consists of the following tabs:

– Tab “Cam”: Includes a graphical editor for creating a cam path. Here, you can display and modify

the slave position, slave velocity, slave acceleration, and slave jerk. In the graphical editor, you rec-

ognize very quickly when you program a movement with high acceleration.

– Tab “Cam table”: Includes an editor for listing base points in a table. Here, you can specify the

exact positions and velocities.

– Tab “Tappets”: Includes an editor for programming tappets (switch points) in a diagram. This

display provides a very good overview of the sequential order of the tappets.

– Tab “Tappet table”: Includes an editor for listing switch points in a table. Here, you can specify

the exact switch points.

The tabs are split into an editor, as well as a “ToolBox” view and “Properties” view.

9.2.1 Tab 'Cam'

In this graphical editor, the cam graphs are defined. You can switch between the graphical editor and the

alternative tabular editor at any time (“Cam table tab” tab).

The editor window displays the curves of four graphs:

– Slave position (black)

– Slave velocity (blue)

– Slave acceleration (green)

– Slave jerk (yellow)

The horizontal axis of all four coordinate systems shows the range of the master values ([0,360]). The

vertical axis in the position diagram shows the value range that is defined in the cam properties. The ver-

tical axis of velocity, acceleration, and jerk is scaled automatically.

You can modify all curves, except the jerk curve. As velocity, acceleration, and jerk are derived curves,

changes to one graph causes changes to the other graphs. You change the height of the diagram by

moving the horizontal separation bars.

“View 'ToolBox'”

193
3ADR011116

193 Motion Controller with AC500 V3

 “View 'Properties'”

9.2.2 Tab 'Cam table'

The cam table is an alternative to the graphical editor for defining the cam graphs (“Cam” tab).

You can switch between the table editor and the graphical editor at any time.

The first line of the table always contains the start position of the master (and the related slave values)

and the last line is always the end position. The lines in-between alternately define segments and points.

“View 'ToolBox'”

9.2.3 Tab 'Tappets'

The tappet paths are defined in this table graphical editor. A tappet path defines one or more tappets

depending on the master position. At the upper edge of the editor window, a horizontal axis approaches

the range of the master positions. The individual tappet paths are defined below.

You can switch between the graphical editor and the alternative tabular editor at any time (“Tappet ta-

ble” tab).

Inserts a new line.

Deletes the selected segment

“X” X-position of the slave axis

“Y” Y-position of the slave axis

“V” Velocity of the slave axis

“A” Acceleration of the slave axis

“J” Jerk of the slave axis

“Segment type” ● “Poly5”: 5th degree polynomial
● “Line”
● Linear

The following values result from the values of the respective segment. They cannot be modified.

min(Position) Minimum value of the slave position

max(Position) Maximum value of the slave position

max(Velocity) Maximum value of the velocity of the slave, based on the master axis

max(Acceleration) Maximum value of the acceleration of the slave, based on the master axis

194
3ADR011116

194 Motion Controller with AC500 V3

“View 'ToolBox'”

“View 'Properties'”

Table of the possible combinations of tappet attributes

195
3ADR011116

195 Motion Controller with AC500 V3

9.2.4 Tab 'Tappet table'

This tabular editor is an alternative to the graphical editor for configuring the tappet paths (“Tappets”

tab). A tappet path defines one or more tappets depending on the master position. In the table, the lines

with the definitions of the associated tappets follow below each line that defines a tappet path.

You can switch between the table editor and the graphical editor at any time.

“View 'Properties'”

9.2.5 Dialog 'Properties - 'Cam'

Use this dialog to define the global variables of the cam.

 “Dimensions”

“Period”

196
3ADR011116

196 Motion Controller with AC500 V3

“Continuity requirements”

“Compile format”

9.3 Creating Cams

The steps for creating a cam are explained by means of a sample application that describes a rotary table

with eight slots (45° division). Inside, there is a component that is fused ultrasonically. The welding tool is

fed in by a linear drive after the rotary table has turned. After welding, the linear axis returns, and the ro-

tary table continues turning.

Work steps

– Rotary table turns 45° (duration: 400 ms).

– The welding head is moved down by a vertical axis of 250 mm (duration: 200 ms).

– Start welding (duration: 1200 ms).

– The welding head is moved up by a vertical axis of 250 mm (duration: 200 ms).

A cycle time of 2000 ms results from total times.

The application is implemented by means of a virtual master axis that runs continuously (modulo). The

end value of the axis is projected according to the cycle time of 2000 ms. The rotary table is achieved as a

cam (modulo; end value: 45°). The vertical axis is also achieved as a cam (restricted; end value: 300 mm).

The welding process is controlled by a tappet.

9.3.1 Adding a cam to the device tree

 Requirement: A AC500 controller is selected.

– Select the “Application” object in the device tree.

– Click “Project Add object Cam table”.

– Specify the name “Rotary table” for the cam and click “OK”.

• The object is inserted into the device tree. The cam editor opens.

– Insert another cam named “Vertical axis”.

197
3ADR011116

197 Motion Controller with AC500 V3

9.3.2 Setting the properties of the cam

– Select the “Rotary table” cam in the device tree.

– Click “Properties” in the “View” menu or in the context menu.

– Select the “Cam” tab.

– Specify the following values:

• “Master start position”: 0

• “Master end position”: 2000

• “Slave start position”: 0

• “Slave end position”: 45

• “Smooth transition”: (deactivated)

– Click “OK” to close the dialog. Confirm the dialog for changing the cam object. 6. Change the val-

ues for the “Vertical axis” cam in the same way:

• “Master start position”: 0

• “Master end position”: 2000

• “Slave start position”: 0

• “Slave end position”: 300

• “Smooth transition”: (activated)

– Click “OK” to close the dialog. Confirm the dialog for changing the cam object.

9.3.3 Changing the Cam Path

These instructions use the example from the section "Creating Cams" to demonstrate how to change a

cam.

9.3.3.1 Changing the path with the graphical editor

1. Open the “Rotary table” cam in the editor.

• The “Cam” tab is visible.

2. Select the point at 120 and delete it by pressing the delete key ([Del]). Also delete the

• point at 240.

3. Select the “Add point” tool from the “ToolBox” view.

• The mouse pointer turns into crosshairs when you move it into the editor.

4. Click near “Master position” 400 and “Slave position” 45 in the upper graphs (slave position).

5. The curve of the slave position is changed. The curves of velocity, acceleration, and jerk also

change.

6. Select the new inserted point by clicking it.

7. Drag the point to another position.

• The curve of the slave position is adjusted accordingly.

8. Change the “X” and “Y” properties to the exact values of 400 and 45, respectively.

9. In the same way, change the x-value to 45 of the point at master position 2000.

10. Select the “Select” tool from the “ToolBox” view.

11. Select the second curve element (between 400 and 2000). 11. Change the “Segment type”

property to “Line”.

12. Check the curve in the graphical editor.

198
3ADR011116

198 Motion Controller with AC500 V3

• Display:

9.3.3.2 Changing the path with a cam table

1. Open the “Vertical axis” cam in the editor.

• The “Cam” tab is visible.

2. Select the “Cam table” tab.

3. Delete the point at 120 by clicking the symbol. Also delete the point at 240.

4. Click the “+” symbol.

• A new point and a new segment are inserted at (1000/150).

5. Add two more points.

6. Change the values X / Y of the following points:

• Point 1: 0 / 0

• Point 2: 400 / 0

• Point 3: 600 / 250

• Point 4: 1800 / 250

• Point 5: 2000 / 0

• The curve of the slave position is changed. The curves of velocity, acceleration, and jerk

also change.

7. In the cam table, change the “Segment type” of the first and third segments to “Line”.

8. Check the curve in the graphical editor.

Note: By clicking “Display generated code”, you can display the automatically created

global variables.

9.3.4 Defining Switch Points

Use switch points to trigger events depending on the master position. For example, this can be the set-

ting of an output or the calling of a function block.

These instructions use the example from the section "Creating Cams" to demonstrate how to define the

points. In this example, the tappet starts and stops the welding process.

1. Open the “Vertical axis” cam in the editor.

• The “Cam” tab is visible.

2. Select the “Tappets” tab.

3. Select the “Add tappet” tool from the “ToolBox” view.

199
3ADR011116

199 Motion Controller with AC500 V3

• The mouse pointer turns into crosshairs when you move it into the editor.

4. Click below the master position near position 600.

• A tappet is inserted to the tappet path 1.

5. Select the tappet.

6. Change the values of the tappet in the “Properties” view.

• “X”: 600

• “Positiver pass”: “Switch ON”

• “Negative pass”: “No action”

7. Insert another tappet to tappet path 1 at X: 1800.

• “X”: 1800

• “Positiver pass”: “Switch OFF”

• “Negative pass”: “No action”

8. Check the result.

Note: You can also change the values for “Positive pass” and “Negative pass” by clicking

the respective end of the crosshairs.

Note: Please note the possibility of also setting switch points in the “Tappet table”

tab. This editor provides you with the same options, but in tabular form

Once the cam is added to the Automation Builder, user can double click on the same to visualize the cam

in a graphical way by default or select the “cam table” tab from the same window if user wishes to see it

in the table format.

9.4 Cam generated code

If the user wants to see the generated code. There is an option to view the generated code which is cre-

ated by the cam when the cam object is kept open. Currently it can only show the code generated from

one cam which is open.

To view the code -> close all the cam views and open the cam which’s code needs to be viewed -> go to

Cam tab from the main Automation Builder tab -> select “display generated code” option.

200
3ADR011116

200 Motion Controller with AC500 V3

Code will be showed as below, where user can find the cam points are created in an array and cam table

function block from motion library is already initialized with few inputs.

9.5 Importing a Cam from 3rd party Codesys controller

9.5.1 Exporting the Cam for the the 3rd party PLC

If you are using a Cam application that has been previously written using another 3rd party CoDeSys

based PLC it’s possible to reuse these same data points in your new Automation Builder project to save

the user time and effort. The steps to do this are below, in the example application we are using a Ino-
vance AM600 PLC program.

Open the 3rd party CoDeSys environment and the project in question. As when using ABB’s solution, the

Cam object must be selected from the project tree to allow the user to access the “Cam” item in the sys-

tem menu at the top of the page which will be needed for some of the steps that follow.

The first thing you should consider is the master and slave settings such as start and end position, and

Slave period. To check this you can right click on the Cam object in the hardware tree and select proper-

ties. From here you will get a pop up where you can double check the settings that will define the cams

operation. Make a note of these.

201
3ADR011116

201 Motion Controller with AC500 V3

Its also a good idea to look at the Cam table just to get an idea about the General Layout, here we can see

this Cam has 6 points (beginning, end and 4 user selected items)

Next, we must consider the method for getting the Cam data exported from the application. To do this

we must export or ‘Write’ the data to an ASCII file. To do this we must select the Cam object to access the

Cam menu, then select the option for ‘Write Cam Data into ASCII Table’

Then select somewhere to save it.

202
3ADR011116

202 Motion Controller with AC500 V3

Then you will see a pop up which will ask you how many Cam data points you want to export into the file,

we can treat this like resolution. In the example below we select 128 data points

If we select many of points when the Cam is exported, we can expect the larger number of data points

will give the same profile even using the 3rd party Cam builder’s interpolation types to ensure the Cam

profile is immediately matched perfectly to the previous application. If we select a lower number of

points, one that matches the interpolation points (the smallest number possible) for example then you

are relying on Automation builder to plot the interceding Cam points so the interpolation types selected

within Automation Builder are more important and must be checked.

Now we are finished with the 3rd party environment.

9.5.2 Importing the Cam data into Automation Builder

We can now switch to Automation builder in which we need to have a project which has a Cam in it ready

for us to write the data into. As before we must check the properties of the Cam to check that it has the

same maximum and minimum values and other Characteristics. Then we must select the Cam object to

access the menu in the Tool bar from which we can select “Read Cam Data from ASCII table” and then

select the ASCII file we created before.

203
3ADR011116

203 Motion Controller with AC500 V3

You will then be asked how many data points you want to Import into the project. Typically, this should

always match the value that was exported.

In the screen shot below you can see the result with all 128 data points imported

You can also edit the Segments (interpolation types) used in each segment in this newly imported Cam

via the Cam table view.

Once all necessary adjustments have been made, now the Cam is ready to be used in the program.

204
3ADR011116

204 Motion Controller with AC500 V3

9.6 Application program using generated Cam

Once the cam is created by the cam editor, user can use the cam function blocks to use the same in user

application. Users need to call at least the MC_CamTableSelect and a CamIn function block from the

AC500_MotionControl library. An example program is shown below,

In below example we have used the MC_CamTableSelect instance generated by the cam editor itself, this

helps the user not to set few of the input parameters since they are already set by the cam editor itself.

 MC_CamTableSelect autogenerated instance name follow the Cam Editor object name + Select. For ex-

ample, if the Cam editor object name is RotaryCam, MC_CamTableSelect instance name is “Ro-

taryCamSelect” and CamTable, Number_Of_Pairs and iType (MCA_POLY5) MC_CamTableSelect function

block inputs are set by cam editor.

If the user created an different instance of MC_CamTableSelect than generated by Cam editor, user need

to connect all the inputs as per the application requirement.

For the tappets, use the MCA_DigitalCamSwitch function block and configure the inputs.

The MCA_CAMTappet array is generated automatically based on the configuration in tappet. The array

name follows the Cam object name with “_T”.

For example, if Cam object’s name is “RotaryShear”, MCA_CAMTappet array is generated as “Rota-

ryShear_T. This can be directly passed to input pin name “Tappets” of function block MCA_Tappet

205
3ADR011116

205 Motion Controller with AC500 V3

More details on how to use the cam curve can be found in Automation Builder online help (PLC Automa-

tion with V3 CPUs > Libraries and solutions > Motion control library > PLC-based motion control > Basic

functionalities > How to Use a CAM curve) and from the AC500_MotionControl library integrated docu-

mentation.

206
3ADR011116

206 Motion Controller with AC500 V3

10 ABB PLCOPEN MOTION CONTROL LIBRARY

This chapter gives an overview of the libraries in the form of an “System Technology” in chapter (10.2),

which explains the concepts used and lists the contents of the ABB PLCopen motion control libraries and

the ABB specific additional libraries which are needed for motion control, interfacing, and e.g., special

calculations in ABB PLCs.

The Function Blocks of the libraries themselves are documented then in chapters 10.3 for reference, the

actual version of the libraries and their documentation can always be found within the libraries in Auto-

mation Builder (Library Manager).

The libraries are all included in Automation Builder via the optional install package “Motion Control

(PS5611)”, which can be installed at any time via the Installation Manager. The core libraries need the run-

time license PS5611-MC to be installed in the CPU.

The Motion Control package also contains the core functionality for the Motion Solution Wizard and Cam

Editor described in a previous chapter.

The libraries function blocks descriptions are also visible directly in the library manager (access via Con-

figuration tree). The library manager will always have the most up-to-date version matching the actual

used library.

10.1 Motion Control library: System Technology

10.1.1 Preconditions for the use of the motion control libraries

The user has to read the following instructions and referenced documents before using the libraries:

The library package has been released for the software and firmware versions listed in the Readme file of

Automation Builder (see “Help ➔ Automation Builder Release Notes”) . Please also check there for under-

standing updates and changes made in case you started with an older version.

In no event will ABB or its representatives be liable for loss of data, profits, revenue or consequential, inci-

dental or other damage that may result from the use of other versions of product, software or firmware

versions. The error-free operation of the motion control library with other devices, software or firmware

versions should be possible but cannot be guaranteed and may need adaptations e.g. of example pro-

grams.

207
3ADR011116

207 Motion Controller with AC500 V3

The Motion control package contains follows libraries

Library

Automation

Builder PLC Firmware

ABB_MotionControl_AC500

AB2.4.0 or higher

AC500 V3 firmware version 3.3.1 or higher /

AC500-eCo V3 firmware version 3.4.0 or

higher

ABB_Ecat_CiA402_AC500

ABB_MathFunctions_AC500

ABB_MotionControlEco_AC500

(Kernel blocks for Eco V3 PLCs)

ABB_MotionControlLoad_AC500 AB2.5.0 or higher AC500 V3 firmware version 3.5.0 or higher

10.1.2 Overview and Basics

The PS5611-MC is a Motion Control library for AC500 V3 CPUs, to create Motion Control applications

based on Function Blocks according to the standard of PLCopen Motion Control. These function blocks

can be used for PLC-based Motion Control and cover a wide range of possible Motion Control functionali-

ties. Starting from single axis movements to master-follower axes to perform electronic gearing and

CAM functions.

This documentation contains the following chapters:

In this Overview chapter information is provided for a better understanding of Motion Control with

AC500 PLC and PS5611-MC libraries. There is also a tabular overview of the available PLCopen Function

Blocks and their compatibility with PLC-based Motion Control and the provided drive-based Motion Con-

trol axis implementations.

The chapter PLCopen Introduction and Basics explains the principle of the PLCopen Motion Control

standard as well as how PLCopen Function Blocks can be used to create PLC Motion Control application

programs.

PLC-based Motion Control in AC500 is the nect chapter, where it is explained how PLC-based Motion

Control with AC500 can be realized and how it can be used in combination with the available PLCopen

Function Blocks.

Finally the chapter Load Control/Torque Control: Fluid Power Extension according PLCopen explains how

the PLCopen part 6 Fluid Power – extension, also called “load control”, can be used to practically realize a

form of torque control (or -profiling) and how it can be used in combination with the available PLCopen

Function Blocks to switch between torque/load control and position control.

10.1.2.1 PLC-based motion control

With PS5611-Motion the application program and the profile generator are realized in the PLC. The imple-

mentation of the profile generator is based on a set of Function Blocks which are named Central Motion

Control (CMC as prefix).

The profile generator of many possible axes is centrally placed inside the AC500 PLC. Therefore multi axis

motion functionalities become easily available and can be accessed by PLCopen Function Blocks. As a re-

sult, Motion Control functionalities are almost drive independent.

Available motion control functionalities:

• Simple axis Movements

• Electronic Gearin

• Electronic CAMs

• Position Profiles

• Velocity Profiles

• Acceleration Profiles

• Load control (~ Torque profiling)

208
3ADR011116

208 Motion Controller with AC500 V3

The output then is a position (or velocity) reference signal which the drive will follow. A new position or

velocity reference value will be calculated with every cycle of the PLC and has to be transferred to the

drive, which demands real time capabilities to the PLC and to the communication channel: A real time

fieldbus like EtherCAT is needed. The feedback of the actual position can be used for supervision pur-

poses during operation and is needed to adjust the value of the position reference before the drive will

be enabled.

System structure of PLC-based Motion Control with AC500 PLC and PLC-based motion control

With PLC-based Motion Control it is also possible to include the position control loop to the AC500 PLC.

In this case a speed reference signal will be transferred to the drive, which makes it possible to perform

the full range of motion functionalities with standard drives. To close the position control loop, feedback

of the actual position is mandatory.

PLC-based Motion Control with AC500 PLC and PS5611-Motion, closed position control loop

With PLC-based Motion Control it is also possible to include the load control loop to the AC500 PLC. In

this case a speed reference signal will be transferred to the drive, which makes it possible to perform the

full range of motion functionalities with standard drives. To close the position control loop, feedback of

the actual position is mandatory and to close the load control loop, feedback of the actual load / torque

is mandatory.

209
3ADR011116

209 Motion Controller with AC500 V3

PLC-based Motion Control with AC500 PLC and PS5611-Motion, closed load control loop

Central Motion Control with AC500 PLC and PS5611-Motion, can realize different axis implementa tions at

the same time

210
3ADR011116

210 Motion Controller with AC500 V3

10.1.2.2 Overview of libraries

The following libraries are included in the PS5611-Motion package according to the listed use cases.

Library in Motion Control package Description

ABB_MotionControl_AC500.compiled-library
Motion Control Library with PLCopen type function
blocks: According PLCopen or ABB specific

ABB_MotionControlLoad_AC500.compiled-library

Function blocks for load / torque / pressure control
functionality based on “PLCopen Motion Part 6 –
Fluid Power Extensions”

ABB_Ecat_CiA402_AC500.library

CiA 402 EtherCAT state machine function block and
additional EtherCAT function blocks adapted for Mo-
tion Control purposes (adaptable for 3rd party de-
vices -> open/not protected)

ABB_MotionControlEco_AC500.compiled-library
Kernel function block to use PWM and PTO outputs
from eCo V3 to realize PLCopen based motion.

ABB_MathFunctions_AC500.compiled-library
Mathematical functionality used for Motion function
blocks

The features of the Function Blocks provided with PS5611-Motion can be used from the PLC program ac-

cording to PLCopen standard. Different drives and different Motion Control realiza tions could be used

and can be combined with each other as well as different fieldbuses.

ABB_Ecat_CiA402_AC500.library is editable and can be adapted based on the drive configura tion and

drive type.

211
3ADR011116

211 Motion Controller with AC500 V3

10.1.2.3 Overview of PLCopen function blocks

The following tables give an overview of the available Function Blocks by library and category:

A
C

5
0

0
_

M
o

ti
o

n
C

o
n

tr
o

l

A
B

B
 S

p
e

c
if

ic

MCA_CamGetInterpolationPosi-

tion

gives an interpolation result, acc. referenced cam table, for a master position.

MCA_CamInDirect implements Camming-Functionality. A device is coupled to a master

MCA_CamInfo gives an information which index is actually processed by the respective cam table

MCA_Cam_Extra (Function) to modify 2 mode-bits which define the behavior for the MC_CamIn more precise

MCA_DriveBasedHome to execute a homing procedure directly in the drive

MCA_GearInDirect commands a gear ratio btw. position of device and master from synchronization onwards

MCA_Indexing upon a rising edge, do a number of relative or absolute moves, listed in a table

MCA_JogAxis jogs an axis for a given distance fwd./backward with selected jog vel./acc.

MCA_MoveByExternalReference gives a reference position to axis which is directly passed to position control loop

MCA_MoveRelativeOpti commands a controlled motion of a distance relative to actual position

MCA_MoveVelocityContinuous commands a never-ending controlled motion at a specified velocity.

MCA_Parameter to change the default values of parameters

MCA_PhasingByMaster movement for the relation to the master axis of the specified axis (in sync)

MCA_ReadParameterList reads a list of parameters by using the “MC_ReadParameter”.

MCA_SetOperatingMode changes the axis mode from positioning to velocity mode and vice versa.

MCA_SetPositionContinuous modifies the position of an axis with a defined profile

MCA_WriteParameterList writes a list of parameters by using the “MC_WriteParameter”

MCA_DigitalCamSwitch The output pin is Switched on- and off-based on TrackID, Axis Position and Configuration in the

MCA_CAMTappet array

MCA_MoveBuffer do a number of relative or absolute moves, listed in a table (Array of MCA_Pos_Ref).

MCA_MoveByExtRefRelative gives a reference position to the axis which is directly passed to the position control loop

M
C

 A
d

m
in

is
tr

a
ti

ve

MC_CamTableSelect selects the CAM tables by setting the connections to the relevant tables

MC_Power controls the power stage (on or off).

MC_ReadActualPosition returns the actual position

MC_ReadActualVelocity returns the value of the actual velocity as long as Enable is set.

MC_ReadAxisError describes general axis errors not relating to the PLCopen function blocks

MC_ReadBoolParameter transfers parameters defined as “standard” in the PLCopen

MC_ReadParameter transfers parameters defined as “standard” in the PLCopen

MC_ReadStatus returns detailed status of axis w. respect to motion currently in progress.

MC_Reset transition ErrorStop to StandStill by resetting all int. axis-errors

MC_SetOverride set a factor: multiplied to commanded vel., acceleration, deceleration., jerk of move FB.

MC_SetPosition shifts coordinate system by manipulating set-point, position, actual position with same value w/o

movement.

MC_WriteBoolParameter transfers parameters defined as “standard” in the PLCopen

MC_WriteParameter transfers parameters defined as “standard” in the PLCopen

M
C

 H
o

m
in

g

MC_StepAbsSwitch performs a homing by searching for absolute external physical switch

MC_StepDirect static homing by directly forcing an actual position. No physical motion performed

MC_StepLimitSwitch homing function by searching for sensor using only limit switches.

MC_StepRefPulse homing by searching for Zero pulse

M
C

 M
u

lt
iA

x
is

MC_CamIn implements Camming: A device- is coupled to a master axis by pos./pos. relation

MC_CamOut disengages the Slave axis from the Master axis immediately

MC_CombineAxes combines the motion of 2 axes into a third axis with selectable combination method.

MC_GearIn commands a ratio between the velocity of the slave and master axis.

MC_GearInPos commands a gear ratio btw. position of device, master axes from sync. point onw.

MC_GearOut disengages the Slave axis from the Master axis

MC_HaltPhasing commands a controlled motion stop for the phasing movement.

MC_PhasingAbsolute movement for the relation to the master axis of the specified axis.

MC_PhasingRelative movement for the relation to the master axis of the specified axis.

M
C

 S
in

g
le

A
x

is

MC_AccelerationProfile commands a time-acceleration locked motion profile.

MC_Halt commands a controlled motion stop.

MC_HaltSuperImposed commands halt to all superimposed motions. The underlying motion is not interrupted.

MC_MoveAbsolute commands a controlled motion to a specified absolute position.

MC_MoveAdditive commands a controlled motion of a specified relative distance additional to the most recent com-

manded position in the discrete motion state.

MC_MoveContinuousAbsolute commands controlled motion to specified abs. position ending with spec. velocity.

MC_MoveContinuousRelative commands controlled motion of specified rel. distance, ending with spec. velocity.

MC_MoveRelative commands controlled motion of spec. distance rel. to actual position at time of execution.

212
3ADR011116

212 Motion Controller with AC500 V3

MC_MoveSuperImposed commands controlled motion of spec. Rel. distance additional to existing motion. The existing Mo-

tion is not interrupted but is superimposed.

MC_MoveVelocity commands a never-ending controlled motion at a specified velocity.

MC_PositionProfile commands a time-position locked motion profile.

MC_Stop commands a controlled motion stop and transfers the axis to the state “Stopping”.

MC_VelocityProfile commands a time-velocity locked motion profile.

C
M

C
_

B
lo

c
k

s

CMC_Axis_Control_Parameter provide basic information regarding underlying axis behavior and to configure the closed loop con-

trol for CMC_Basic_Kernel.

CMC_Axis_Simu can be used with CMC_Basic_Kernel to create a virtual axis.

CMC_Basic_Kernel Kernel is the fundamental FB of Central Motion Control axis implementation (floating point)

CMC_Binary2Modulo Convert a 32 bit value (Position_Reference) to Modulo_Range.

CMC_Get_Units_From_Inc

(Function)

converts drive’s position value (DINT) exchanged with drive to scaled position unit (LREAL) used by

the PLCopen FBs.

CMC_Modulo2Binary Convert a <32 bit value to 32 bit for use as Actual_Position.

CMC_PidT1 PIDT1 Controller

CMC_SIPosiLoop simple interpolation. Alternatively, CMC_SInterpolation can be used

CMC_SInterPolation used for a simple point-to-point interpolation, can be combined with CMC_SIPosiLoop as position

control loop.

A
C

5
0

0
_

M
o

ti
o

n
C

o
n

tr
o

lL
o

a
d

M
C

_
L

o
a

d
C

o
n

tr
o

l

MC_LimitLoad activates a limitation of the load values provided by an axis.

MC_LimitMotion limits the motion values for the movement of an axis.

MC_LoadControl commands a controlled torque/force/pressure movement.

MC_LoadProfile commands a time-load locked motion profile. Load in the final element of the profile should be

maintained

MC_LoadSuperimposed commands a controlled torque/force/pressure movement.

MC_TorqueControl commands a controlled torque/force/pressure movement and limits movement of an axis.(Wrap-

per FB)

C
M

C

B
lo

c
k

s

CMC_Load_Motion_Kernel uses the CMC_Basic_Kernel for motion control regarding position and velocity, extends functional-

ity to include load control

A
C

5
0

0
_

M
o

ti
o

n
C

o
n

tr
o

lE
co

e
C

o
 K

e
rn

e
l F

u
n

c
ti

o
n

 b
lo

c
k

s
 OBIO_PTOMotionKernel extends basic motion kernel functionality, to be used for eCo PTO outputs to connect a stepper

drive

OBIO_PWMMotionKernel extends basic motion kernel functionality, to be used for eCo PWM outputs to connect a stepper

drive.

A
C

5
0

0
_

M
a

th

F
u

n
c

ti
o

n
s

 MATH_LINEAR_REGRESSION calculates estimated next value based on a linear regression with 8 values history

A
C

5
0

0
_

E
c

a
t_

C
iA

4
0

2

C
o

E

ECAT_Read_Byte_App reads an 8 bit value from an EtherCAT node. It uses EcatCoeRead to do so

ECAT_Read_Coe_List_App reads a list of parameters to the drive by using the EcatCoeRead.

ECAT_Read_DInt_App reads a 32 bit value from an EtherCAT node. It uses EcatCoeRead to do so

ECAT_Read_Int_App reads a 16 bit value from an EtherCAT node. It uses EcatCoeRead to do so

ECAT_Write_Byte_App writes an 8 bit value to an EtherCAT node. It uses EcatCoeWrite to do so

ECAT_Write_Coe_List_App writes a list of parameters to the drive by using the EcatCoeWrite.

ECAT_Write_DInt_App writes a 32 bit value to an EtherCAT node. It uses EcatCoeWrite to do so

ECAT_Write_Int_App writes a 16 bit value to an EtherCAT node. It uses EcatCoeWrite to do so

Drive ECAT_CiA402_Control_App controls the state machine for a drive with 402 profile and connected to EtherCAT.

H
o

m
in

g

ECAT_402Parameter-

Homing_APP

sends parameters needed for homing to drive: all parameter with a value <> 0

ECAT_HomingOnTouch-

Probe_APP

performs homing on latched position value, e.g., Touch Probe on Z-pulse of encoder

T
o

u
c

h
-

P
ro

b
e

 ECAT_CiA402_Touch-

Probe_App

manages Touch Probe objects accord.: “EtherCAT Implementation Directive for CiA402

213
3ADR011116

213 Motion Controller with AC500 V3

10.1.2.4 Overview of data types

The following data types are used for the Motion Control library. The data types are defined in the library

file ABB_MotionControl_AC500 compiled-library. The corresponding elements can be used for the Func-

tion Blocks inputs.

Structures

Data type Elements Element data type

CMC_AXIS_IO limitSwitchPos BOOL

limitSwitchNeg BOOL

absRefSwitch BOOL

MC_PPROFILE

Chapter “Position- PositionProfile”

master_position LREAL

interpolation_point LREAL

velocity_ratio LREAL

acceleration_ratio LREAL

MC_TPROFILE

Chapter “PositionTimeProfile”

interpolation_point LREAL

first_derivative LREAL

second_derivative LREAL

delta_time TIME

214
3ADR011116

214 Motion Controller with AC500 V3

Enumeration

Data type Possible values

MC_ABB_iTYPES_ENUM

Chapter “Interpolation types for profiles”

MCA_SPLINE_COMPLETE

MCA_SPLINE_NATURAL

MCA_POLY5

MCA_POLY3

MCA_LINEAR

MC_BUFFERMODE mcABORTING

mcBUFFERED

mcBLENDINGlow

mcBLENDINGprevious

mcBLENDINGnext

mcBLENDINGhigh

MC_DIRECTION DEFAULT

POSITIVE

SHORTEST

NEGATIVE

CURRENT

POSITIVE_STOP

NEGATIVE_STOP

CURRENT_STOP

MC_HOMING_DIRECTION MC_SwitchNegative

MC_SwitchPositive

MC_Positive

MC_Negative

MC_HOMING_EDGE MC_EdgeOn

MC_EdgeOff

MC_On

MC_Off

MC_HOMING_MODE MC_REFPULSE

MC_DIRECT

MC_SOURCE mcActualValue

mcSetValue

ERROR_ID MC_Ok

Wrong_State

Drive_Problem

Parameter_Exceeds_Limit

No_Field_Access

Bus_Problem

Abs_Switch_Error

Timeout

NAK

MC_TimeLimitExceeded

MC_DistanceLimitExceeded

MC_TorqueLimitExceeded

Not_Implemented

ErrorID_POSITION_FOLLOW

 ErrorID_POSSW

ErrorID_NEGSW

ErrorID_VELOCITY_FAULT

ErrorID_INTERPOLATION_FAULT

ErrorID_WARNING_VELOCITYLIMIT

ErrorID_WARNING_POSITIONLIMITPOS

ErrorID_WARNING_POSITIONLIMITNEG

ErrorID_WARNING_POSITIONOVERRUN

ErrorID_WARNING_ABORT

ErrorID_WARNING_MOVEMENT_DIRECTION

215
3ADR011116

215 Motion Controller with AC500 V3

10.1.2.5 Naming of function blocks and data structures

All Function Blocks and data types named MC_xxx are implemented according to PLCopen definition and

follow the PLCopen documentation. They may have additional inputs but according to PLCopen rules.

All Function Blocks and data types named MCA_xxx are implemented corresponding to PLCopen rules

with adaptations specific to AC500. They are AC500 specific extensions to the PLCopen library.

All Function Blocks named CMC_xxx belong to the implementation of PLC-based Motion Control.

All data types named CMC_xxx belong to the implementation of PLC-based Motion Control.

All data types named AXIS_xxx exist according to PLCopen definition. The content is ABB specific and not

documented.

All Function Blocks named zCMC_xxx belong to the implementation of PLC-based Motion Control. These

are not documented and not intended for customer use.

All function blocks and data types named OBIO_xxx in the ABB_MotionControlEco_AC500 library are in-

tended for use with AC500-eCo V3 PLCs only.

All Function Blocks named xxx_APP are not write-protected and may be modified for adaptations. Then

an editable library is available in the Example folder.

10.1.3 PLCopen Introduction and Basics

Based on application requirements and project specifications engineers are required to use or select a

wide range of Motion Control hardware. In the past this required unique software to be created for each

application even though the functions are the same. PLCopen motion standard provides a way to have

standard application libraries that are reusable for multiple hardware platforms. This lowers develop-

ment, maintenance and support costs while eliminating confusion. In addition, engineering becomes eas-

ier, training costs decrease, and the software is reusable across platforms. Effectively, this standardiza-

tion is done by defining libraries of reusable components. In this way the programming is less hardware

dependent, the reusability of the application software is increased, the cost involved in training and sup-

port reduced, and the application becomes scalable across different control solutions. Due to the data

hiding and encapsulation, it is usable on different architectures, for instance ranging from centralized to

distributed or integrated to networked control. It is not specifically designed for one application but will

serve as a basic layer for ongoing definitions in different areas. As such it is open to existing and future

technologies.

ABB is a member of the PLCopen organization. More Information about PLCopen can be read on the

PLCopen website.

Function Blocks according to PLCopen are designed for controlling axes via the language elements con-

sistent with those defined in the IEC 61131-3 standard. It was decided by the task force that it would not

be practical to encapsulate all the aspects of one axis into only one Function Block. The retained solution

is to provide a set of command-oriented Function Blocks that have a reference to the axis, e.g. the ab-

stract data type Axis, which offers flexibility, ease of use and reusability.

Implementations based on IEC 61131-3 (for instance via Function Blocks and SFC) will be focused towards

the interface (look-and-feel/proxy) of the Function Blocks. This specification does not define the internal

operation of the Function Blocks.

PLCopen Motion Control Function Blocks can be used in any IEC 61131-3 programming language. The fol-

lowing picture shows an example of a Function Block used in Function Block Diagram (FBD) language.

http://www.plcopen.org/

216
3ADR011116

216 Motion Controller with AC500 V3

Command for absolute positioning according to PLCopen standard

Application programs which use the manufacturer independent function blocks according to PLCopen

will lead to the following advantages:

• Reusable software structure for different platforms.

• Programming based on Function Blocks.

• Function Blocks can be used in any IEC 61131-3 language.

All function blocks which are defined by PLCopen will have the following qualities independently to the

manufacturer of the motion control system:

• Same inputs/outputs

• Same functional behavior

• Same name

The following parts of the PLCopen motion control definition are completely or partly included in this

product:

• Part 1: Function Blocks for Motion Control

• Part 2: Extensions

• Part 3: User Guidelines (partly)

• Part 4: Homing Procedures (partly)

• Part 6: Function Blocks for Motion Control – Fluid Power Extensions

10.1.3.1 Programming guidelines

This chapter explains some rules on the usage of libraries and the structure Axis_Ref.

In general, the kernel function block and the transfer of axis IO data should be processed in a cyclic task.

This task should be as short and real-time as possible to achieve the best motion control performance.

Always make sure Kernel function block is called at the highest priority task and other applications must

be at a lower priority task.

If Axis_Ref is used as input on a user defined Function Block or program or function, always use it as

VAR_IN_OUT and never use it as VAR_INPUT or VAR_OUTPUT. The reason is that this would

• Break the consistency and destroy data.

• Consume a lot of computing power by copying data.

Any instance of a Function Block should be called only once per cycle and in only one specific task.

If the instance is used in several tasks, it must be checked that it is not called several times. Because this

could corrupt the handshake from Function Block to Axis_Ref to CMC_Basic_Kernel and vice versa.

Some PLCopen Function Blocks are only allowed to be called within the same task as the CMC_Basic_Ker-

nel Function Block. This is mentioned in the Function Block descriptions.

If PLCopen Function Blocks are called from a different task, the cycle time should be at least 2 times the

cycle time for CMC_Basic_Kernel Function Block.

217
3ADR011116

217 Motion Controller with AC500 V3

10.1.3.1.1 Axis data type Axis_Ref

The Axis_Ref is a structure that contains information on the corresponding axis. It is used as a

VAR_IN_OUT in all Motion Control Function Blocks defined in this document. The content of this structure

is implementation dependent and can be empty. If there are elements in this structure, access to them is

supported, but further details are outside of the scope of this document. The refresh rate of this struc-

ture is also implementation dependent. According to IEC 61131-3 it is allowed to switch the Axis_Ref for

an active Function Block, for instance from Axis1 to Axis2. However, the behavior of this can vary across

different platforms, and is not encouraged to do.

Axis_Ref data type declaration:

TYPE Axis_Ref : STRUCT

(Content is implementation dependent)

END_STRUCT

Example:

TYPE Axis_Ref : STRUCT

AxisNo: UINT; AxisName: STRING (255);

…….

END_STRUCT

10.1.3.2 The single axis state diagram

The diagram defines the behavior of the axis at a high level when multiple motion control Function Blocks

are simultaneously activated. This combination of motion profiles is useful in building a more compli-

cated profile or to handle exceptions within a program. (In real implementations there may be additional

states at a lower level defined). The basic rule is that motion commands are always taken sequentially,

even if the PLC had the capability of real parallel processing. These commands act on the axis' state dia-

gram.

The axis is always in one of the defined states (see diagram below). Any motion command that causes a

transition changes the state of the axis and, therefore, modifies the way the current motion is com-

puted. The single axis state diagram is an abstraction layer of what the real state of the axis is, compara-

ble to the image of the I/O points within a cyclic (PLC) program. A change of state is reflected immedi-

ately when issuing the corresponding motion command.

The diagram is focused on a single axis. The multiple axis Function Blocks, MC_CamIn, MC_GearIn and

MC_Phasing, can be looked at, from a single axis state diagram point of view, as multiple single axes all in

specific states. For instance, the CAM-master can be in the state Continuous Motion. The corresponding

slave is in the state Synchronized Motion. Connecting a slave axis to a master axis has no influence on the

master axis.

The state Disabled describes the initial state of the axis. In this state the movement of the axis is not in-

fluenced by the Function Blocks. The axis feedback is operational. If the MC_Power Function Block is

called with Enable=TRUE while being in state Disabled, this either leads to Standstill if there is no error

inside the axis, or to ErrorStop if an error exists.

Calling MC_Power with Enable=FALSE in any state, the axis goes to the state Disabled, either directly or

via any other state. If a motion generating Function Block controls an axis, while the MC_Power Function

Block with Enable=FALSE is called, the motion generating Function Block is aborted (CommandAborted).

The intention of the state ErrorStop is that the axis goes to a stop, if possible. There are no further in-

puts from Function Blocks accepted until a reset has been done from the ErrorStop state.

The transition Error refers to errors from the axis and axis control, and not from the Function Block in-

stances. These axis errors may also be reflected in the output of the Function Blocks instances errors.

218
3ADR011116

218 Motion Controller with AC500 V3

Issuing MC_Home in any other state than StandStill will go to ErrorStop, even if MC_Home is issued from

the state Homing itself.

Function Blocks which are not listed in the single axis state diagram do not affect the state of the axis,

meaning that whenever they are called the state does not change. They are:

MC_ReadStatus; MC_ReadAxisError; MC_ReadParameter; MC_ReadBoolParameter; MC_WriteParame-

ter; MC_WriteBoolParameter; MC_ReadActualPosition and MC_CamTableSelect.

Calling the Function Block MC_Stop in state StandStill changes the state to Stopping and back to Stand-

still when Execute = FALSE. The state Stopping is kept if the input Execute is TRUE. The output Done is

set when the stop ramp is finished.

Function Block state behavior

Note:

1. In this state ErrorStop or Stopping, all Function Blocks can be called, although

they will not be executed, except MC_Reset and Error – they will generate the transition

to StandStill or ErrorStop respectively.

2. Power.Enable=TRUE and there is an error in the Axis.

3. Power.Enable=TRUE and there is no error in the Axis.

4. MC_Stop.Done AND NOT MC_Stop.Execute.

219
3ADR011116

219 Motion Controller with AC500 V3

10.1.3.3 Visualizations

For usage with the PLCopen Library, a set of visualization objects is defined. These visualizations use the

placeholder concept, which means that they could be used in an actual visualization several times and be

instantiated by replacing the “placeholder” with an effective data structure.

Two types of visualizations exist:

As placeholder, an instance of Axis_Ref should be used. These are named: MC_VISU_Axis_name. Here the

name could be state machine or its actual.

As placeholder, an instance of the respective PLCopen Function Block should be used. These visualiza-

tions are named MC_VISU_FB_name where "name" could be MoveAbsolute or MoveVelocity, so the com-

plete element is named MC_VISU_FB_MoveAbsolute or MC_VISU_FB_MoveVelocity.

The background color and the color for the title of each element could be changed. The colors are defined

in some global predefined variables in MC_VISU_COLOR_INFORMATION. By changing these values, differ-

ent colors will be used.

10.1.3.4 Error codes

Besides the diagnosis information of the drive which is described in the respective drive documentation,

there are a numbers of error codes directly related to the Function Blocks. These error codes are dis-

played at the output “ErrorID” of the Function Block.

Error Code Mnemonic Explanation

0 MC_Ok No Error

1 WRONG_STATE A Function Block was activated not according to the
state machine, e.g. tried to start a movement while in
state Disabled.

2 DRIVE_PROBLEM The drive indicates an error, e.g. tripped.

3 PARAMETER_EXCEEDS
_LIMIT

A parameter at the Function Block is outside the pos-
sible range. This does not refer to the parameter
range which is allowed for the drive but just to the 32-
Bit Integer which is used for internal calculation.

4 NO_FIELD_ACCESS No fieldbus connection to the drive.

5 BUS_PROBLEM Not used

6 ABS_SWITCH_ERROR During Homing, (when done by Function Blocks)
limit switch not according to moving direction e.g.
the positive switch occurred when moving in nega-
tive direction.

7 TIMEOUT Timeout in block execution.

8 NAK Parameter access not applicable

9 MC_TimeLimitExceeded Used by Function Blocks with TimeLimit.

10 MC_DistanceLimitEx-
ceeded

Used by Function Blocks with DistanceLimit.

11 MC_TorqueLimitExceeded Used by Function Blocks with TorqueLimit.

220
3ADR011116

220 Motion Controller with AC500 V3

12 NOT_IMPLEMENTED Functionality not implemented for certain axis type.

101 ErrorID_POSITION
_FOLLOW

Following error, caused by > position error => ER-
RORSTOP (parameter POS_LAG_PER- CENTAGE)

102 ErrorID_POSSW Positive software limit switch => ERRORSTOP. The
actual position did exceed the positive Software limit
switch position. This super vision has to be activated
with MC_WriteParameter.

103 ErrorID_NEGSW Negative software limit switch => ERRORSTOP. The
actual position did exceed the negative Software limit
switch position. This supervision has to be activated
with MC_WriteParameter.

104 ErrorID_VELOCITY_FAUL T The measured velocity and commanded velocity are
> 50% (related to maximum velocity) apart, for a
certain time =>ERRORSTOP (parameter
V_CHECKTIME)

105 ErrorID_INTERPOLATION
_FAULT

following error, caused by interpolation problem
=>ERRORSTOP. Position following error occurred,
but reason most likely an interpolation problem, not
drive problem (e.g. CAM Table, position step).

110 ErrorID_WARNING_VELO CIT-
YLIMIT

Velocity or acceleration/deceleration are in limitation,
set by parameter EnableLimitVelocity, MaxVeloit-
yAppl, MaxDecelerationAppl

111 ErrorID_WARNING_POSI-
TIONLIMITPOS

Position is in limitation towards position limit
(SWLimit2DecPos), axis decelerates near positive
software limit switch

112 ErrorID_WARNING_POSI-
TIONLIMITNEG

Position is in limitation towards position limit
(SWLimit2DecNeg), axis decelerates near negative
software limit switch

113 ErrorID_WARNING_POSI-
TIONOVERRUN

A linear axis created a 32bit position overrun (>
2147483647 u=>inc) =>configure modulo

114 ErrorID_WARNING_ABOR T Axis aborted due to too large position gap due to ve-
locity limitation

115 ErrorID_WARNING_MOVE
MENT_DIRECTION

Either positive or negative direction blocked by
MC_Power

10.1.3.5 Error handling

All access to the drive/motion control is via Function Blocks. Internally these Function Blocks provide

basic error checking on the input data. Exactly, how this is done is implementation dependent. For in-

stance, if “MaxVelocity” is set to 6000, and the Velocity input to a Function Block is set to 10,000, a basic

error report is generated. In the case where an intelligent drive is coupled via a network to the system, the

“MaxVelocity” parameter is stored on the drive. The Function Block must take care of the errors generated

by the drive internally. With another implementation, the “MaxVelocity” value could be stored locally. In

this case the Function Block will generate the error locally.

Both centralized and decentralized error handling methods are possible when using the motion control

Function Blocks.

Centralized error handling is used to simplify programming of the Function Block. Error reaction is the

same independent of the instance in which the error has occurred.

221
3ADR011116

221 Motion Controller with AC500 V3

Function Blocks with centralized error handling

Decentralized error handling gives the possibility of different reactions depending on the Function Block

in which an error occurred.

Function Blocks with decentralized error handling

10.1.3.6 PLCopen parameter

Additional parameters are available by ReadParameter and WriteParameter Function Blocks.

Note: Following function blocks can be used for the read and write operation. Function-
ality of these blocks and its variables are explained in the integrated documentation

MC_ReadParameter

MC_WriteParameter

MC_ReadBoolParameter

222
3ADR011116

222 Motion Controller with AC500 V3

MC_WriteBoolParameter

Parameter

number (PN) Name

Comments Data
type

Min. Max. Default R/W

1 CommandedPosi-
tion

Commanded position. DINT R

2 SWLimitPos Positive software limit switch
position.

DINT -2147483647 2147483647 2147483647 R/W

3 SWLimitNeg Negative software limit
switch position.

DINT -2147483647 2147483647 -

2147483647

R/W

4 Enable LimitPos Enable positive software
limit switch.

BOOL FALSE TRUE FALSE R/W

5 Enable Lim itNeg Enable negative software
limit switch.

BOOL FALSE TRUE FALSE R/W

6 Enable Pos-LagMo ni-
toring

Enable monitoring of posi-
tion lag (following error).

BOOL FALSE TRUE TRUE R/W

7 MaxPositionLa g Maximal position lag. DINT 1 2147483647 R

8 MaxVe locit- System Maximal allowed velocity of
the axis in the motion system.

DINT 32767 R

9 MaxVe locityAppl Maximal allowed velocity of
the axis in the application.

DINT 0** 32767 32767 R/W

10 Actual Velocity Actual velocity. DINT -32767 32767 R

11 CommandedVe locity Commanded velocity. DINT -32767 32767 R

12 MaxAc ceeration-
System

Maximal allowed accelera-
tion of the axis in the motion
system.

DINT 32767 R

13 MaxAccelerationAppl Maximal allowed accelera-
tion of the axis in the appli-
cation.

DINT 10 32767 32767 R/W

14 MaxDe celeration Sys-
tem

Maximal allowed decelera-
tion of the axis.

DINT 32767 R

15 MaxDe celerationAppl Maximal allowed decelera-
tion of the axis.

DINT 10 32767 32767 R/W

16 MaxJerk Maximal allowed jerk of axis. DINT 0* 2147483647 2147483647 R/W

2001 MODUL O_NOMIN-
ATOR

ABB specific parameter. Used
for PLC-based Motion Control
implementation: Gearbox
modifier to MODULO_RANG E

DINT 1 2147483647 1 R/W

2002 MODUL O_DEN OMI-
NATOR

ABB specific parameter. Used
for PLC-based Motion Control
implementation: Gearbox
modifier to MODULO_RANG E

DINT 1 2147483647 1 R/W

2003 Enable- Limit2D ecel-
erate

Enable software limit
switches to decelerate

BOOL FALSE TRUE FALSE R/W

2004 Enable LimitAbort Enable that soft- ware limit
switches will abort ongoing
movement FALSE = Limits po-
sition a. velocity, decelerates
and shows a warning until the
position limit is reached, then
ERROR STOP TRUE =
Switches off any ongoing mo-
tion and decelerates to the
position limit, then ERROR
STOP

BOOL FALSE TRUE FALSE R/W

2005 Enable- LimtVe locity If the velocity is limited the
unmoved position will be cov-
ered whenever possible

BOOL FALSE TRUE FALSE R/W

2006 SWLimi t2DecP os Used as end position for En-
ableLimit2Decelerate

LREAL -2147483647 2147483647 2147483647 R/W

2007 SWLimi t2DecN eg Used as end position for
Ena- bleLimit2Decelerate

LREAL -2147483647 2147483647 2147483647 R/W

2008 MaxPo sitionGapLL Used to stop the ongoing
movement if position is be-
hind

LREAL 0 214748364700 0 R/W

0* means: no limitation of jerk is performed.

223
3ADR011116

223 Motion Controller with AC500 V3

**Axis will stay in stop.

***is modified by CMC_Axis_Control_Parameter, the max. Value is calculated in increments, the value

which is delivered by ReadParameter will be given in [u].

In addition to the above parameters certain other operation can be done using the below param eters

from the data type "Axis_Parameter"

Name Type Initial Comment

paraFilterVariant INT Filter for actual velocity

0 = PT1

1 = LinearRegression

paraFilterTime INT 10 Time in PLC cycles, used with para-

Filter- Variant

paraFilterForecast INT 0 Time in PLC cycles, used with para-

Filter- Variant = 1

paraReverseDirection INT 0 Changes the direction for actual and

reference positions based on the

mode selected.

0 = normal direction

1 = reverse input position

2 = reverse output position and

speed reference

3 = reverse both

paraEarlyClosedLoop BOOL FALSE TRUE: hold the posi tion when

Drive_Release is set (not wait for

Drive_InOperation = TRUE)

paraLateOpenLoop BOOL FALSE TRUE: hold the position until

Drive_InOperation = FALSE

10.1.3.7 Limits

Limitations for the inputs of PLCopen Function Blocks when used with CMC_Basic_Kernel

Parameter Min. Max.

Velocity 0 x

Acceleration, Deceleration 0 x

Position -2147483647 2147483647

10.1.3.8 General restrictions

Restrictions for the available function blocks

As buffered mode, MC_Aborting is realized as a default. This does NOT mean that the axis stops when

another movement is started while an ongoing movement is still active. It means instead that the new

movement will take control immediately and change the velocity to its own velocity by using its own ac-

celeration or deceleration.

The buffered mode MC_Buffered could be reached with using the axis state StandStill as enable signal for

the Execute of the next block.

From the Extended Inputs and Outputs at the Function Blocks, the following are not realized:

224
3ADR011116

224 Motion Controller with AC500 V3

BufferedMode: The realization just supports the MC_Aborting mode.

The following Outputs at ReadStatus are not supported: ConstantVelocity, Accelerating and Decelerating.

TorqueLimit for Homing Function Blocks.

225
3ADR011116

225 Motion Controller with AC500 V3

226
3ADR011116

226 Motion Controller with AC500 V3

MC_Aborting Mode

The diagram shows the behavior with BufferMode MC_Aborting, which is the only available BufferMode.

When the second Block is activated, it will take control and will continue on its own velocity. The velocity

is changed by using the acceleration value from the second Function Block. The movement will not be

stopped in between. The first Function Block shows CommandAborted when the second Function Block

is activated.

MC_Buffered

 A behavior according to BufferMode MC_Buffered could be reached by using the Done output from the

first Function Block to enable the Execute of the second Function Block.

10.1.3.9 Behavior of the function block inputs and outputs

10.1.3.9.1 General rules

General rules

Output exclusivity The outputs Busy, Done, Error, and CommandAborted are mutually exclusive:

Only one of them can be TRUE on one Function Block. If Execute is TRUE, one of

these outputs has to be TRUE. Only one of the outputs Active, Error, Done and

CommandAborted is set at the same time.

Output status The outputs Done, InGear, InSync, InVelocity, Error, ErrorID and CommandA-

borted are reset with the falling edge of Execute. However, the falling edge of

Execute does not stop or even influence the execution of the actual Function

Block. It must be guaranteed that the corresponding outputs are set for at least

one cycle if the situation occurs, even if execute was reset before the Function

Block completed. If an instance of a Function Block receives a new execute be-

fore it has finished (as a series of commands on the same instance), the Func-

tion Block will not return any feedback, like Done or CommandAborted, for the

previous action.

Input parameters The parameters are used with the rising edge of the execute input. To modify

any parameter, it is necessary to change the input parameter(s) and to trigger

the motion again.

Missing input pa-

rameters

According to IEC 61131-3, if any parameter of a Function Block input is missing

(open) then the value from the previous invocation of this instance will be used.

In the first invocation the initial value is applied.

Position versus dis-

tance

Position is a value defined within a coordinate system. Distance is a relative

measure related to technical units. Distance is the difference between two posi-

tions.

Sign rules Velocity, Acceleration, Deceleration and Jerk are always positive values. Position

and Distance can be both positive and negative.

Error Handling Be-

havior

All Function Blocks have two outputs, which deal with errors that can occur

while executing that Function Block. These outputs are defined as follow:

Error: Rising edge of Error informs that an error occurred during the execution

of the Function Block.

ErrorID: Error number

227
3ADR011116

227 Motion Controller with AC500 V3

 The outputs Done, InVelocity, InGear, and InSync mean successful completion,

so these signals are logically exclusive to Error.

Types of errors:

• Function Blocks (e.g. parameters out of range, state machine violation

attempted),

• Communication,

Drive Instance errors do not always result in an axis error (bringing the axis to

StandStill). The error outputs of the relevant Function Block are reset with fall-

ing edge of Execute.

Function Block Nam-

ing

In case of multiple libraries within one system (to support multiple drive/ mo-

tion control systems), the Function Block naming may be changed to MC_Func-

tionBlockName_SupplierID.

Behavior of Done

output

The outputs Done, InGear, InSync... are set when the commanded action has

been completed successfully. With multiple Function Blocks working on the

same axis in a sequence, the following applies:

When one movement on an axis is interrupted with another movement on the

same axis without having reached the final goal, Done of the first Function

Block will not be set.

Behavior of Com-

man dAborted out-

put

CommandAborted is set, when a commanded motion is interrupted by another

motion command. The reset-behavior of CommandAborted is like that of Done.

When CommandAborted occurs, the other output-signals such as InVelocity are

reset.

Inputs exceeding

appli cation limits

If a Function Block is commanded with parameters which result in a violation of

application limits, the instance of the Function Block generates an error. The

consequences of this error for the axis are application specific and thus should

be handled by the application program.

Behavior of Busy

output

Every Function Block can have an output Busy, reflecting that the Function

Block is not finished. Busy is SET at the rising edge of Execute and RESET when

one of the outputs Done, Aborted, or Error is set. It is recommended that this

Function Block should be kept in the active loop of the application program for

at least as long as Busy is true, because the outputs may still change. For one

axis, several Function Blocks might be busy, but only one can be active at a time.

Exceptions are MC_SuperImposed and MC_Phasing, where more than one Func-

tion Block related to one axis can be active.

Output Active The output Active is required on buffered Function Blocks. This output is set at

the moment the Function Block takes control of the motion of the according

axis. For unbuffered mode the outputs Active and Busy can have the same

value.

Enable and

Valid/Status

The input Enable is coupled to output Valid. Enable is level sensitive, and Valid

shows that a valid set of outputs is available at the Function Block. The output

Valid is TRUE as long as an output value of Valid is available and the input Enable

is TRUE. The relevant output value can be refreshed as long as the input Enable

is TRUE. If there is a Function Block error, the output is not Valid (Valid set to

FALSE). When the error condition disappears, the values will reappear and out-

put Valid will be set again.

228
3ADR011116

228 Motion Controller with AC500 V3

Behavior of the Execute/Done style Function Blocks.

10.1.3.9.2 Why is the command input edge sensitive?

The input Execute for the different Function Blocks described in this document always triggers the func-

tion with its rising edge. The reason for this is that with edge triggered Execute new input values may be

commanded during execution of a previous command. The advantage of this method is a precise man-

agement of the instant a motion command is performed. Combining different Function Blocks is then

easier in both centralized and decentralized models of axis management. The output Done can be used

to trigger the next part of the movement. The example given below is intended to explain the behavior of

the Function Block execution.

The following figure illustrates the sequence of three Function Blocks First, Second and Third controlling

the same axis. These three Function Blocks could be for instance various absolute or relative move com-

mands. When First is completed the motion its rising output “First. Done” triggers “Second.Execute”. The

output “Second.Done” AND “In13” triggers the “Third.Execute”.

229
3ADR011116

229 Motion Controller with AC500 V3

Function Blocks to perform a complex movement

10.1.3.9.3 The input ContinuousUpdate

As described in the previous chapter, the input Execute triggers a new movement. With a rising edge of

this input the values of the other Function Block inputs define the movement. Until version 1.1 of PLCo-

pen there was the general rule that a later change in these input parameters does not affect the ongoing

motion.

Nevertheless, there are numerous application examples, where a continuous change of the parameters is

needed. The user could retrigger the input Execute of the Function Block, but this complicated the appli-

cation.

Therefore, the input ContinuousUpdate has been introduced. It is an extended input to all applicable

Function Blocks. If it is TRUE, when the Function Block is triggered (rising Execute), it will

- as long as it stays TRUE – make the Function Block use the current values of the input variables and ap-

ply it to the ongoing movement. This does not influence the general behavior of the Function Block nor

does it impact the single axis state diagram. In other words, it only influences the ongoing movement

and its impact ends as soon as the Function Block is no longer Busy or the input ContinuousUpdate is set

to FALSE.

230
3ADR011116

230 Motion Controller with AC500 V3

Note: It can be that certain inputs like BufferMode are not really intended to change every

cycle. However, this has to be dealt with in the application, and is not forbidden in the

specification

If ContinuousUpdate is FALSE with the rising edge of the input Execute, a change in the input parameters

is ignored during the whole movement and the original behavior of previous versions is applicable. The

ContinuousUpdate is not a retriggering of the input Execute of the Function Block. A retriggering of a

Function Block which was previously aborted, stopped, or completed, would regain control on the axis

and modify its single axis state diagram. Opposite to this, the ContinuousUpdate only effects an ongo-

ing movement. Also, a ContinuousUpdate of relative inputs (e.g. Distance in MC_MoveRelative) always

refers to the initial condition (at rising edge of Execute).

Example

MC_MoveContinuousRelative is started at Position 0 with Distance 100, Velocity 10 and Continu-

ousUpdate set TRUE. Execute is Set and so the movement is started to position 100.

While the movement is executed (let the drive be at position 50), the input Distance is changed to 130,

Velocity 20.

The axis will accelerate (to the new Velocity 20) and stop at Position 130 and set the output Done and

does not accept any new values

10.1.3.10 Unit of length

The only specification for physical quantities is made on the unit of length (noted as [u]) that is to be co-

herent with its derivatives i.e. (velocity [u/s]; acceleration [u/s2]; jerk [u/s3]). Nevertheless, the unit [u] is not

specified (manufacturer dependent). Only its relations with others are specified.

10.1.3.11 Aborting versus buffered modes

Some of the Function Blocks have an input called BufferMode. With this input, the Function Block can ei-

ther work in a Non-buffered mode (default behavior) or in a Buffered mode. The difference between those

modes is when they should start their action:

• A command in a non-buffered mode acts immediately, even if this interrupts another motion,

• A command in a buffered mode waits till the current Function Block sets its output Done (or InPosi-

tion, InVelocity...).

The library just supports the mode "aborting" (MCAborting)

If an on-going motion is aborted by another movement, it can occur that the braking distance is not suf-

ficient due to deceleration limits.

In rotary axis, a modulo can be added. A modulo axis could go to the earliest repetition of the absolute

position specified, in cases where the axis should not change direction and reverse to attain the target

position.

In linear systems, the resulting overshoot can be resolved by reversing, as each position is unique and

therefore there is no need to add a modulo to reach the correct position.

The following examples describe the different behavior of these modes:

231
3ADR011116

231 Motion Controller with AC500 V3

Example 1:Standard behavior of two following absolute movements

Timing diagram for example above without interference between Function Block 1 and Function Block 2

232
3ADR011116

232 Motion Controller with AC500 V3

Example 2: Aborting motion

Timing diagram for example above with Function Block 2 interrupting Function Block 1 (McAborting Mode)

233
3ADR011116

233 Motion Controller with AC500 V3

10.1.3.12 PLCopen Examples

Example: A function block instance controls different motions of an axis

The following figure shows an example where the Function Block (MC_MoveVelocity) is used to control

AxisX with three different values of Velocity. In a Sequential Function Chart (SFC) the velocity 10, 20, and

0 is assigned to V. To trigger the input, execute with a rising edge the variable E is stepwise set and re-

set.

Single Function Block with SFC

The following timing diagram explains how it works:

Timing diagram for a usage of single Function Block

Note: The second InVelocity is set for only one cycle because the Execute has

gone low before the ActualVelocity equals CommandedVelocity.

234
3ADR011116

234 Motion Controller with AC500 V3

Example: Different function block instances control the motions of an axis

Different instances related to the same axis can control the motions on an axis. Each instance will then

be responsible for one part of the global profile.

Cascaded Function Blocks

The timing diagram:

Cascaded Function Blocks timing diagram

235
3ADR011116

235 Motion Controller with AC500 V3

A corresponding solution written in LD looks like:

Cascaded Function Blocks with LD

10.1.4 PLC-based motion control

10.1.4.1 PLC-based motion control architecture

With PS5611-Motion different Motion Control system structures are possible. Independent of the system

structure a typical Motion Control application consists of the following system elements:

An application program which contains PLCopen Function Blocks that defines the general application

behavior and logic.

A profile generator which generates a position profile based on the dynamic specifications of the appli-

cation program to guide the axis to the desired positions.

A position control loop which outputs a speed reference signal to minimize the following error.

To achieve the best system structure for an application these components can be separated into
different devices. Each type of structure has its own kind of interface and type of signals which
need to be transferred between the interacting devices.

Note: All shown Motion Control system structures (Central Motion Control with or without posi-
tion control loop) can be combined together in the same application program for a Motion Con-
trol project.

With the Function Blocks of motion library, a Motion Control profiler can be used inside the PLC. As shown

in the following figure it is needed to provide the actual position of the drive. The output can be either a

position or a velocity reference signal. The used output signals will then be used to move the axis in the

desired way.

There are 2 possibilities to send a reference value to the drive:

When the position control loop is closed by the PLC by a CMC_Basic_Kernel Function Block, the output

Speed_Reference should be connected to the drive. The value of Speed_Reference can be scaled with the

axis parameters Max_Rpm and Ref_Max.

236
3ADR011116

236 Motion Controller with AC500 V3

When the position control loop is closed by the drive, the output Position_Reference should be connected

to the drive. The unit for the output Position_Reference is incremented as well as the input Drive_Actual-

Position.

Architecture for centralized Motion Control

In general, the programming of a machine consists of two layers as shown in the figure above.

In the application layer Function Blocks according to PLCopen Motion Control are used to program the

application sequences with all necessary types of movements and administrational commands. Due to

the standard PLCopen Motion Control this can be reused in any other machine programs that use PLCo-

pen Function Blocks.

The axis implementation layer is responsible for the execution of the commands from the application

layer and can be programmed for each axis in a different way depending on the hardware components

used.

Needed function blocks for an application with PLC-based Motion Control

Library Content

ABB_MotionControl_AC500.library Kernel Function Block, Parameters Function Block, Axis Simula-
tion Function Block

Data types for AC500 Motion Control

Motion Control Function Blocks according to PLCopen

Note: For a central motion axis implementation the use of the Function Blocks

CMC_Basic_Kernel and CMC_Axis_Control_Parameter are mandatory.

The library design is independent from any bus architecture or any specific drive features.

237
3ADR011116

237 Motion Controller with AC500 V3

Example system architecture is shown below.

System Velocity reference Position feedback

System A Output via analog output channel as volt-

age or current

From incremental encoder connected to

CD522 IO module

System B Output via EtherCAT network Input via EtherCAT network

System C Output as frequency signal of CD522 IO

module

From incremental encoder connected to

CD522 IO module

System D Output via PROFINET IO network Input via PROFINET IO network

System E Output via PTO & PWM channel in eCo V3 Input via either encoder (using onboard

IO), or the PTO or PWM pulse count.

In case the velocity reference value is used from the kernel Function Block the position control loop is

closed inside the PLC. In this case, it is necessary to adjust the related parameters from the parameters

Function Block. When the position reference will be used the position control loop is closed inside the

drive. In this case, the internal control loop is just used to monitor the position and velocity.

Note: When the position reference is used for the drive the following aspects have to be

taken care of:

• It is necessary to use a real time fieldbus, like EtherCAT.

• The PLC cycle must be synchronized to the fieldbus cycle.

• The task calculation times may not exceed the used cycle time.

The drive’s status should be managed by a specialized Function Block that supports the used type of

drive as shown in the figure above. The kernel Function Block is the main Function Block which is needed

to operate an axis with PLC-based Motion Control. It must be used with the parameter Function Block

which is the interface to input parameters which are used to setup the axis.

The drive must be accessed outside the CMC_Basic_Kernel Function Block. Actual values and reference

values might be transferred by a synchronized fieldbus or by I/O. The Function Block CMC_Basic_Kernel

must be called every cycle and at least once before any Function Block MC or MCA is activated.

The following figure shows an example with a CiA402 drive on an EtherCAT network. The main data signals

are drawn in bold lines. Here, the drive will receive a position reference signal which means that the posi-

tion control loop is closed inside the drive.

238
3ADR011116

238 Motion Controller with AC500 V3

In this example the main signals are to be transferred via EtherCAT network. The drive control Function

Block “EAT_CiA402_CONTROL_APP” can be found in the ABB_Ecat_CiA402_AC500.library.

If using the eCo V3 PLCs, use the OBIO_PTOMotionKernel function block (separate library ABB_Motion-

ControlEco_AC500.library) instead of CMC_Basic_Kernel for the PTO functionality.

In the AC500 eCo V3 PLC, if PWM is used in the configuration, use the kernel function block

OBIO_PWMMotionKernel function block instead of CMC_Basic_Kernel function block.

10.1.4.1.1 Kernel function block

The “KERNEL” Function Blocks are available in two variants.

• The OBIO_PTOMotionKernel / OBIO_PWMMotionKernel function blocks are solely to be used in

eCo V3 CPUs and to make use of the integrated stepper-IO. It connects automatically to the inter-

nal IOs. Use the PTO or PWM specific kernel block based on your configuration.

• The CMC_Basic_Kernel block is designed to be used in any V3 PLCs and can either work with

drives connected to a fieldbus or IOs.

Topic OBIO_PTOMotionKernel/ OBIO_PWMMo-
tionKernel

CMC_Basic_Kernel

Recommended PLC eCo V3 PLC All V3 PLC’s

239
3ADR011116

239 Motion Controller with AC500 V3

10.1.4.2 Basic functionalities

10.1.4.2.1 How to connect a drive

The connection to a drive must be done with the inputs and outputs of the Function Block

CMC_Basic_Kernel. All inputs and outputs of the kernel Function Block with the prefix “Drive_” are in-

tended to be used with a drive, but in some cases not all of them are needed. In all cases the input

Drive_ActualPosition has to be connected with the actual position of the axis. This value can be received

by an IO module of the PLC or via a fieldbus.

Depending on which device closes the position control loop either the output Speed_Reference or Posi-

tion_Reference output has to be used. The value of Speed_Reference can be connected to an analog out-

put module or be transferred via a fieldbus. The value of Position_Reference should be exclusively sent via

a real-time fieldbus like EtherCAT.

Example 1: Analog drive - Motor with incremental encoder

In this example the position control loop will be closed by the PLC, therefore the input Drive_ActualPosi-

tion and the output Speed_Reference are to be used.

In combination with the IO module CD522 and the corresponding Function Block CD522Encoder32Bit the

position of the encoder can be used. For the effective resolution of the encoder parameter Inc_Per_R of

the parameter Function Block must be used.

The output Speed_Reference can be written directly to the global variable of an output channel of an ana-

log module but can also be transferred via a fieldbus. The scaling of this output value can be done with

the parameters Ref_Max and Max_Rpm of the Function Block CMC_Axis_Control_Paramter_Real.

The scaling of the Speed_Reference value can be set with the inputs Ref_Max and Max_Rpm of the param-

eter Function Block.

In order to finish a homing sequence which is done by the Function Block MC_StepRefPulse the outputs

Drive_Set_Ref and Drive_Set_Position from the kernel Function Block have to be connected with the in-

puts EN_RPI and START_VALUE of the CD552 IO module Function Block. Also the output RdyRpi of the

CD552 IO module Function Block has to be connected with Drive_Ref_Ok from the kernel Function Block.

To enable and disable the drive Drive_Release could be connected to a binary output to activate the drive.

Drive_InOperation could be connected to a binary input to get the information that Drive_Release was

successful.

Example 2: Servo Drive - Microflex e190 via EtherCAT in continuous positioning mode (csp)

240
3ADR011116

240 Motion Controller with AC500 V3

In this example the position control loop will be closed by the drive, therefore the input Drive_ActualPosi-

tion and the output Position_Reference are to be used. The inputs referring to the position control loop

of the parameter Function Block do not have to be set.

For the effective resolution of the motor’s encoder parameter Inc_Per_R of the parameter Function Block

has to be adjusted.

To enable and disable the drive Drive_Release and Drive_Inoperation have to be connected to the control

Function Block ECAT_CiA402_Control_App of the library ABB_Ecat_CiA402_AC500.library, which controls

the status and control word of the drive.

All Function Blocks from this library are not password protected and free to be changed in order to be

adapted for different drives. The library and the Function Blocks are marked with the ending _APP.

10.1.4.2.2 How to enable and disable a drive

To enable a drive the Function Block MC_Power must be used within the applicational layer. The kernel

Function Block will then, if possible, output a rising edge on the output Drive_Release which can be con-

nected to the drive-control Function Block which performs the needed actions on the drives control word

to enable the drive. As soon as the drive states enabled, this signal can be connected to the input

Drive_In_Operation of the kernel Function Block. The axis state according to the single axis state diagram

of PLCopen will then switch from Disabled to Standstill.

Enabling sequence of a drive

MC_Power_inst.enable

standstill

Axis State

Application Layer

Kernel_inst.DRIVE_ENABLE

Axis Implementation Layer

Kernel_inst.DRIVE_IN_OPERATION

241
3ADR011116

241 Motion Controller with AC500 V3

If the drive is in state Disabled or ErrorStop the input Drive_Actual_Position will be copied to the output

Position_Reference of the kernel Function Block. The output Speed_Reference will be zero.

When the axis is in operation, which means it is not in state Disabled or ErrorStop, then the output Posi-

tion_Reference will be calculated by the kernel Function Block and the position control loop will be closed,

which outputs nonzero value for the output Speed_Reference in case of a following error. The input Ac-

tual_Position should then follow the position reference. The difference of both values is the following

error and will be supervised by the kernel Function Block.

In case of drive problem, Drive_InOperation should be reset. The Function Block will open the position

control loop and Speed_Reference will be set to zero.

For the most drives the status is control by the drives control word whereas the drives status word repre-

sents its actual status. In order to enable the drive it might be necessary to pass through several drives

states according a defined scheme which depends on the used drive. Therefore the library

ABB_Ecat_CiA402_AC500.library is added to PS5611-Motion package which contains Function Blocks to

operate with different drives on an EtherCAT network. There is also the PS5605-DRIVES library package

which can be used to control the state of other ABB drives and other protocols.

10.1.4.2.3 How to use the axis simulation

It is possible to use a simulated axis instead of a real drive. The axis simulation can be used in the follow-

ing use cases:

When the real drive is not available the simulation can be used to test all available motion functionalities

to verify the application program.

The simulation can be used to create a virtual master axis and synchronize other axes to it.

The simulation is realized by the Function Block CMC_Axis_Simu or input Enable_Virtual =

TRUE can be used at the KERNEL-block.

Homing will be possible if the limit-switches (data type CMC_Axis_IO) are simulated also. This is not done

by CMC_Axis_Simu but could be realized in the PLC program.

Example for Simulation

The drive velocity is simulated by PT1-Characteristic. The input T1 gives the time constant for this PT1 as

multiple of the cycle time. All other properties are simulated according to the CMC_Axis_Control_Parame-

ter.

242
3ADR011116

242 Motion Controller with AC500 V3

Note: The value of the time behavior from the axis simulation Function Block set by the

input T1 has to be at least four times smaller than the value of the axis parameter Con-

trol_Time from the parameter Function Block. If Enable_Virtual = TRUE is used, no delay

will be applied to the simulated drive speed, and it will not be possible to test the posi-

tion-control loop, but it will be fine to be used as virtual axis.

10.1.4.2.4 How to perform a homing

The homing of an axis is a procedure which consists of up to two phases. For each phase there are differ-

ent Function Blocks available. The available Function Blocks are according to PLCopen and belong to the

application layer. Available Function Blocks for each phase are listed in the table below.

Overview of the available homing function blocks

 Phase 1 Phase 2/Finish Homing

MC_StepAbsSwitch X

MC_StepDirect X

MC_StepLimitSwitch X

MC_StepRefPulse X

To create a complete homing sequence one Function Block of each phase can be used.

First phase

The used Function Blocks will change the axis state to Homing and will move the axis to approach in-

stalled limit switches or a dedicated absolute switch in the desired directions. No manipulation of a posi-

tion value will be done in this phase. The use of Function Blocks of this phase is optional for a homing.

The signals of the installed limit switches have to be written to a variable of the data type CMC_Axis_IO.

Second phase

Function Blocks from this phase will also change the axis state to Homing if this has not already happen

and will finish the homing. Therefore a new position will be set to the axis. The axis state will then switch

back to Standstill.

The use of a Function Block of the second phase is mandatory for a homing.

In general with AC500 PLC-based Motion Control there are two position values: One position value will

represent the encoder counts of a drive or the CD522 module which is connected to the input Drive_Actu-

alPosition of the kernel Function Block. The other position is a user defined scaled unit which is used for

PLCopen Function Blocks.

There are different ways to finish the homing by manipulate and adjust a position value. Which value

should be manipulated depends on the used drive or module and its capabilities. See the following types

A, B and C.

Type A

The user defined position unit will be changed only. The Function Block MC_StepDirect must be used here.

This type of homing is less complex than the other types but also less precise.

243
3ADR011116

243 Motion Controller with AC500 V3

Homing Type A

Type B

The Drive or the CD522 module will change its own position value, the encoder counts.

Homing Type B

The process will be started by the execution of the Function Block MC_StepRefPulse. The axis will start to

move.

The output Drive_Set_Ref of the kernel Function Block will then set the drive to sense for a digital signal.

At the same time the kernel Function Block outputs a preset value which will replace the actual encoder

count value at the moment the digital signal occurs.

This signal can be a Z-pulse of an incremental encoder but also any other signal from a sensor. This func-

tionality may require a configuration of the drive or the CD522 module to be used.

244
3ADR011116

244 Motion Controller with AC500 V3

In the same cycle when the new position value is set there also has to be a Boolean signal stating a new

position value at the input Drive_Ref_Ok of the kernel Function Block. The user defined position value will

then be shifted accordingly.

Example of type B for phase 2: Chapter “How to connect a drive”

Type C

The encoder count position value will not be changed but involves registration capabilities of a drive or

the CD522 module.

Homing Type C

The process will be started by the execution of the Function Block ECAT_HomingOnTouchProbe_APP

(ABB_Ecat_CiA402_AC500.library).

The axis will start to move. The output Drive_Set_Ref of the kernel Function Block will then command the

drive or the CD522 module to activate the Touch Probe functionality. This will configure the drive to latch

a position at the moment a digital signal occurs. The digital signal can be a Z-pulse of an incremental en-

coder but also any other signal from a sensor. This functionality may require a configuration of the drive

or the CD522 module in order to be used.

In combination with the latched position value there is a Boolean signal which states that a new latch

value has been received. In case of the module CD522 this encoder count position value has to be con-

verted from encoder counts to equivalent user scaled units by the use of the function

“CMC_Get_Units_From_Inc” (ABB_MotionControl_AC500.library) before it can be connected to the Func-

tion Block ECAT_HomingOnTouchProbe_APP.

To manage the Touch Probe objects of a drive within the CiA402 profile (e.g. Microflex e190) the Function

Block ECAT_HomingOnTouchProbe_APP (ABB_Ecat_CiA402_AC500.library) can be used. This will also

cover the conversion from encoder counts to user scaled units.

At the end of the process the Function Block ECAT_HomingOnTouchProbe_APP will manipulate the user

scaled position value according to the latched position from the drive and the users settings.

245
3ADR011116

245 Motion Controller with AC500 V3

10.1.4.2.5 How to Use a CAM curve

Note – From Automation Builder 2.5.0 onwards the inbuild Cam Editor is the preferred method to gener-

ate Cam Table. For more details on how to use Cam Configurator please refer to chapter 9.1.

It is recommended to use the CAM Editor from Automation builder for those who are new to Cam table or

to get the structure of the Cam Table. User can create the complete CAM Table using Cam Editor or can

make a copy of CAM Table (IEC Code) and adapt it directly in the IEC code if needed.

The below described CAM functionality is only available in combination with the kernel Function Block

CMC_Basic_Kernel.

Details on the CAM Table structure and different parameters to be considered while creating the CAM is

described below.

General usage

The usage of a CAM function is based on the following elements:

CAM table defined with the data type MC_PProfile.

An instance of the Function Block MC_CamTableSelect

An instance of the Function Block MCA_Cam_Extra (optional)

An instance of Function Block MC_CamIn

An instance of Function Block MC_CamOut

The following steps are necessary to use a CAM table

Declare a CAM table as an array of the data type MC_PProfile in the program and Write data to this array.

Usually, this step is done automatically when using Cam editor functionality.

Use the address of the CAM table at the input CamTable of the Function Block MC_CamTableSelect.

Execute the Function Block MC_CamTableSelect to process the data of the CAM table with the Function

Block’s input parameters

Additionally, you can execute the Function Block MCA_Cam_Extra for optional parameters after the pro-

cessing of the Function Block MC_CamTableSelect.

Execute the Function Block MC_CamIn to start the slave axis movement according to the CAM table data

and parameters.

The axis will operate in the axis state Synchronized Motion.

To leave the axis state you can execute the Function Block MC_CamOut.

The axis state will switch to state Continuous Motion and maintains its last velocity as long as there is no

other command.

You can also use any other motion command interrupt the Synchronized Motion.

CAM table

CAM data is done with one table (two dimensional – describing master and slave positions together).

The data of the elements (array of data type MC_PProfile) can either be assigned within the declaration

or can be assigned during runtime before the execution of the Function Block MC_CamTableSelect.

It can be filled with data in the following ways:

• To use a predefined variable list.

• To calculate the values within the program (before using the MC_CamTableSelect).

• To send values by any communication access to the PLC.

In order to use the new data, it is necessary to execute the Function Block MC_CamTableSelect again. In

case the CAM table is executed the Function Block MC_CamTableSelect may not be executed.

The inputs MasterSyncPosition and MasterSyncDistance of the function block MC_CamIn can be used to

define a distance to synchronize the slave axis onto the CAM table during the start. In case master axis

246
3ADR011116

246 Motion Controller with AC500 V3

moves with negative velocity the parameter MasterSyncDistance can be negative. The MasterSyncPosi-

tion should always be within the range of the CAM table master position.

MasterSyncDistance = 0 will deactivate the synchronization. In this case the slave axis should be moved

on the CAM curve before MC_CamIn is executed, otherwise a following error can occur.

CAM profile illustration

The master position in the CAM table must be strictly monotonic rising (varying in such a way that it ei-

ther never decreases).

The length of a CAM table is just restricted by the memory size of the PLC. When long tables are used, it is

recommended to call CamTableSelect in a task with lower priority as it will need a considerable compu-

ting time.

It is possible to hold several CamTables as a pool and to switch from one to another. This must be done at

matching positions as no means for synchronization are available.

The offset and scaling values (except the time-scale) are transferred continuously. This will allow to follow

a "Moving Target" by adjusting these values.

The parameters at MC_CamTableSelect, MC_CamIn and function and MCA_Cam_Extra also modify the

behavior:

Parameter MC_Cam-
TableSelect

Type Default
value

Comment

MasterAbsolute BOOL FALSE TRUE=Master_position from MC_PProfile
equals the master axis absolute position.

FALSE=CAM is executed relative to the
master axis actual position at start.

SlaveAbsolute BOOL FALSE TRUE=interpolation_point from MC_PProfile
equals the slave axis absolute position.

FALSE=CAM is started from actual slave posi-
tion. The values "interpolation_point" are rela-
tive to the slave axis position at start.

iType MC_ABB_iTypes_E
NUM

 Interpolation type.

Number_of_pairs INT Number of points used in TimePosition Array.

247
3ADR011116

247 Motion Controller with AC500 V3

Parameter
MC_CamIn

Type Default value Comment

MasterOffset LREAL 0 Just used with MasterAbsolute=TRUE,
ignored otherwise.

Used position for cam-table is: Master axis
position-MasterOffset.

SlaveOffset LREAL 0 Just used with SlaveAbsolute=TRUE, ignored
otherwise. Used position is slave axis posi-
tion=interpolation_point+Slaveoffset.

MasterScaling LREAL 1 The position used for interpolation is multiplied
by MasterScaling, e.g MasterScaling=2, the
scaled master will pass the position range with
double velocity and within the half distance
compared to its real velocity and position.

SlaveScaling LREAL 1 Interpolation result is multiplied by Slave-
Scaling, e.g SlaveScaling=2: Slave axis will
run twice the distance.

MasterSyncPosition LREAL 0 Start synchronization at master axis position =
MasterSyncPosition - MasterStartDistance
 + MasterOffset, meet the CamTable at mas-
ter axis position = MasterSyncPosition.

In case of MasterAbsolute = FALSE: start at
"actualPosition + MasterSyncPosition - Mas-
ter- StartDistance", meet the CamTable at
"actual- Position+MasterSyncPosition"!!! It is
just possible to use the "sync" mechanism
when the axis is in StandStill on start.

MasterStartDistance LREAL 0 A negative value will create a reverse syn-
chronization mode, which means the master
should move in negative direction to synchro-
nize. It is independent from the Reverse- Bit
which indicates how to end the movement.

These 2 parameters are "extras" to be written with the MCA_Cam_Extra function. When the parame-
ters are used, the MCA_Cam_Extra has to be called after the MC_CamTableSelect.

Periodic BOOL TRUE for master
“Modulo”, FALSE for
master linear axis

CamTable will not reach "EndOfProfile" but
will be repeated periodically. When the master
is a linear axis, it must move forward and
backward within the CamTable position range,
but even when it leaves this position range,
the CamTable will stay active.

Reverse BOOL FALSE Just necessary when a CamTable is NOT "pe-
riodic" and will run in reverse direction (master
with negative velocity) Reverse=FALSE, the
CamTable is ready when the master leaves
the position range in positive direction, e.g.
when it moves from 359º to 0º on a rollover
axes Reverse=TRUE, the CamTable is ready
when the master leaves the position range in
negative direction.

248
3ADR011116

248 Motion Controller with AC500 V3

Example for CAM curve

In the example, the slave will run from 0 to 2000 while the master runs from 0 to 1000. The slave will start

and end with velocity=0, no matter which velocity the master has during start. The slave will reach the

maximum velocity when it is at position 1000 and the master is at position 500.

249
3ADR011116

249 Motion Controller with AC500 V3

10.1.4.2.6 How to use an external axis

To use multiaxis PLCopen Function Blocks with an externally sensed axis as master axis the following

structure can be used for the axis implementation:

Structure synchronization to an external axis

The use of a feed forward filter Function Block is needed if the slave axis has to follow the position of the

external axis. In this case there will be a time delay between sensing the position of the external axis and

moving the follower axis along the sensed position. The filter Function Block will then add a certain dis-

tance to the external axis’ position depending of its speed.

The filter Function Block MATH_LINEAR_REGRESSION from the library ABB_MathFunc tions_AC500.library

can be used here.

250
3ADR011116

250 Motion Controller with AC500 V3

For an axis which is following the external axis, the value “mcActualValue” (from MC_Source enumeration)

for the input “MasterValueSource” for multi-axis PLCopen Function Blocks has to be used.

When the filter Function Block MATH_LINEAR_REGRESSION is used to process an actual position, 2 differ-

ent purposes are fulfilled:

A jitter or noise can be compensated

It is possible to calculate a forecast-position to compensate for a delay in position measurement

Note: Process the actual position or any other master axis always before the slave axis.

Otherwise, an additional one cycle-delay is introduced.

The MATH_LINEAR_REGRESSION function block calculates the progress for a variable which is captured in

equidistant periods of time and is assumed to follow a linear curve. It uses the Gauss “least squares” -

algorithm to do so. The line is calculated in a way that the sum of squares for the distances from the

measured points to the assumed straight line is minimized.

A noise or jitter influence of the value is compensated and a predictive value for the variable with an ad-

justable forecast horizon can be calculated.

Linear equation:

Sum of squares:

The gradient and offset for the line are calculated in a way that “sum” is minimized. Then these 2 values

are used to calculate the forecast value:

FORECAST=0 would mean: value right now, no future or past considered.

When the ACTUAL value is a modulo value, for example a single turn encoder or a rollover axis, this has to

be considered in the calculation. The 2 input values POSITIVE_LIMIT and NEGATIVE_LIMIT can be used to

configure this. They define the upper and lower limit for ACTUAL. Also, the NEXT_BINARY will as a result

be limited to these borders.

Example

251
3ADR011116

251 Motion Controller with AC500 V3

Next Value_Forecast

10.1.4.2.7 How to use an encoder/drive with <> 32 bit position overrun

The incremental position as actual position at the Function Block CMC_Basic_Kernel is usually assumed

as position with a 32-bit position overrun. As well as it is the reference position which is sent to the drive.

Any modulo-axis configuration should be done inside the PLC.

Some drives are requested to correct their positions themselves for a non-linear axis which should con-

stantly run into the same direction.

In this case, the drive has to be configured as a modulo-axis and the Function Block CMC_Basic_Kernel

needs some additional Function Blocks to create the 32-bit value Chapter “Roll-Over axis”

Kernel

The Function Block CMC_Modulo2Binary will convert any position with any Modulo_Range to a 32-bit bi-

nary position.

The actual_position is assumed to run between 0 to Modulo_Range.

The actual_position should not change > 1/4 Modulo_Range between two scan cycles.

The Function Block CMC_Modulo2Binary will convert the 32-bit binary position reference from

CMC_Basic_Kernel to a position reference which runs from 0 to Modulo_Range.

252
3ADR011116

252 Motion Controller with AC500 V3

10.1.4.2.8 How to do position correction “on the fly”

Sometimes it is required to have a position correction "on the fly". For example, it can happen that a posi-

tion is wrong due to mechanical slip and that a switch which is passed by during the movement is used to

capture a position value.

In other cases, it is required to synchronize the position to a print mark, so an actual_position has to be

corrected, but not the movement of the printed material.

For both applications, the Function Block MCA_SetPositionContinuous can be used. It will use ramps and

a limited velocity for the correction, so it will be tolerable to execute it during an ongoing movement and

while the axis is activated in a multi-axis movement.

MCA_Set_PositionContinuous_V3

The block can be used in any axis state except ERRORSTOP and HOMING. Two different operation modes

are possible:

1. SuperImp=FALSE

The actual_position will be modified.

The block will not cause any movement.

If a PLCopen block in DISCRETE_MOTION (positioning) is active during the execution, this block will not

reach Done as the actual_position is modified.

If a slave axis is coupled to an axis while MCA_SetPositionContinuous is executed (with SuperImp=FALSE)

it will follow.

This mode is possible while the axis is in state DISABLED.

2. SuperImp=TRUE

The actual_position will stay constant.

A mechanical movement is executed (without changing the axis state machine).

A slave axis will not follow.

This behavior is like a superimposed movement.

It is not possible when the axis is in state DISABLED.

The block can just be aborted by another MCA_SetPositionContinuous.

10.1.4.2.9 How to limit the movement

It is possible to limit the movement by position (software limit switches) and by velocity. By default, no

software limit switches are activated in PS5611-Motion. It is possible to activate them by accessing some

PLCopen parameter.

The functionality described below is just available with linear axes.

253
3ADR011116

253 Motion Controller with AC500 V3

Num

-ber

Parameter Data

type

Minimum Maximum Default R/W Descrip- tion

2 SWLimitPos DINT 2147483647 2147483647 2147483647 R/W Positive Software limit
switch position.

3 SWLimitNeg DINT 2147483647 2147483647 2147483647 R/W Negative Software limit
switch position.

4 EnableLimit-
Pos

BOOL FALSE TRUE FALSE R/W Enable positive soft-
ware limit switch.

5 EnableLimit-
Neg

BOOL FALSE TRUE FALSE R/W Enable negative soft-
ware limit switch.

2003 Enable-
Limit2Dece lerate

BOOL FALSE TRUE FALSE R/W Enable software limit
switches to decel erate

2004 EnableLimit-
Abort

BOOL FALSE TRUE FALSE R/W Enable that soft- ware
limit switches will abort
ongoing movement
FALSE =
Limits position and ve-
locity, decelerates and
shows a warning until
the position limit is
reached, then ERROR
STOP TRUE =
Switches
off any ongoing motion
and decelerates to the
position limit, then ER-
ROR STOP

2005 Enable-
LimtVelocity

BOOL FALSE TRUE FALSE R/W If the velocity is limited
the unmoved position
will be covered when-
ever possible

2006 SWLimit2D ecPos LREAL -2147483647 2147483647 2147483647 R/W Used as end position for
Enable- Limit2Dec el-
erate

2007 SWLimit2D
ecNeg

LREAL -2147483647 2147483647 2147483647 R/W Used as end position for
Enable- Limit2Dec el-
erate

2008 MaxPosi tioGap LREAL 0 214748364700 0 R/W Used to stop the ongo-
ing movement if position
is behind

The following different behavior is possible:

• No limitation at all (default)

• Limit position with ERRORSTOP: Limit position between SWLimitNeg to SWLimitPos, axis to state ER-

RORSTOP in case the position range is left.

• Limit velocity and acceleration: Limit velocity to paraMaxVelocityAppl and acceleration/deceleration to

paraMaxDecelerationAppl, create WARNING_VELOCITY, not state changes for axis, abort movement is

optional when MaxPositionGap is reached due to limitation.

• Limit Position with ramp-down: In addition, it is possible to limit the position between SWLimit2DecNeg

and SWLimit2DecPos. paraMaxDecelerationAppl is used to ramp down.

• When activated with EnableLimitPos or EnableLimitNeg, the reaction will be as follows: When the control

position reaches the respective limit switch, the axis will go to state ERRORSTOP, and Drive_Release will

254
3ADR011116

254 Motion Controller with AC500 V3

be switched off. The actual_position might be behind, depending on the following error. It is assumed

that a drive or application specific braking is performed. The axis will be stopped behind the limit.

The axis could be switched on again by MC_Power. A movement in the opposite direction will be possible.

The functionality of EnableLimitPos and EnableLimitNegis unchanged.

You can use the limitation of movement to achieve a soft or adjustable braking in advance before reach-

ing the software limit switch. The limitation is activated by three Boolean parameter and will calculate a

position distance to the limit switch, which depends on the actual velocity and given deceleration ramp.

“paraMaxDecelerationAppl” is used for deceleration. It will decelerate the axis by the given deceleration

ramp when the calculated position is reached and stop at the software limit switch. The original behavior

is not modified, so if also these software limit- switches are activated, the axis might be set to state ER-

RORSTOP.

There are 2 different modes:

EnableLimitAbort = TRUE

Any ongoing motion will be aborted immediately (when the distance to stop is reached, as shown

in the above diagram), a warning is shown

The axis will be decelerated to reach the software limit switch.

EnableLimitAbort =FALSE, EnableLimitDecelerate=TRUE

A warning is shown and the velocity is reduced, with respect to the given deceleration and posi-

tion limit.

The ongoing motion is not aborted. If it was just a “tight fit”, e.g. in a master slave movement and

the direction is turned soon enough, it might be possible to continue the movement.

As the ongoing movement is not interrupted, an activated movement might not be completed,

for example a MC_MoveAbsolute will never reach its target position. A warning is shown at func-

tion block CMC_Basic_Kernel.

When EnableLimitPos = TRUE or EnableLimitNeg = TRUE, and the values for SWLimitPos or SWLimitNeg

are set, the axis will be set to state ERRORSTOP when these position limits are reached.

In addition, the function block will allow to limit the velocity. With EnableLimitVelocity = TRUE, it will mon-

itor the velocity demand from the position reference and limit the position reference, so the given veloc-

ity limit will not be exceeded. A warning will be shown. The velocity used for limitation is MaxVelocityAppl.

Note: The velocity limitation can be used to prevent short-term velocity peeks. The lim-

ited position will be caught up later, whenever possible. This can result in not-expected

behavior. The WARNING issued by CMC_Basic_Kernel can be checked and used to stop a

movement. The movement will be aborted automat ically when the position is by MaxPo-

sitionGap behind.

For a single axis movement, the commanded velocity is limited at the begin ning. No posi-

tion gap will occur.

In a multi-axis movement, the slave axis follows a master. This can result in a position

gap. A velocity peek from the master axis can be reduced by using the limitation. If the

master is too fast because of the value for MaxPo sitionGap, the movement will be

aborted

255
3ADR011116

255 Motion Controller with AC500 V3

When EnableLimit2Decelerate or EnableLimitAbort are used, the velocity is limited to MaxVelocitySystem

with EnableLimitVelocity = FALSE. The function modifies the position reference. This modified position

reference is used to control the drive. Whenever the limitation interferes the kernel will show a warning or

an error. The warning or error message will disappear when the situation is cleared.

Parameter
Number

Parameter Name Value Comments

4 EnableLimitPos TRUE ERRORSTOP when positions exceed, no
previous warning or deceleration.

5 EnableLimitNeg TRUE

2003 EnableLimit2Decelerate FALSE

2004 EnableLimitAbort FALSE

2005 EnableLimtVelocity FALSE

Parameter
Number

Parameter Name Value Comments

4 EnableLimitPos FALSE/TRUE Reduce the velocity when reaching a posi-
tion limit within the deceleration distance cal-
culated by using MaxDecelerationAppl. Dis-
play a warning at CMC_Basic_Kernel. The
underlying movement stays active. With En-
ableLimitPos = TRUE or EnableLimitNeg =
TRUE: When the Position limit is reached,
the axis is set to mode ERRORSTOP also if
EnableLimitPos or EnableLimitNeg are
used. Otherwise, just the movement is lim-
ited, without affecting the statema- chine. An
activated positioning movement will not
reach its target. Velocity is limited to MaxVe-
locitySystem.

5 EnableLimitNeg FALSE/TRUE

2003 EnableLimit2Decelerate TRUE

2004 EnableLimitAbort FALSE

2005 EnableLimtVelocity FALSE

Parameter
Number

Parameter Name Value Comments

4 EnableLimitPos FALSE/TRUE Reduce the velocity when reaching a posi-
tion limit within the deceleration distance cal-
culated by using MaxDecelerationAppl. Dis-
play a warning at CMC_Basic_Kernel. The
underlying movement stays active. With Ena-
bleLimitPos = TRUE or EnableLimitNeg =
TRUE: When the Position limit is reached, the
axis is set to mode ERRORSTOP also if En-
ableLimitPos or EnableLimitNeg are used.
Otherwise, just the movement is limited,
without affecting the state machine. An acti-
vated positioning movement will not reach its
target. Velocity is limited to MaxVelocitySys-
tem.

The active PLCopen function block is
aborted as soon as the warning is issued.
With EnableLimitPos = TRUE or Enable-
LimitNeg = TRUE: When the Position limit
is reached, the axis is set to mode ER-
RORSTOP.

5 EnableLimitNeg FALSE/TRUE

2003 EnableLimit2Decelerate ---

2004 EnableLimitAbort TRUE

2005 EnableLimtVelocity FALSE

256
3ADR011116

256 Motion Controller with AC500 V3

Parameter
Number

Parameter Name Value Comments

4 EnableLimitPos --- The velocity is checked and also limited to
the value Max- VelocityAppl. A warning is
shown. The active movement is not aborted.
This functionality works independent from
software limit switches.

5 EnableLimitNeg ---

2003 EnableLimitDecelerate ---

2004 EnableLimitAbort ---

2005 EnableLimtVelocity TRUE

10.1.4.2.10 How does the parameter for jerk influence the axis movements?

Velocity reference with different jerk values

The diagram shows the result with different jerk values and the same velocity and acceleration. The time

needed for acceleration with jerk=0 is:

Time1=velocity/acceleration=(20/100)s=0.2s The additional time with jerk=500 will be: Time2=accelera-

tion/jerk=(500/100)s = 5s So the total time is:

Time=Time1 + Time2=0.2s + 5s=5.2s

In the last example with jerk=100, the velocity and acceleration values are not reached.

10.1.4.3 Axis parameters

The parameters for axis configuration and adjustment are set by the Function Blocks CMC_Axis_Con-

trol_Parameter.

Depending on the version of the kernel Function Block the corresponding version of the param eters

Function Block must be used. The instance will then be connected to the kernel Function Block by its in-

stance name.

257
3ADR011116

257 Motion Controller with AC500 V3

In this example the control structure is a simple position control loop with just proportional gain. When

the application does not require minimized position following error it should be used this way as it is

simple to adjust, robust and requires minimal performance. The proportional gain is then adjusted by

Control_Time. Just change values at CMC_Axis_Control_Parameter when the position control loop is

open (Drive_Release=FALSE, the axis state is Disabled). The values are sending to the control loop with a

positive edge at "Enable". The CMC_Basic_Kernel function block needs to be already enabled.

10.1.4.3.1 Supervision

Pos_Lag_Percentage

This parameter configures the position window for the supervision of the following error. The default

value is 150[%]. A value of 0[%] will deactivate the supervision function.

The size of the position window depends on the setting of the parameters Control_Time and Max_Rpm

“Control_Time” .

Position Window [Increments] = (Inc_Per_R) * (Max_Rpm/60) * (Control_Time/1000)

Position Window [Units] = (U_Per_Rev_Nominator/ U_Per_Rev_Denominator) * (Max_Rpm/60)

* (Control_Time/1000)

Example

Position Window [Increments] = (10000) * (6000/60) * (50/1000) = 50000 [Increments]

Position Window [Units] = (1/1) * (6000/60) * (50/1000) = 5 [Units]

A value of 100% will result in a position window which corresponds to the expected following error with

the giving Control_Time at Max_Rpm. Therefore it is recommended to use values higher than 100[%]. In

case the parameter FF_Percentage is used smaller values can be used.

If the supervised position window is exceeded the axis state will change to ERRORSTOP.

V_Check_Time

After the configured time, the drive’s actual velocity must be at least 50 % of the commanded velocity.

This function can also be used in case the Position Reference is transferred to the drive.

A value of 0 will deactivate this supervision function.

If the supervised velocity window is exceeded the axis state will change to ERRORSTOP.

10.1.4.3.2 Position control loop

Kernel Function Block

258
3ADR011116

258 Motion Controller with AC500 V3

Basic structure of position control loop

Control_Time

The default value is 100 which leads to a proportional gain of 10.

Note: In case the value of Control Time is too short the position control loop will run

into instability.

Note: In case the position control loop has not used this parameter must not be set

to 0.

Control Time and static following error in case the feed forward of velocity and the inte- grational part of the
position control loop is not used.

The static following error depends on the axis velocity and can be calculated easily: Control Time multi-

plied by the axis velocity (p_error = v * CT).

In general it should be aimed to reach a high position control loop gain with a short Control Time to

achieve a small following error. As the reaction times take account in the possible Control Time of the

complete system (parameters of the drive control loop, PLC cycle time as well as the communication

fieldbus) should be considered.

As a basic rule the Control Time should be at least four times longer than the reaction time between the

output of the Speed Reference and the input of actual position.

POSITION_REFERENCE

259
3ADR011116

259 Motion Controller with AC500 V3

When the time Ts and Tt is measured, a control_time of 4 * (Ts + Tt) will result in an aperiodic damping of

the position control loop. It is important to measure the values from inside the PLC (e.g. Trace) to have

the complete reaction times included. Practical values for Control_Time might be from 50 - 500ms. The

PLC cycle time as well as bus cycle times and mechanical reaction will influence the value.

FF_Percentage

The default value is 0.

In case a velocity feedforward must be configured a value of up to 80 is recommended. For larger values

than 80 the parameter Horizon needs to be used as the resulted position will over- shoot otherwise.

A value of 100 adds a velocity to the Speed Reference output which corresponds exactly to the ongoing

Position Reference value.

Time

Integral_Part

The integral part of the position control loop can be used to eliminate a permanent positioning error, e.g.

in case of hanging loads.

The time value can be regarded as the time the integrator needs to sum up the input value to reach the

same value for its output.

Note: In case the Integral Part Time is too short the position control loop will run into in-

stability.

Horizon

A communication delay of the Speed Reference value to the drive system can cause an over- shoot during

positioning caused by the velocity feedforward gain.

This function will compensate this communication delay to prevent an overshoot by time shifting the

signals Velocity Feed Forward and Position Reference relatively to each other.

The value of Horizon can be assumed to be approximatley the time delay of the communication delay.

The delay time might be caused by the cycle time of the control loop and by any delay in sending the

speed reference, delay in the drive to build up the torque and delay to receive the actual position. To

overcome this delay, a Horizon > 0 might be used. The feed forward reference will be created in advance,

while the proportional gain is applied to the original motion profile. The delay is then compensated.

This function should not be used if the feed forward parameter FF_Percentage is 0. A value of 0 will deac-

tivate this function, which is the default value.

While this function is used, it will increase the needed PLC calculation time for this axis.

position

velocity

260
3ADR011116

260 Motion Controller with AC500 V3

Result with Horizon=0

Result with Horizon>0

10.1.4.3.3 PLC Cycle time

This parameter represents the cycle time in which the kernel Function Block of the axis is

called. If the configured cycle time is not correct the resulting acceleration and speed of

an axis will be not correct also.

In case the task execution of the axis is synchronized to a fieldbus (e.g. EtherCAT) the

cycle time of the fieldbus has to be used

10.1.4.3.4 Roll-Over axis

If the Position Reference value is used, the drive must able to perform a position over-

run after 32 bit. If the drive’s position over-run is different, it can be adapted with the

261
3ADR011116

261 Motion Controller with AC500 V3

function blocks CMC_Binary2Modulo and CMC_Modulo2Binary from the library ABB_Mo-

tionControl_AC500.library. Incompatibility can cause an axis to trip after hours of opera-

tion.

The possible position following error must be smaller the ½ Modulo_Range. Make sure

that the modulo range is large enough.

Position following error = (100 - FF_Percentage) * Max_Rpm * Inc_Per_R * Control_Time/

6000000. This is the maximum value at constant velocity.

En_Modulo

With this parameter the axis can be configured as a roll-over axis.

Modulo_Range

The modulo range will be defined in drive position counts (DINT). It will result that the

scaled unit position which is used by the PLCopen function blocks will stay within the de-

fined range.

Example

En_Modulo := TRUE

Modulo_Range := 20000

Inc_Per_Rev := 10000

U_Per_Rev_Nominator := 360 (example – degree)

U_Per_Rev_Denominator := 1

The scaled unit's position will cover the range from 0 to 720 (degrees)

In some cases it is not suitable to set the modulo range of an application with the DINT

value of the parameter Modulo_Range only. In such cases the parameters 2001 Mod-

ulo_Nominator and 2002 Modulo_Denominator can be used to scale the parameter Mod-

ulo_Range to a more precise value.

Parameter Modulo_Nominator and Modulo_Denominator (supported with

CMC_Basic_Ker nel)

These parameters can be used to modify the Modulo_Range in a way that fractions of an

increment could be used for 1 modulo (=rollover) distance

• Default: Modulo_Nominator=1 and Modulo_Denominator=1: the actual position

for an axis is limited between 0 and Modulo_Range increments.

• Limitations: Modulo_Range*Modulo_Nominator < 2147483647. Otherwise: de-

fault values will be used.

• When modifying these parameters, the position control loop should be opened.

Example

En_Modulo = TRUE

Modulo_Range = 1024

Modulo_Nominator = 10

Modulo_Denominator = 3

Inc_Per_R = 1024

U_Per_Rev_Nominator = 80*5*3

262
3ADR011116

262 Motion Controller with AC500 V3

U_Per_Rev_Denominator = 10

Result of parameters Modulo_Range, Modulo_Nominator and Modulo_Denominator: The

modulo range will cover one revolution of the toothed belt wheel.

Result of parameters U_Per_Rev_Nominator and U_Per_Rev_Denominator: One scaled

unit corresponds to one mm of the tooth belt.

Example: Gearbox 10.1

 Option1 Option2

En_Modulo TRUE TRUE

Modulo_Range 10240 10240

Modulo_Nominator 1 1

Modulo_Denominator 1 1

Inc_Per_R 1024 10240

U_Per_Rev_Nominator 36 360

U_Per_Rev_Denominator 1 1

Max_Rpm 3000 300

The two options above describe exactly the same configuration. The Modulo_Range is

equivalent to 10 motor revolutions and is 10240 increments. For the position, 1u means

1° and the resolution is 360°/10240inc = 0,035°/Inc = 1°/28,44 Inc.

Example: Gearbox 10.3

 Option1 Option2

En_Modulo TRUE TRUE

Modulo_Range 1024 10240

Modulo_Nominator 10 1

Modulo_Denominator 3 3

Inc_Per_R 1024 10240

U_Per_Rev_Nominator 108 1080

U_Per_Rev_Denominator 1 1

Max_Rpm 3000 300

The two options above describe exactly the same configuration. The gearbox is 10:3, so

the Modulo_Range is equivalent to 1024*10/3 = 3413 + 1/3 increments. For the first op-

tion, the resulting modulo range is calculated 1024*10/3, for option2, it is 10240*1/3. For

the position, 1u means 1° and the resolution is 108°/1024inc = 0,105°/Inc = 1°/9.481 Inc.

10.1.4.3.5 Scaling of the unit of length
.

Inc_Per_R

With this parameter the number of the drive position counts each revolution of the mo-

tor (DINT) have to be entered.

.

263
3ADR011116

263 Motion Controller with AC500 V3

U_Per_Rev_Denominator & U_Per_Rev_Nominator

With these two parameters the number of units which correspond to one revolution of

the motor have to be entered.

The units of length can be scaled to values like: mm, inch, degree, …

All dynamic parameters of the PLCopen function blocks like velocity, acceleration and

jerk are based on seconds. Velocity [units/s], acceleration [units/s²], jerk [units/s³]
.

.Example 1
Inc_Per_Rev = 10000

U_Per_Rev_Nominator = 360

U_Per_Rev_Denominator = 1

 This will scale one unit to one degrees of the motor shaft. Correspondingly a velocity

[units/s] of 360 will turn the motor shaft one revolution per second.

Example 2

In the example one unit will be scaled to one millimeter of the conveyor.
.

How many units will pass after one revolution of the motor? (80*5mm) / 5 = 80

Inc_Per_Rev = 1024

U_Per_Rev_Nominator = 80

U_Per_Rev_Denominator = 1

Example 3

In the example one unit will be scaled to one millimeter of the conveyor.
.

How many units will pass after one revolution of motor? (80*5mm) / 32 = 12,5 = 125 / 10

Inc_Per_Rev = 1024

U_Per_Rev_Nominator = 125

U_Per_Rev_Denominator = 10

264
3ADR011116

264 Motion Controller with AC500 V3

10.1.4.3.6 Scaling of the speed reference output
.

These two parameters are used to scale Speed Reference output of the kernel FB in or-

der to reach the intended velocity by the output value and to limit the highest possible

output value.
.

Ref_Max

Highest possible output value of the Speed Reference output. The Speed Reference value

that corresponds to the parameter Max_Rpm should be used.
.

Max_Rpm

Maximum speed of the motor in revolutions per minute.
.

.Example

Analog Drive: 1000 rpm at 2 Volts, 3200 rpm at 6,4 Volts (max.)

Analog output module: 10 Volts output at digital value 27648

Ref_Max = 17695 (= 27648 / 10 * 6,4)

Max_Rpm = 3200

10.1.4.3.7 Access and modify parameters

Note: All modifications will be effective immediately. There is no extra plau-

sibility check and values are not checked for limitations.

Use this functionality with care.

Some parameters are collected inside a structure in Axis_Ref, and can be accessed and

modified immediately. They are the same parameters as used with function blocks

MC_WriteParameter and MC_ReadParameter � Chapter “PLCopen parameter” .

The differences are:

• Only available with CMC_Basic_Kernel

• The parameter values are LREAL instead of DINT and can be used with decimals.

• The parameters will be effective immediately.

• There is no check for consistency or limits.

• The parameters for position control can be checked and modified by accessing

the structure parameter.position_control in addition.

Parameter for
position con trol

Description

KP Proportional gain in positive direction. Used directly to multiply the following error
and create the Reference_Prop.

KF Feed forward in positive direction. Used directly to multiply the speed reference
and create the Reference_FF.

KP_BACK Proportional gain in negative direction. Used directly to multiply the following error
and create the Reference_Prop.

KF_BACK Feed forward in negative direction. Used directly to multiply the speed reference
and create the Reference_FF.

265
3ADR011116

265 Motion Controller with AC500 V3

TI Integration time. When parameter is used the position control loop has an ad-
ditional integral part. In TI cycle, the Refer- ence_ITG will reach the value of
Reference_Prop, when KI=100*KP.

KI Proportional gain, used for integral part of position control loop.

KF_100 Value for feed forward gain, if 100% would be used.

Max_Time Delay time used for supervision of velocity. With Max_Time=0, no supervision is
executed.

D_XS_Max Maximum possible velocity in [u/cycle].

The maximum allowed following error is part of the parameter structure,
PLCopen parameter paraMaxPositionLag.

Ref_Max Limit for Speed_Reference.

Element actual of Axis_Ref

The element actual represents actual values from inside the position control loop.

Value Description

Position Actual position in [u] to control the axis.

Control_Position Reference position in [u] which is actually used for control loop.

D_XS Distance in [u] to be moved per cycle.

D_XSS Following error in [u].

Reference_Prop Proportional part for Speed_Reference.

Reference_FF Feed forward part for Speed_Reference.

Reference_ITG Integral part for Speed_Reference.

Note: It is possible to use different gains for forward/ backward movement, to see

improvements for example for hydraulic axis or vertical movement
See parameter KP/KP_BACK and KF/KF_BACK.

Limitation for velocity, acceleration, and deceleration

From library version 3.1 on, these values are not limited to the 16-bit value range (32767).

The limit for velocity is calculated by the values given at CMC_Axis_Control_Parameter

and the acceleration is limited such that this velocity cannot be reached faster than 1 cy-

cle.

10.1.4.4 Programming guidelines

To achieve the best results for Motion Control the actual position must be transferred in

best quality (with minimal jitter) to the PLC. The position feedback is expected to be in

increments as the data type is DINT.

A larger part of the below guidelines is given here for reference, but partly taken care of,

if the Motion Solution Wizard (see chapter 8.1.2) is used, who automatically configures

the Kernel and Parameter blocks and the associated task already in the proposed way as

below (and is by default hidden – there is a box to uncheck and see the generated POUs).

The kernel Function Block (CMC_Basic_Kernel or OBIO_PTOMotionKernel or

OBIO_PWMMotionKernel) must be called every cycle and its task requires a fixed cycle

time.

A variable of type Axis_Ref is used to connect to the PLCopen Function Blocks and their

kernel Function Block.

266
3ADR011116

266 Motion Controller with AC500 V3

The Function Block CMC_Axis_Control_Parameter must be used for the axis configura-

tion. Chapter “Axis parameters” .

The signal of the limits switches and the absolute switch should be connected to the ele-

ments of the data type CMC_Axis_IO. The signal of the absolute switch must be TRUE in

case the axis hits the sensor. The signal of a corresponding limit switch must be true

when the axis leaves the area surrounded by the limit switches. If needed the signal

must be inverted before it is connected to the elements of the data type.

Task configuration

The kernel function block and the transfer of axis IO data should be processed in a cyclic

task. This task should be as short and real-time as possible to achieve the best motion

control performance. Always make sure Kernel function block is called at the highest pri-

ority task and other applications must be at a lower priority task.

To save PLC processing time the most PLCopen function blocks as well as the applica-

tion logic can also be processed in a task which runs on a lower priority than the real-

time task with the axis implementation as shown in the figure below.
.

.All PLCopen function blocks which must be called in the same task as the kernel function

block:

– MC_CombineAxes

– MCA_MoveByExternalReference

– MCA_MoveByExtRefRelative

In case the position reference is transferred to the drive the task of the axis implementa-

tion should be synchronized to the fieldbus cycle. The following figures show an example

for EtherCAT:

Task of axis layer
.

267
3ADR011116

267 Motion Controller with AC500 V3

Task of application implementation

10.1.4.5 Visualization

The structure of the position control loop is also as visualization element

CMC_Visu_FB_Basic_Kernel. included in ABB_MotionControl_AC500.library. As place-

holder, an instance of CMC_Basic_Kernel must be used. The visualization shows all num-

bers as they are really used inside the block, the adjustment for different resolution or

cycle times is already included.

10.1.4.6 ABB specific data structures

Not all data structures are defined by PLCopen. Some specific structures are described

in the following chapter. In addition to the data in these arrays, the movement is modi-

268
3ADR011116

268 Motion Controller with AC500 V3

fied by offset and scaling values at the respective Function Block. These offset and scal-

ing values (except the timescale) are transferred continuously. This will allow us to follow

a "Moving Target" by adjusting these values.

10.1.4.6.1 PositionPositionProfile
.

The data type MC_PProfile is used for CamTable. An array has to be defined and pro-

vided at MC_CamTableSelect. Several CamTables could be defined, and the axis could

change between them on the fly. There is no routine of smooth movement from one ta-

ble to the next, so the user must take care just to switch on appropriate positions. De-

tails are described in the documentation included with the library.
.

.Declaration example CAM_table

ARRAY[1..3] OF MC_PProfile:=

 (Master_position:= 0 ,interpolation_point := 0 ,Velocity_ratio:= 0 ,Acceleration_ratio:= 0),

(Master_position:= 50 ,interpolation_point := 25 ,Velocity_ratio:= 0 ,Acceleration_ratio:= 0),

(Master_position:= 100 ,interpolation_point := 0 ,Velocity_ratio:= 0 ,Acceleration_ratio:= 0);

10.1.4.6.2 PositionTimeProfile
.

This structure is used for time-based profiles, e.g., MC_PositionProfile:

10.1.4.6.3 Interpolation types for profiles

The curves defined by an array of MC_PProfile hold master position points and according

to slave positions. When the master position is between 2 points, the according position

for the slave is interpolated. Different types of interpolation are possible. The type is de-

fined in MC_ABB_iTypes_Enum . The master could be a real axis or some virtual axis

which could be created by just writing values for position and velocity to the Axis_Master

variable as shown in the example. The same interpolation types could be used on

MC_TProfile.

Overview of different interpolations

Interpolation Types Results in Requires

MCA_Linear Linear interpolation with
constant velocity be-
tween interpolation
points.

profile.MC_PProfile_Array[x].master_position, pro-
file.MC_PProfile_Array[x].interpolation_point

269
3ADR011116

269 Motion Controller with AC500 V3

MCA_Spline_Natu-
ral

Cubic spline interpola tion
without jerk.

profile.MC_PProfile_Array[x].master_position, pro-
file.MC_PProfile_Array[x].interpolation_point

MCA_Spline_Com-
plete

Cubic spline interpolation
without jerk, start and
end of profile with veloc-
ity=0.

profile.MC_PProfile_Array[x].master_position, pro-
file.MC_PProfile_Array[x].interpolation_point

MCA_Poly3 Polynomial interpolation
with linear velocity be-
tween interpolation
points.

profile.MC_PProfile_Array[x].master_position, pro-
file.MC_PProfile_Array[x].interpolation_point, pro-
file.MC_PPro- file_Array[x].velocity_ratio

MCA_Poly5 Polynomial interpolation
with linear acceleration
between inter- polation
points.

profile.MC_PProfile_Array[x].master_position, pro-
file.MC_PProfile_Array[x].interpolation_point, pro-
file.MC_PPro- file_Array[x].velocity_ratio, pro-
file.MC_PPro- file_Array[x].acceleration_ratio

The interpolations allow to run on smooth curves without the need to define a large

number of points. The following chapter shows the results with different interpolation

modes for a sinus- curve with 10 interpolation points. The following table gives the mean

deviation.

Interpolation Type Mean deviation [ppm]

MCA_Linear 19686 =1.9%

MCA_Spline_NATURAL 151=0.0151%

MCA_ Spline _Complete 25510=2.5%

MCA_Poly3 131=0.0131%

MCA_Poly5 0.37

The original curve is represented by y_sinus for position and v_sinus for velocity. The dia-

grams show the result which is achieved by different interpolation types.

MCA_LINEAR

Results from linear interpolation

The velocity is constant between the interpolation points.

270
3ADR011116

270 Motion Controller with AC500 V3

MCA_POLY3

Results from polynomial interpolation

The result looks almost identical to the original curve. The mean deviation shows that

MCA_POLY3, MCA_POLY5 and MCA_SPLINE_NATURAL produce results which follow the

original curve really good and are almost identical. The spline interpolation produces a

jerk-free curve without the need of providing velocity values and acceleration values in

advance.

MCA_COMPLETE

271
3ADR011116

271 Motion Controller with AC500 V3

Results from complete spline interpolation

In the beginning and the end, the curve does not follow the original curve. The reason is

that it starts with velocity=0 and produces a jerk free result.

So the favoured result has to be considered in advance to choose the right interpolation

method. With these different methods it is not necessary to provide a large number of

interpolation points to get good results and smooth acceleration and deceleration

ramps.

10.1.5 Load Control/Torque Control: Fluid Power Extension according PLCopen

The ABB_MotionControlLoad_AC500 library is an extension to ABB_MotionCon-

trol_AC500 library based on PLCopen part 6 called “fluid power” and can be used to im-

plement load control as a simple form of torque profiling.

It can be used together with all other motion control package libraries (but due to its na-

ture of course NOT with stepper motors/the eCo kernel library). The same structure and

general rules are applied and all the above chapters in this document is relevant for

ABB_MotionControlLoad_AC500 library as well. A difference is that the position control

loop has to be closed inside the PLC as it is to be synchronized with the load control loop

which is also realized.

Overview of the defined extended Function Blocks:

Administrative Motion
Single Axis

MC_LimitLoad MC_LoadControl

MC_LimitMotion MC_LoadSuperImposed

MC_LoadProfile
 MC_TorqueControl

Note – As per PLC open MC_TorqueControl is a part1 function block, however due to its

implementation as a wrapper for the load control and limit load blocks this is added to

ABB_MotionControlLoad_AC500 library.

The following state diagram is based on the version as defined in ‘Part 1 – Function

Blocks for Motion Control’, Version 2.0

This specification adds three Load Function Blocks to the State Diagram:

• MC_LoadControl

• MC_LoadSuperImposed

• MC_LoadProfile

MC_TorqueControl function block also follows the same state diagram.

Function Blocks not listed in the state diagram do not affect the State Diagram, mean-

ing that whenever they are called the state does not change.

The State diagram shows Synchronized Motion because the position-axis follows the

load, and the state is related to the position axis

272
3ADR011116

272 Motion Controller with AC500 V3

MC_LoadControl

MC_LoadSuperimposed

Homing

Errorstop

Stopping

Discrete Motion
Continuous

Motion

Standstill

Note 1

Synchronized

Motion

Disabled

Note 6

Note 2Note 5

Note 3Note 4

MC_LoadProfile

Note 1: From any state. An error in the axis occurred.
Note 2: From any state. MC_Power.Enable = FALSE and there is no error

in the axis.
Note 3: MC_Reset and MC_Power.Status = FALSE
Note 4: MC_Reset and MC_Power.Status = TRUE and MC_Power.Enable

= TRUE
Note 5: MC_Power.Enable = TRUE and MC_Power.Status = TRUE
Note 6: MC_Stop.Done = TRUE and MC_Stop.Execute = FALSE

Figure: The State Diagram

Kernel function block - Fluid Power

The basic block is the CMC_Load_Motion_Kernel It has to be called every cycle and at

least once before any MC… block is activated. It is used to combine the position and ve-

locity functionality from CMC_Basic_Kernel with the load control functionality which is

utilized by the MC_Load.. blocks.

273
3ADR011116

273 Motion Controller with AC500 V3

 The reference which is used by the CMC_Load_Motion_Kernel is equivalent with the

Speed_Reference at CMC_Basic_Kernel, as long as no LOAD-functionality is activated.

The documentation from CMC_Basic_Kernel applies to the identical inputs and outputs.

Some inputs and outputs are added to serve the load control functionality.

Note: The Load_Ref is used instead of Axis_Ref for the MC_Loadxxx blocks.

When the CMC_Load_Motion_Kernel is used, Load_Ref replaces Axis_Ref

and user can use all PLCopen-Blocks.

The actuator (drive) has to be accessed outside the CMC_Load_Motion_Kernel block. ac-

tual values and reference values might be transferred by a synchronised bus or by I/Os.

All inputs and outputs of the function block which are named “DRIVE_xxxx” should be

used to connect to the actuator (drive). It does not matter whether this connection is

done by fieldbus or by conventional IOs.

The Axis-structure is used to connect to the PLCopen Blocks

The Load_Axis structure is used to connect the fluid-power PLCopen blocks

The control_parameter-structure is used for configuration of control loop.

The IO-structure gives a connection to limit- or reference switches.

When the function block will take control (close loop) the output “Drive_Release“ is set.

The PLC-Program should then start the actuator (actuator (drive)) and set “Drive_InOp-

eration = TRUE” when successful. In case of actuator (actuator (drive)) problem,

“Drive_InOperation” should be reset. The function block will then open the position con-

trol loop and Speed_Reference will be 0.

274
3ADR011116

274 Motion Controller with AC500 V3

The homing is done with PLCopen-Blocks. As the interface to the actual position is out-

side the CompactMotion, the bit “Drive_Set_Ref” is set when the state is reached to eval-

uate the zero-track. When the zero-track was found, Drive_ActualPosition has to be set

to “Drive_Set_Position”, this has to be indicated by “Drive_Ref_Ok”.

The output “Drive Reference” should be send to the actuator (drive). This value is scaled

with Max_Rpm and Max_Reference which means: when “Drive_Reference” equals

Max_Reference, the motor is expected to run with Max_Rpm.

Load Control

The function block holds a position control loop and a load control loop. The load control

loop is a PIDT1-Block. Both control loops are alternately activated, depending if a

MC_Load..block or a MC_Move… block is active. There is a bumpless transition realized

between the different control loops.

The PIDT1 controller has a proportional, integral and derivative part. The integral and de-

rivative part can be switched of by using a time value = 0.

Transfer function

All 3 parts of the control loop are added up. The integral or derivative part could be disa-

bled by setting the respective time constant to 0, so the following structures are possi-

ble:

• P

• PDT1

• PI

• PIDT1

The Load_MaxRef and Load_MinRef values will limit the controllers output Y and also ap-

ply to the controller’s internal integral part. I.e the integral part can only hold values be-

tween the high and low limits. If the manipulated variable Y reaches one of the two lim-

its, the controller's integral part is no longer changed. This prevents the integral part

from holding meaningless values and, in certain circumstances, not returning to the op-

erating range for a long time. This behavior of a controller is also referred to as a »spe-

cial anti-reset windup measure.

275
3ADR011116

275 Motion Controller with AC500 V3

Example - Fluid Power Extensions

MC_LimitLoad Example

In the diagram below, an example is explained. SFC is used here to distinguish between a

movement where the MC_LimitLoad functionality has become ‘Active’ or not. In Step 2

there is a movement like ‘MoveAbsolute’, which is limited by the MC_LimitLoad function-

ality. If the absolute position is reached without MC_LimitLoad becoming active, the

transition via done to step 3 is applicable. However, if the MC_LimitLoad becomes ‘Ac-

tive’, the transition to the ‘Halt’ step is applicable, issuing a MC_Halt.

Init

Step2

Step3

Halt

P1

InitMotion1

N

P0

DeactivateMotion1

P1

InitMotion2

N

ExecuteMotion2

P0

DeactivateMotion2

P1

InitMotion3

N

ExecuteMotion3

P0

DeactivateMotion3

P1

InitHalt

N

ExecuteHalt

P0

DeactivateHalt

Go

Done1

Done2

Done3 Halted

LimiterActive

1

ExecuteMotion1
Step1

 Init Init

MC_MoveXXX

Axis

Execute

Position

Velocity

Acceleration

Deceleration

Jerk

Direction

BufferMode

Axis

Done

Busy

Active

CommandAborted

Error

ErrorID

FALSE

Done2

LimiterBusy

MC_MoveXXX

Axis

Execute

Position

Velocity

Acceleration

Deceleration

Jerk

Direction

BufferMode

Axis

Done

Busy

Active

CommandAborted

Error

ErrorID

TRUE

Dec1

Acc1

15

100 Busy2

Done2

LoadLimit LimiterActive

CurrentDirection

MC_LimitLoad

Axis

Enable

Load

Direction

Axis

Busy

Active

Error

ErrorID

 1

MC_LimitLoad

Axis

Enable

Load

Direction

Axis

Busy

Active

Error

ErrorID

FALSE

LimiterActive
1

Figure: MC_LimitLoad used in SFC

MC_LimitMotion Example e.g. force fitting.

The FB is intended to be used in conjunction with a MC_LoadControl or MC_TorqueCon-

trol having primary control on the axis. The MC_LimitMotion should be enabled by the

‘Active’ output of the MC_LoadControl / MC_TorqueControl. If motion values on the axis

exceed the given limit, appropriate measures are taken to keep to these limits, implying

that the load/torque will not follow the programmed trajectory but depend on the exter-

nal load conditions. However, the ‘Active’ output of the MC_LoadControl/MC_Torque-

Control will stay TRUE in this case, following the modified PLCopen definition “The ‘Ac-

tive’ output indicates, that the FB has control on the set-value generation of the axis”.

This is despite the fact, that physically only the load-conditions or the movement of an

axis can be controlled. With actual motion states below programmed limits, the pro-

grammed load/torque trajectory will proceed. Enabling the limiter block with activation

of the MC_LoadControl/MC_TorqueControl ensures that limits are only supervised when

the MC_LoadControl/MC_TorqueControl takes control on the axis for the first time. Dis-

abling the limiter block with de-activation of the MC_LoadControl/MC_TorqueControl

ensures that limits are no more supervised when the MC_LoadControl/MC_TorqueCon-

trol loses control on the axis by ‘CommandAborted’ or ‘Error’

MC_ LoadSuperImposed Example

276
3ADR011116

276 Motion Controller with AC500 V3

Possible Application: Actuator: hydraulic cylinder with fluid pressure sensor actuates the

press of plastic injection molding machine in a continuous load operation.

Request: prior to MC_LoadSuperImposed call, a MC_LoadControl block is ‘Active’ with a

command of 7,500 kPa to press melted plastic into the mold. Once the MC_LoadControl

‘InLoad’ condition is achieved a superimposed pressure of 5,000 kPa is added several

times to cause a hammering effect to relieve stresses in the plastic.

Result: the MC_LoadControl pressure command of 7,500 kPa is superimposed with a dis-

crete pressure command of 5,000 kPa. Once the ‘LoadSuperImposed’ command is active

the system pressure rises to 12,500 kPa.

When the superimposed pressure command has been achieved the MC_LoadSuperIm-

posed block is done and the original command given by the MC_LoadControl resumes

the original pressure command.

The MC_LoadSuperImposed block is executed several times without affecting the origi-

nal pressure command given by the MC_LoadControl block.

Second

t

t

t

t

1

0

0

1

1

Go_Sup

1

0

5000

7500

2500

10000

0

0

Load

t

First

MC_LoadSuperimposedMC_LoadControl

Axis

Execute InLoad

Load

LoadRamp

Direction

BufferMode Error

ErrorID

MyAX

7500

100

1

5000

300

Axis Axis

Enable InLoad

Load

LoadRampDecrease Error

ErrorID

First Second

GO_Sup

Axis

CommandAborted

Busy

Active

GO_Load

Busy

ActiveLoadRampIncrease

InLoad

Load_Active

1

0

InSup

InSup

300

Sup_ActiveLoad_Active

InLoad

Sup_Active

12500

t

t

GO_load
Load = 7500 Load = 0

LoadDifference - Example

MC_TorqueControl Example

The example (below) opposite signs for ‘Direction’ & ‘Torque’ are used (e.g. Retention or

brake control). (In the FB: +Direction –Torque). It is like an unwinding application with

torque on the material, and a break in the material. When the material breaks, as shown

in the middle of the picture, this causes a drop in the real Torque value (in absolute

terms): the velocity will decrease, limited by the fastest “deceleration” limit specified by

the ‘Deceleration’ VAR_INPUT down to zero velocity (with no tension there is a risk of

277
3ADR011116

277 Motion Controller with AC500 V3

having shock breakings, so we must limit to the fastest). In this case the torque setpoint

might not be achieved.

NOTE: In an unwinding application (derived from this brake control) material tension is

the target, not motor torque. The instantaneous diameter of the roll should be taken

into account to transform the “User tension setpoint”. Also, additional inertia compensa-

tion by modification of the torque setpoint for acceleration / deceleration is common

from instantaneous weight data (weight is commonly estimated from diameter). Addi-

tionally, in unwinding applications, in the case of loose material (same condition as ma-

terial break), a negative slow velocity reference is usually applied to “rewind” the loose

material. In this case, this must be provided by external programming.

10.2 PLCopen based Motion Control Libraries (Function Block descriptions)

10.2.1 MotionControl (Library)

The PS5611 Motion Control library is to create the motion control applications according

to PLCOpen Motion definition This library contains PLC open standard blocks (MC), ABB

Specific (MCA) and Central Motion control (CMC) function blocks. Using these function

blocks one can realize the Motion control functionalities such as: Simple axis move-

ments, Position Profiles, Acceleration profiles, velocity profiles, Camming, GearIn, Hom-

ing and so on.

The library also contains visualization for each function block and visualization for the

statemachine.

This Library needs PLC based runtime license for using the features.

Copyright: We reserve all rights in these programs and the information therein. Repro-

duction, use or disclosure to third parties without express authority is strictly forbidden.

(c) 2006-2021 ABB, all rights reserved

10.2.1.1 PLCopen

10.2.1.1.1 ABB Specific

ABB Specific PLC open motion control blocks. All function or function block names will

start with Prefix MCA.

278
3ADR011116

278 Motion Controller with AC500 V3

10.2.1.1.1.1 MCA_CamGetInterpolationPosition (FB)

This function block gives an interpolation result, according to the referenced camtable,

for the given master position.

Mode: The positions will be used as absolute positions, offset and scaling will NOT be

considered.

The block will not check if the cam table is still active.

InOut:

Scope Name Type Comment

Input

Enable BOOL Activate the function block

Master_Position LREAL Master position for cam table

Out-

put

Valid BOOL
FALSE if either of the table is not valid,

or master position outside the range

Interpola-

tion_Point
LREAL Gives the interpolated position

Inout CamTableID MC_Cam_Id

Prepared by MC_CamTableSelect and

used with

MC_CamIn or MCA_CamInDirect

User can utilize CAM editor in Automation builder to generate Cam table

(MC_PProfile) automatically. For more details refer to Automation Builder help.

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/MC_Cam_Id.html#mc-cam-id

279
3ADR011116

279 Motion Controller with AC500 V3

10.2.1.1.1.2 MCA_CamInDirect (FB)

This function block implements Camming-Functionality. A slave axis is coupled to a mas-

ter axis by a position/position relation.

• It is not required that the master is stationary.

• If the actual master and slave positions do not correspond to the offset val-

ues when MC_CamIn is executed, either an error occurs or the system deals

with the difference automatically.

• The Cam is placed either absolute or relative to the current master and slave

positions:

• Absolute: The profile between master and slave is seen as an absolute rela-

tionship.

• Relative: The relationship between master and slave is in a relative mode.

• If a cam-table is to be used “relative”, the first position has to be zero.

• This function block is not merged with the MC_CamTableSelect function block

because this separation enables changes on the fly.

• A mechanical analogy to a slave offset is a cam welded with additional con-

stant layer thickness. Because of this the slave positions have a constant off-

set and the offset could be interpreted as axis offset of the master shaft, if

linear guided slave tappets are assumed.

The function block behaves as follows:

• If the master is inside the position range which is described in the cam-table data,

synchronization starts right away, no matter if the master moves or is in stand-

still.

• If the master is outside the position range which is described in the cam-table

data, the slave position is not modifed.

• The synchronization is limited by the given Velocity and Acceleration, achieved as

fast as possible. The function block will show InSync when synchronization pro-

cess is completed and the slave axes reference position matches the cam-table

data for the current master position.

The Slave axis is not ramped out, which means the curve should end with velocity

= 0. The CAM could be interrupted with any other function block, according to

the statemachine. It is not required to use MC_CamOut.

280
3ADR011116

280 Motion Controller with AC500 V3

• In a modulo-axis, it is possible to reach the synchronization point in different di-

rections. The input parameter SyncDirection with its possible values: POSITIVE,

NEGATIVE or SHORTEST can be used to set this direction. Inside the SyncWindow,

automatically the direction SHORTEST will be used.

• It is important to set a SyncWindow > 0 for a modulo axis, otherwise, slightest de-

viations could result in moving a complete modulo distance.

• Inside SyncWindow, the slave axis will move SHORTEST to reach the SlaveSyncPo-

sition

• Outside SyncWindow, it will move the given SyncDirection, which can be POSITIVE

or NEGATIVE

• If a direction POSITIVE or NEGATIVE is used in a linear axis, the slave will wait until

the master reaches position which allows the slave to move the required direc-

tion.

InOut:

Scope Name Type
Ini-

tial
Comment

Input

Execute BOOL Starts the Function Block at rising edge

MasterOffset LREAL 0
Offset of master table. Actual position - MasterOffset will be

used to sample the CamTable

SlaveOffset LREAL 0

Offset of slave table. Sharpened cam (i.e higher elevation and

deeper depression). Use the result from CamTable + Slave-

Offset as reference position

MasterScaling LREAL 1

Scaling factor for master positions in CamTable. From the

slave point of view the master overall profile is multiplied by

this factor

The MCA_CamInDirect has parameters to scale the cam-table values (MasterScal-

ing, SlaveScaling). It has to be considered that MasterOffset and SlaveOffset are

scaled exactly like the corresponding cam-table values. The MasterSyncPosition

and MasterStartDistance are not scaled at all, these positions are related to the

actual master position whereas the MasterOffset and SlaveOffset are related to

the camtable.

New set of values at inputs MasterOffset, SlaveOffset, MasterScaling, SlaveScal-

ing will be accepted only after the function block is aborted and fresh rising edge

is provided at Execute input.

The default behavior of this function block can be modified by the inputs in func-

tion MCA_Cam_Extra

A negative MasterScaling requires backward master movement, when combined

with MasterOffset. The MasterScaling also applies to the MasterOffset. Behav-

iour results from the requirement to have ascending master values in CamTable.

User can utilize CAM editor in Automation builder to generate Cam table

(MC_PProfile) automatically. For more details refer to Automation builder help.

281
3ADR011116

281 Motion Controller with AC500 V3

Scope Name Type
Ini-

tial
Comment

SlaveScaling LREAL 1
Scaling factor for slave positions from CamTable. The overall

slave profile is multiplied by this factor

MasterValu-

eSource

MC_Sou

rce

Defines the source for synchronization: mcSetValue -

Synchronization on master set value. mcActualValue -

Synchronization on master actual value

SyncDirection
MC_Di-

rection

Moving direction for the slave to start the movement. Appli-

cable: POSITIVE or NEGATIVE, use SHORTEST for any other

value

SyncWindow LREAL

[u], Used to determine the moving direction, combined with

SyncDirection

When the slave is outside the SyncWindow, it will move the

direction which is given in SyncDirection

When the slave is inside the SyncWindow, it will move SHOR-

TEST to meet the SlaveSyncPosition

Velocity LREAL

[u/s] Used for Synchronization. Range: >=0, max application

velocity (Parameter9) used as default

The slave has to be able to move faster than the master axis,

otherwise it is possible the SlaveSyncPosition is never

reached when the master starts to move

Acceleration LREAL [u/s°°2] Used for Synchronization. Range: >=0 maxx applica-

tion acceleration (Parameter13) used as default

BufferMode

MC_Buf

fer-

Mode

 Not supported, default mcABORTING used

Out-

put

InSync BOOL Slave is synchronized to CamTable

Done BOOL
Shows the status of the function block. Done = TRUE if the

execution is finished

Busy BOOL The function block is not finished

Active BOOL Indicates that the function block has control on the axis

Command-

Aborted
BOOL Command is aborted by another command from other PLCo-

pen function block

Error BOOL Signals that error has occurred within function block

ErrorID
ER-

ROR_ID

 Error identification. For error details refer to Enumeration

ERROR_ID

EndOfProfile BOOL

Pulsed output signaling the cyclic end of the CAM profile. It is

displayed every time when the end of CAM profile is reached.

In reverse direction, the ‘EndOfProfile’ is displayed also at the

end of the cam profile (in this case the first point of the cam

profile)

Inout

Master
Axis_Re

f

 Reference to master axis

Slave
Axis_Re

f

 Reference to slave axis

CamTableID
MC_Ca

m_Id

 Prepared by MC_CamTableSelect. Identifier of CAM Table to

be used in the MC_CamIn Function Block

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_Source.html#mc-source
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_Source.html#mc-source
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_Direction.html#mc-direction
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_Direction.html#mc-direction
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_BufferMode.html#mc-buffermode
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_BufferMode.html#mc-buffermode
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_BufferMode.html#mc-buffermode
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.5.5_Library/Enums/ERROR_ID.html#error-id
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.5.5_Library/Enums/ERROR_ID.html#error-id
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/Axis_Ref.html#axis-ref
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/Axis_Ref.html#axis-ref
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/Axis_Ref.html#axis-ref
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/Axis_Ref.html#axis-ref
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/MC_Cam_Id.html#mc-cam-id
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/MC_Cam_Id.html#mc-cam-id

282
3ADR011116

282 Motion Controller with AC500 V3

10.2.1.1.1.3 MCA_CamInfo (FB)

This function block gives an information which index is actually processed by the respec-

tive cam table.

Precondition:Correct information is shown if the referenced cam table is still active.

The block will not check if the cam table is still active.

InOut:

Scope Name Type Comment

Input Enable BOOL Activate the function block

Inout CamTableID MC_Cam_Id

Prepared by MC_CamTableSelect and used

with MC_CamIn or MCA_CamInDirect

Output ActiveIndex INT

Active Index, value always starts from zero,

even if the CAM table array is started with a

different value

10.2.1.1.1.4 MCA_Cam_Extra (FUN)

This function is just usable together with MC_CamTableSelect and should be called right

after MC_CamTableSelect to modify 2 mode-bits which define the behavior for the

MC_CamIn more precise.

Without this function, the default values will be used instead to configure some addi-

tional flags for cam table behavior.

This function modifies the CAM Table behavior

• With Enable = TRUE, two bits will be written all the time and will be effective. So a

Cam table could be used in Periodic = TRUE mode and will come to a stop when

the master leaves its position range when Periodic = FALSE is used.

• With MODULO-AXIS: Usage with Periodic = FALSE and position range for master

equals MODULORANGE: When the master reaches 360º, the movement will be

ready, even when it was started just at 359º.

User can utilize CAM editor in Automation builder to generate Cam table

(MC_PProfile) automatically. For more details refer to Automation builder help.

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/MC_Cam_Id.html#mc-cam-id

283
3ADR011116

283 Motion Controller with AC500 V3

InOut:

Scope Name Type Comment

Return MCA_Cam_Extra BOOL

Input

Enable BOOL Activate the function

Reverse BOOL

Cam should be run in the reverse direction,

master axis will move from larger to smaller

positions when the cam table is entered

Periodic BOOL
Cam table will run continuoulsy and start au-

tomatically again, if “EndOfProfile” is reached

CamTableID MC_Cam_Id

Prepared by MC_CamTableSelect. Identifier of

CAM Table to be used in the MC_CamIn func-

tion block

User can utilize CAM editor in Automation builder to generate Cam table

(MC_PProfile) automatically. For more details refer to Automation builder help.

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/MC_Cam_Id.html#mc-cam-id

284
3ADR011116

284 Motion Controller with AC500 V3

10.2.1.1.1.5 MCA_DriveBasedHome (FB)

This function block can be used to execute a homing procedure directly in the drive.

Precondition:It requires the drive supports 402-profile specific homing sequences.

The function block can be used in combination with:

• ECAT_402ParameterHoming_APP to send parameters

• ECAT_CiA402_Control_App to control the drive statemachine and to set it to the

appropriate operating mode

InOut:

Scope Name Type Comment

Input

Execute BOOL Starts the function block at rising edge

Position LREAL
[u] Reference position, used as position value

at reference position

TimeLimit LREAL

[s] A time in seconds, which will be used as an

upper limit for the time available to do the

homing. If the time is exceeded, the function

block will show an Error. With TimeLimit = 0,

the limit is ignored

BufferMode MC_BufferMode Not supported, default mcABORTING used

Output

Done BOOL
Shows the status of the function block. Done

= TRUE if the execution is finished

Busy BOOL The function block is not finished

Active BOOL
Indicates that the function block has control

on the axis

CommandAborted BOOL
Command is aborted by another command

from other PLCopen function block

Error BOOL
Signals that error has occurred within func-

tion block

ErrorID ERROR_ID

Error identification. For error details refer to

Enumeration ERROR_ID

Inout Axis Axis_Ref Reference to axis

Homing is based on the settings in drive and drive has to execute the homing al-

gorithm.

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_BufferMode.html#mc-buffermode
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.5.5_Library/Enums/ERROR_ID.html#error-id
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/Axis_Ref.html#axis-ref

285
3ADR011116

285 Motion Controller with AC500 V3

10.2.1.1.1.6 MCA_GearInDirect (FB)

This function block commands a gear ratio between the position of the slave and master

axes from the synchronization point onwards.

The function block behaves as follows:

• Synchronization starts right away, no matter if the master moves or is in stand-

still.

• The synchronization is limited by the given velocity and acceleration, achieved as

fast as possible, so it can happen that:

• The 2 axes are synchronized earlier than the two given positions

• The 2 axes are synchronized later than the two given positions

• Following formula is used:

• SlavePosition = (masterPosition - MasterSyncPosition) * RatioNumerator/Rati-

oDenumerator + SlaveSyncPosition

• In a modulo-axis, it is possible to reach the synchronization point in different di-

rections.

The input parameter SyncDirection with its possible values: POSITIVE, NEGATIVE or

SHORTEST can be used to set this direction. Inside the SyncWindow, automatically the

direction SHORTEST will be used. It is important to set a SyncWindow > 0 for a modulo

axis. Otherwise, slightest deviations could result in moving a complete modulo distance.

• Inside SyncWindow, the slave axis will move SHORTEST to reach the SlaveSyncPo-

sition

• Outside SyncWIndow, it will move the given SyncDirection, which can be POSI-

TIVE or NEGATIVE

• If a direction POSITIVE or NEGATIVE is used in a linear axis, the slave will wait un-

til the master reaches a position which allows the slave to move the required di-

rection.

286
3ADR011116

286 Motion Controller with AC500 V3

InOut:

Scope Name Type Comment

Input

Execute BOOL Starts the function block at rising edge

RatioNumerator INT
Gear ratio numerator, new value is updated only with rising

edge of Execute input

RatioDenominator INT
Gear ratio denominator, new value is updated only with rising

edge of Execute input

MasterValu-

eSource

MC_Sourc

e

Decides to use the actual position or reference position of ma-

ster axis.

- mcSetValue - Synchronization on master set value.

- mcActualValue - Synchronization on master actual value

MasterSyncPosi-

tion
LREAL

The position of the master where the slave is insync with the

master

SlaveSyncPosition LREAL Slave Position at which the axes are running in sync

SyncDirection
MC_Di-

rection

Moving direction for the slave to start the movement. Applica-

ble: POSITIVE or NEGATIVE, use SHORTEST for any other value

SyncWindow LREAL

[u], Used to determine the moving direction, combined with

SyncDirection

- When the slave is outside the SyncWindow, it will move the di-

rection which is given in SyncDirection

- When the slave is inside the SyncWindow, it will move SHOR-

TEST to meet the SlaveSyncPosition

Velocity LREAL

[u/s], Velocity which limits the synchronization movement.

The slave has to be able to move faster than the master axis,

otherwise it is possible the SlaveSyncPosition is never reached

when the master starts to move. Range: >0

Acceleration LREAL
[u/s°°2], Acceleration which limits the synchronization move-

ment. Range: >0

BufferMode
MC_Buf-

ferMode

Not supported, default mcABORTING used

Out-

put

StartSync BOOL Synchronization was started

InSync BOOL Commanded gearing completed

Busy BOOL The function block is not finished

Active BOOL Indicates that the function block has control on the axis

CommandAborted BOOL
Command is aborted by another command from other PLCo-

pen function block

Error BOOL Signals that error has occurred within function block

ErrorID ERROR_ID Error identification. Refer to Enumeration ERROR_ID

Inout
Master Axis_Ref Reference to master axis

Slave Axis_Ref Reference to slave axis

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_Source.html#mc-source
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_Source.html#mc-source
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_Direction.html#mc-direction
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_Direction.html#mc-direction
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_BufferMode.html#mc-buffermode
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_BufferMode.html#mc-buffermode
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.5.5_Library/Enums/ERROR_ID.html#error-id
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/Axis_Ref.html#axis-ref
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/Axis_Ref.html#axis-ref

287
3ADR011116

287 Motion Controller with AC500 V3

10.2.1.1.1.7 MCA_Indexing (FB)

This function block will, upon a rising edge on Execute, do a number of relative or abso-

lute moves, listed in a table (Array of MCA_Pos_Ref).

The function block will position the axis to a complete stop at target position and con-

tinue with the next move from the table automatically.

288
3ADR011116

288 Motion Controller with AC500 V3

InOut:

Scope Name Type Comment

Input

Execute BOOL Starts the function block at rising edge

pPositions

POINTER

TO MCA_Pos_

Ref

POS_REF Reference to Structure or array

with relative move distances listed. Typical

type of Positions: LREAL, The array needs to

have at least (TableIndex + MovesToDo-1)

elements

MovesToDo WORD
Provide number of moves, not more then

entries in Table

TableIndex WORD

Index to an array of MCA_Pos_Ref, points to

the movement to be performed on rising

edge of Execute, start with 1 for the first en-

try

Out-

put

Done BOOL
Shows the status of the function block.

Done = TRUE if the execution is finished

Busy BOOL The function block is not finished

Active BOOL
Indicates that the function block has control

on the axis

Command-

Aborted
BOOL

Command is aborted by another command

from other PLCopen function block

Error BOOL
Signals that error has occurred within func-

tion block

ErrorID ERROR_ID

Error identification. For error details refer to

Enumeration ERROR_ID

MovesPending WORD
Indicates the number of moves still to exe-

cute

IndexNo WORD
Index executing or last index completed,

starting with “1”

Inout Axis Axis_Ref Reference to axis

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/MCA_Pos_Ref.html#mca-pos-ref
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/MCA_Pos_Ref.html#mca-pos-ref
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.5.5_Library/Enums/ERROR_ID.html#error-id
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/Axis_Ref.html#axis-ref

289
3ADR011116

289 Motion Controller with AC500 V3

10.2.1.1.1.8

10.2.1.1.1.9 MCA_JogAxis (FB)

This function block jogs an axis for at least a given distance forward or backward with

the selected jog velocity and acceleration.

This function block, after rising edge on JogForward or JogBackward, start a continuous

move (at least for the minimum distance) and continue upon high-level on these inputs

with a continuous motion, until they are FALSE, then on their falling edge, the axis is reg-

ularly decelerated to stop. The movement is carried out on Jog velocity for the minimum

distance or longer.

• In case of both enable signals (JogForward and JogBackward) are high, the function block

will not move the axis.

• In case of MinJogDistance = 0, no specified distance is moved and the movement will stop

as soon as the JogForward and JogBackward is FALSE.

InOut:

Scope Name Type Comment

Input

JogForward BOOL
Move forward as long as JogForward = TRUE or at

least MinJogDistance

JogBackward BOOL
Move backward as long as JogForward = TRUE or at

least MinJogDistance

JogVelo LREAL
[u/s] Velocity to jog. Range: >0. If value = 0, JogVelo

will be equal to parameter paraMaxVelocityAppl

JogAcc LREAL

[u/s°°2] Acceleration to jog. Range: >0. If value = 0,

JogAcc will be equal to parameter paraMaxAccele-

rationAppl

JogDec LREAL

[u/s°°2] Deceleration to jog. Range: >0. If value = 0,

JogDec will be equal to parameter paraMaxDecele-

rationAppl

JogJerk LREAL
[u/s°°3] Jerk value for jog. Range: >=0, <0: value at

input ignored

MinJog-

Distance
LREAL [u] Minimum distance to jog

290
3ADR011116

290 Motion Controller with AC500 V3

Scope Name Type Comment

Output

Done BOOL
Shows the status of the function block. Done =

TRUE if the execution is finished

Busy BOOL The function block is not finished

Active BOOL
Indicates that the function block has control on the

axis

Command-

Aborted
BOOL

Command is aborted by another command from

other PLCopen function block

Error BOOL
Signals that error has occurred within function

block

ErrorID
ER-

ROR_ID

Error identification. For error details refer to Enu-

meration ERROR_ID

Inout Axis
Axis_Re

f

Reference to axis

10.2.1.1.1.10 MCA_MoveByExternalReference (FB)

This function block gives a reference position to the axis which is directly passed to the

position control loop.

The axis will follow the given position without a ramp but immediately. The reference po-

sition is evaluated continuously.

To stop the motion, the function block has to be interrupted by another function block

issuing a new command

This block has to be called within the REAL-TIME task, same task as

CMC_Basic_Kernel

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.5.5_Library/Enums/ERROR_ID.html#error-id
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.5.5_Library/Enums/ERROR_ID.html#error-id
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/Axis_Ref.html#axis-ref
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/Axis_Ref.html#axis-ref

291
3ADR011116

291 Motion Controller with AC500 V3

InOut:

Scope Name Type Comment

Input

Execute BOOL Starts the function block at rising edge

Position LREAL

[u] Reference position. New values are accep-

ted in a running system without a new rising

edge of Execute

Buffer-

Mode
MC_BufferMode Not supported, default mcABORTING used

Out-

put

Done BOOL
Shows the status of the function block. This

output not used in current version

Busy BOOL The function block is not finished

Active BOOL
Indicates that the function block has control on

the axis

Command-

Aborted
BOOL

Command is aborted by another command

from other PLCopen function block

Error BOOL
Signals that error has occurred within function

block

ErrorID ERROR_ID

Error identification. For error details refer to

Enumeration ERROR_ID

Inout Axis Axis_Ref Reference to axis

10.2.1.1.1.11 MCA_MoveRelativeOpti (FB)

This function block commands a controlled motion of a specified distance relative to the

actual position at the time of the execution.

This function block is designed to allow an easier setup for positioning movement. The

input MoveTime holds the allowed time to move the given distance. The other inputs:

Velocity, Acceleration, Deceleration and Jerk can be left “0”, then the movement will use

the system limits and perform as “soft” as possible positioning.

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_BufferMode.html#mc-buffermode
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.5.5_Library/Enums/ERROR_ID.html#error-id
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/Axis_Ref.html#axis-ref

292
3ADR011116

292 Motion Controller with AC500 V3

• It will always use a Jerk (when possible).

• To switch off the usage of Jerk, use Jerk = -1 as input parameter.

• Use the smallest possible acceleration/deceleration.

• Use the smallest possible velocity.

If it is not required to create a movement with limited Jerk, the input Jerk = -1 should be

used. The acceleration and deceleration will be applied with a step but a smaller maxi-

mum value is required.

If parameters like Velocity, Acceleration and Deceleration are set, these will be consid-

ered to be the upper limits during the movement. If it is not possible to execute the

movement in the given time, an

error(3 - PARAMETER_EXCEEDS_LIMIT) will be shown. The function block also gives a

suggestion which values could be used to execute the movement within the time limita-

tions.

• If the velocity was too small, the internal variable usedVelocity will hold the small-

est possible value to execute the movement in the given time. This would mean

execute it without any ramps. Internal variables usedAcceleration and usedDecel-

eration will be “0” in this case.

• If the velocity was ok, but acceleration and deceleration are too small, usedVeloc-

ity will show the value from input Velocity and variables usedAcceleration and

usedDeceleration will hold the necessary values to execute the movement in the

given time.

If parameters are given which are not possible to use, e.g. velocity is too small to

reach the target in the given time, the function block´s internal variables

usedJerk, usedVelocity, usedAcceleration and usedDeceleration will show a pos-

sible solution.

With “MoveTime = 0”, the behavior for the function block is identical with

MC_MoveRelative. It is possible to use just Distance and MoveTime as input pa-

rameters. In this case, the function block will take the axis configuration parame-

ters as limitations for the movement and always create the smoothest possible

interpolation.

293
3ADR011116

293 Motion Controller with AC500 V3

InOut:

Scope Name Type Comment

Input

Execute BOOL Starts the function block at rising edge

Distance LREAL
[u] = Technical unit, Relative distance for the

motion

Velocity LREAL
[u/s] Value of the maximum velocity (not ne-

cessarily reached). Range: >0

Accelera-

tion
LREAL

[u/s°°2] Value of the acceleration (increasing

energy of the motor). Range: >0

Decelera-

tion
LREAL

[u/s°°2] Value of the deceleration (decreasing

energy of the motor). Range: >0

Jerk LREAL
[u/s°°3] Value of the jerk. Range: >=0. To

switch off the usage of Jerk, use Jerk = -1

MoveTime LREAL
[s] Allowed time to complete the movement.

Range: >=0

Buffer-

Mode
MC_BufferMode Not supported, default mcABORTING used

Out-

put

Done BOOL
Shows the status of the function block. Done

= TRUE if the execution is finished

Busy BOOL The function block is not finished

Active BOOL
Indicates that the function block has control

on the axis

Command-

Aborted
BOOL

Command is aborted by another command

from other PLCopen function block

Error BOOL
Signals that error has occurred within func-

tion block

ErrorID ERROR_ID

Error identification. For error details refer to

Enumeration ERROR_ID

Inout Axis Axis_Ref Reference to axis

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_BufferMode.html#mc-buffermode
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.5.5_Library/Enums/ERROR_ID.html#error-id
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/Axis_Ref.html#axis-ref

294
3ADR011116

294 Motion Controller with AC500 V3

10.2.1.1.1.12 MCA_MoveVelocityContinuous (FB)

This function block commands a never ending controlled motion at a specified velocity.

The difference to function block MC_MoveVelocity is that the values for Velocity, Acceler-

ation and Deceleration can be modified continuously. If there is a change of the velocity,

the reaction on the signal InVelocity will be delayed for 1 cycle.

• To stop the motion, the function block has to be interrupted by another function

block issuing a new command.

• The signal “InVelocity” is set when the commanded velocity equals the velocity

input.

• Velocity, Acceleration, Deceleration and Jerk might be changed and will be used

continuously

• In combination with MC_MoveSuperimposed, the output “InVelocity” stays TRUE

once the velocity setpoint of the axis has reached the commanded velocity

InOut:

Scope Name Type Comment

Input

Execute BOOL Starts the function block at rising edge

Velocity LREAL
[u/s] Value of the maximum velocity (not neces-

sarily reached). Range: >0

Acceleration LREAL

[u/s°°2] Value of the acceleration (increasing

energy of the motor). Range: >0. If value = 0, Ac-

celeration will be equal to parameter paraMaxAc-

celerationAppl

Deceleration LREAL

[u/s°°2] Value of the deceleration (decreasing

energy of the motor). Range: >0. If value = 0, De-

celeration will be equal to parameter paraMax-

DecelerationAppl

Jerk LREAL [u/s°°3] Value of the jerk. Range: >=0

Direction MC_Direction

Positive, Negative, otherwise use Current as de-

fault

BufferMode MC_BufferMode Not supported, default mcABORTING used

Output

InVelocity BOOL Commanded velocity is reached

Busy BOOL The function block is not finished

Active BOOL
Indicates that the function block has control on

the axis

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_Direction.html#mc-direction
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_BufferMode.html#mc-buffermode

295
3ADR011116

295 Motion Controller with AC500 V3

Scope Name Type Comment

CommandAborted BOOL
Command is aborted by another command from

other PLCopen function block

Error BOOL
Signals that error has occurred within function

block

ErrorID ERROR_ID

Error identification. For error details refer to

Enumeration ERROR_ID

Inout Axis Axis_Ref Reference to axis

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.5.5_Library/Enums/ERROR_ID.html#error-id
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/Axis_Ref.html#axis-ref

296
3ADR011116

296 Motion Controller with AC500 V3

10.2.1.1.1.13 MCA_Parameter (FB)

This function block can be used to change the default values of the following parame-

ters:

• Target position window. The default value is 10 units.

• Target velocity window. The default vaule is 10 units.

• Maximum fieldbus delay. If this value will be exceeded then it will be assumed

that there is a communication error

• The parameter v_Window defines the limit for the axis to reach its target velocity

or standstill

• This detection will not work properly when smaller velocities are used, especially

the block MC_StepLimitSwitch will not stop the axis when reaching the switch!

InOut:

Scope Name Type Initial Comment

Input

BusDelay TIME
TIME#1s0

ms

A delay time to wait for fieldbus data.

When the delay time is too long, the

reaction time of function blocks

might be increased, while when it is

too short an error might be indicated

although everything is ok

PosWindow LREAL 10
The limit for the axis to reach it´s tar-

get position

V_Window LREAL 10
The limit for the axis to reach it´s tar-

get velocity

Inout Axis Axis_Ref
 Reference to axis

The block MCA_Parameter has to be used to adjust the velocity limit when veloci-

ties < 10 u/s should be used (10 u/s: default value).

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/Axis_Ref.html#axis-ref

297
3ADR011116

297 Motion Controller with AC500 V3

10.2.1.1.1.14 MCA_PhasingByMaster (FB)

This function block performs a movement for the relation to the master axis of the spec-

ified axis. A real movement is just performed in case the axis is in synchronized motion.

This function block creates a relative phase shift in the master position of a slave axis.

The master position is shifted in relation to the real physical position. This is analogous

to opening a coupling on the master shaft for a moment, and is used to delay or advance

an axis to its master. The phase shift is seen from the slave. The master does not know

that there is a phase shift experienced by the slave. The phase shift remains until an-

other “Phasing” command changes it again.

InOut:

Scope Name Type Comment

Input

Execute BOOL
Starts the function block at rising

edge

PhaseShift LREAL
[u] = Technical unit, phase difference

in master

MasterDistance LREAL [u] Distance master has to move

iType
MC_ABB_i-

Types_Enum

Interpolation type, MCA_LINEAR,

MCA_POLY3 or MCA_POLY5 are appli-

cable

MasterValu-

eSource
MC_Source

Decide to use the actual position or

reference position of master axis

BufferMode
MC_Buffer-

Mode

Not supported, default mcABORTING

used

The phasing is executed with respect to a master movement and will use a poly-

nomial interpolation

To halt this function block user must use MC_HaltPhasing function block instead

of MC_Stop or MC_Halt.

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_ABB_iTypes_Enum.html#mc-abb-itypes-enum
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_ABB_iTypes_Enum.html#mc-abb-itypes-enum
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_Source.html#mc-source
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_BufferMode.html#mc-buffermode
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_BufferMode.html#mc-buffermode

298
3ADR011116

298 Motion Controller with AC500 V3

Scope Name Type Comment

Output

Done BOOL

Shows the status of the function

block. Done = TRUE if the execution is

finished

Busy BOOL The function block is not finished

Active BOOL
Indicates that the function block has

control on the axis

CommandAborted BOOL

Command is aborted by another com-

mand from other PLCopen function

block

Error BOOL
Signals that error has occurred within

function block

ErrorID ERROR_ID

Error identification. For error details

refer to Enumeration ERROR_ID

CoveredPhaseShift LREAL

Actual phase shift of master axis to

slave axis, valid while function block is

busy

Inout

Axis Axis_Ref Reference to axis

Master Axis_Ref Reference to master axis

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.5.5_Library/Enums/ERROR_ID.html#error-id
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/Axis_Ref.html#axis-ref
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/Axis_Ref.html#axis-ref

299
3ADR011116

299 Motion Controller with AC500 V3

10.2.1.1.1.15 MCA_ReadParameterList (FB)

The function block reads a list of parameters by using the “MC_ReadParameter”.

The rules for utilizing the function block correspond to MC_ReadParameter as well as the

ErrorIDs. All parameters and parameter numbers have to be stored in an array of type

MCA_Parameter_Struct. The address of the first element is given to the function blocks

input “pParameters”. The number of elements to be read is declared at input “Num”.

No

(PN)

Parameter

Name

Data-

Type
Min. Max. Default

R/

W
Comments

1
Commanded-

Position
DINT R Commanded Position

2 SWLimitPos DINT -2147483647 2147483647 2147483647
R/

W

Positive Software li-

mit switch position

3 SWLimitNeg DINT -2147483647 2147483647 -2147483647
R/

W

Negative Software li-

mit switch position

4 EnableLimitPos BOOL FALSE TRUE FALSE
R/

W

Enable positive soft-

ware limit switch

5
EnableLimit-

Neg
BOOL FALSE TRUE FALSE

R/

W

Enable negative soft-

ware limit switch

6
EnablePostLag-

Monitoring
BOOL FALSE TRUE TRUE

R/

W

Enable monitoring of

position lag (following

error)

7
MaxPosition-

Lag
DINT 1 2147483647*** R Maximal position lag

8
MaxVeloci-

tySystem
DINT 32767 R

Maximal allowed velo-

city of the axis in the

motion system

9
MaxVeloci-

tyAppl
DINT 0** 32767 32767

R/

W

Maximal allowed velo-

city of the axis in the

application

10 ActualVelocity DINT -32767 32767 R Actual velocity

11
Commanded-

Velocity
DINT -32767 32767 R Commanded Velocity

12
MaxAccelerati-

onSystem
DINT 32767 R

Maximal allowed acce-

leration of the axis in

the motion system

300
3ADR011116

300 Motion Controller with AC500 V3

No

(PN)

Parameter

Name

Data-

Type
Min. Max. Default

R/

W
Comments

13
MaxAccelerati-

onAppl
DINT 10 32767 32767

R/

W

Maximal allowed acce-

leration of the axis in

the application

14
MaxDecelerati-

onSystem
DINT w 32767 R

Maximal allowed dece-

leration of the axis

15
MaxDecelerati-

onAppl
DINT 10 32767 32767

R/

W

Maximal allowed dece-

leration of the axis

16 MaxJerk DINT 0* 2147483647 2147483647
R/

W

Maximal allowed jerk

of the axis

2001
MODULO_NO-

MINATOR
DINT 1 2147483647 1

R/

W

ABB specific parame-

ter. Used for Central

Motion Control imple-

mentation: Gearbox

modifier to MO-

DULO_RANGE

2002
MODULO_DE-

NOMINATOR
DINT 1 2147483647 1

R/

W

ABB specific parame-

ter. Used for Central

Motion Control imple-

mentation: Gearbox

modifier to MO-

DULO_RANGE

2003
EnableLi-

mit2Decelerate
BOOL FALSE TRUE FALSE

R/

W

Enable software limit

switches to decelerate

2004
EnableLimi-

tAbort
BOOL FALSE TRUE FALSE

R/

W

Enable software limit

switches to abort on-

going movement

2005
EnableLimit-

Velocity
BOOL FALSE TRUE FALSE

R/

W

If the velocity is limi-

ted the unmoved posi-

tion will be covered

whenever possible

2006
SWLi-

mit2DecPos
LREAL -2147483647 2147483647 2147483647

R/

W

Used as end position

for EnableLimit2Dece-

lerate

2007
SWLi-

mit2DecNeg
LREAL -2147483647 2147483647 2147483647

R/

W

Used as end position

for EnableLimit2Dece-

lerate

2008
MaxPositionGa-

pLL
LREAL 0 214748364700 0

R/

W

Used to stop the on-

going movement if

position is behind

*0 means: no limitation of jerk is performed.

**Axis will stay in stop.

***Is modified by CMC_Axis_Control_Parameter, the maximum Value is calculated in increments, the
value which is delivered by ReadParameter will be given in [u].

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/01_PLCopen/ABB-Specific/MCA_ReadParameterList.html#id1
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/01_PLCopen/ABB-Specific/MCA_ReadParameterList.html#id3
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/01_PLCopen/ABB-Specific/MCA_ReadParameterList.html#id5
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/01_PLCopen/ABB-Specific/MCA_ReadParameterList.html#id7

301
3ADR011116

301 Motion Controller with AC500 V3

InOut:

Scop

e
Name Type Comment

Input

Execute BOOL Starts the function block at rising edge

Num WORD Number of parameters to read

pParameters

POINTER

TO MCA_Para-

meter_Struct

Points to an array of type MCA_Parame-

ter_Struct which holds the parameter num-

bers and values

Out-

put

Done BOOL
Shows the status of the function block. Done

= TRUE if the execution is finished

Busy BOOL The function block is not finished

Error BOOL
Signals that error has occurred within func-

tion block

ErrorID ERROR_ID

Error identification. For error details refer to

Enumeration ERROR_ID

Inout Axis Axis_Ref Reference to axis

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/MCA_Parameter_Struct.html#mca-parameter-struct
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/MCA_Parameter_Struct.html#mca-parameter-struct
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.5.5_Library/Enums/ERROR_ID.html#error-id
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/Axis_Ref.html#axis-ref

302
3ADR011116

302 Motion Controller with AC500 V3

10.2.1.1.1.16 MCA_SetOperatingMode (FB)

This function block changes the axis mode from positioning to velocity mode and vice

versa.

By default, an axis is always a positioning axis which has to follow either the drives or the

PLCs position control loop. In some applications, the movement is limited (e.g. by torque

restrictions) so the position can´t be reached. A position controlled axis would first

speed up and then create a following error, both caused by the increasing position lag.

The function block MCA_SetOperatingMode can be used to prevent this behavior and

will switch between velocity and position controlled behavior “on the fly”.

In velocity mode

• The Speed_Reference is created by feed-forward, in an open loop. (It is not requi-

red to set FF_Percentage parameter)

• Reference_Position will follow the Drive_Actual_Position

• Position following error is not supervised.

• It will be immediately effective in axis state: STANDSTILL, DISABLED or ER-

RORSTOP

• In any other mode, it will be effective with the next “Execute” rising edge on a

function block which activates a movement. It can be called while the axis is mov-

ing and will create a bumpless transition between the velocity- and position con-

trolled mode

Precondition:The axis has to be used with position loop controlled by the PLC, otherwise

a velocity mode is not possible

• It will not do any mode changes if both inputs = FALSE

• It will not do any mode changes if both inputs = TRUE

To use the function block MCA_SetOperatingMode, the drive has to be used in

CSV (ContinuousSyncronuousVelocity), or an analog drive has to be used, which

means it has to move controlled by Speed_Reference (Kernel).

303
3ADR011116

303 Motion Controller with AC500 V3

InOut:

Scope Name Type Comment

Input

Enable BOOL

Enables the function block to switch the opera-

ting mode. A rising edge is not required, the

block will be activated if Enable = TRUE and will

react to the VeloctiyMode/PositioningMode in-

puts

VelocityMode BOOL
VelocityMode = TRUE/PositioningMode =

FALSE: Switch axis to velocity mode

Positioning-

Mode
BOOL

VelocityMode = FALSE/PositioningMode =

TRUE: Switch axis to positioning mode

Out-

put

InVelocityMode BOOL Shows the axis state is in Velocity Mode

InPositioning-

Mode
BOOL Shows the axis state is in Positioning Mode

Active BOOL Indicates that the selected mode is activated

Error BOOL

Signals that an error has occurred within the

function block, in this function block no error is

generated

ErrorID ERROR_ID

Error identification, in this function block no

error is generated

Inout Axis Axis_Ref Reference to axis

10.2.1.1.1.17 MCA_SetPositionContinuous (FB)

This function block modifies the position of an axis with a defined profile.

This function block shifts the coordinate system of an axis by manipulating either the

setpoint position or the actual position of an axis. This can be used for instance for a ref-

erence situation “on the fly” where no abrupt position change is allowed, example when

a slave axis is linked to the modified axis. This function block can also be used during

motion without changing the commanded position, which is now positioned in the

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.5.5_Library/Enums/ERROR_ID.html#error-id
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/Axis_Ref.html#axis-ref

304
3ADR011116

304 Motion Controller with AC500 V3

shifted coordinate system. A continuous position correction will be achieved, with a de-

fined profile.

• The function block is allowed in any state except ErrorStop or Homing. In

Discrete Motion, just mode SuperImp = TRUE is possible.

• The block will not change the axis state even when it results in a movement.

• With SuperImp = TRUE, the axis will hold the setpoint position while an offset is

applied to the actual position. This will result in a movement as the position con-

trol loop will keep the distance between setpoint- and actual position constant. A

slave axis will not see this movement and will not follow. When the block is ready,

the axis will have moved physically by -Distance but the positions in Axis_Ref will

not have been changed.

• With SuperImp = FALSE, the behavior equals MC_SetPosition, but executed con-

tinuously. The axis will physically stay where it is but the actual position and set-

point position are modified. A slave axis will follow.

• With SuperImp = FALSE: When it is acceptable and required to correct the posi-

tion with a jump, use Acceleration = -1.

InOut:

Scope Name Type Comment

Input

Execute BOOL Starts the function block at rising edge

SuperImp BOOL
Defines 2 different modes. TRUE= Supe-

rimposed movement

Distance LREAL
[u] = Technical unit, Relative distance for

the motion

Velocity LREAL
[u/s] Value of the maximum velocity (not

necessarily reached). Range: >0

Acceleration LREAL
[u/s°°2] Value of the acceleration (increa-

sing energy of the motor). Range: >0

Deceleration LREAL
[u/s°°2] Value of the deceleration (de-

creasing energy of the motor). Range: >0

Jerk LREAL [u/s°°3] Value of the jerk. Range: >=0

BufferMode
MC_Buffer-

Mode

Not supported, default mcABORTING

used

The result will be lost when using MC_SetPosition, execute a Homing, or set Ena-

ble = FALSE for CMC_Basic_Kernel

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_BufferMode.html#mc-buffermode
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_BufferMode.html#mc-buffermode

305
3ADR011116

305 Motion Controller with AC500 V3

Scope Name Type Comment

Out-

put

Done BOOL
Shows the status of the function block.

Done = TRUE if the execution is finished

Busy BOOL The function block is not finished

Active BOOL
Indicates that the function block has

control on the axis

CommandAborted BOOL

Command is aborted by another com-

mand from other PLCopen function

block

Error BOOL
Signals that error has occurred within

function block

ErrorID ERROR_ID

Error identification. For error details re-

fer to Enumeration ERROR_ID

CoveredDistance LREAL

Shows the progress, starts with 0 and

ends with CoveredDistance = Distance.

The value is valid while the function block

is active

Inout Axis Axis_Ref Reference to axis

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.5.5_Library/Enums/ERROR_ID.html#error-id
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/Axis_Ref.html#axis-ref

306
3ADR011116

306 Motion Controller with AC500 V3

10.2.1.1.1.18 MCA_WriteParameterList (FB)

The function block writes a list of parameters by using the “MC_WriteParameter”.

The rules for utilizing the function block correspond to MC_WriteParameter as well as

the ErrorIDs. All parameters and parameter numbers have to be stored in an array of

type MCA_Parameter_Struct. The address of the first element is given to the function

blocks input “pParameters”. The number of elements to be written is declared at input

“Num”.

No
Parameter

Name

Data-

Type
Min. Max. Default

R/

W
Comments

1
Commanded-

Position
DINT R Commanded Position

2 SWLimitPos DINT -2147483647 2147483647 2147483647
R/

W

Positive Software limit

switch position

3 SWLimitNeg DINT -2147483647 2147483647
-

2147483647

R/

W

Negative Software li-

mit switch position

4 EnableLimitPos BOOL FALSE TRUE FALSE
R/

W

Enable positive soft-

ware limit switch

5
EnableLimit-

Neg
BOOL FALSE TRUE FALSE

R/

W

Enable negative soft-

ware limit switch

6
EnablePostLag-

Monitoring
BOOL FALSE TRUE TRUE

R/

W

Enable monitoring of

position lag (following

error)

7
MaxPosition-

Lag
DINT 1 2147483647*** R Maximal position lag

8
MaxVeloci-

tySystem
DINT 32767 R

Maximal allowed velo-

city of the axis in the

motion system

9
MaxVeloci-

tyAppl
DINT 0** 32767 32767

R/

W

Maximal allowed velo-

city of the axis in the

application

10 ActualVelocity DINT -32767 32767 R Actual velocity

11
Commanded-

Velocity
DINT -32767 32767 R Commanded Velocity

12
MaxAccelerati-

onSystem
DINT 32767 R

Maximal allowed acce-

leration of the axis in

the motion system

307
3ADR011116

307 Motion Controller with AC500 V3

*0 means: no limitation of jerk is performed.

**Axis will stay in stop.

***Is modified by CMC_Axis_Control_Parameter, the maximum Value is calculated in in-

crements, the value which is delivered by ReadParameter will be given in [u].

13
MaxAccelerati-

onAppl
DINT 10 32767 32767

R/

W

Maximal allowed acce-

leration of the axis in

the application

14
MaxDecelerati-

onSystem
DINT 32767 R

Maximal allowed dece-

leration of the axis

15
MaxDecelerati-

onAppl
DINT 10 32767 32767

R/

W

Maximal allowed dece-

leration of the axis

16 MaxJerk DINT 0* 2147483647 2147483647
R/

W

Maximal allowed jerk

of the axis

200

1

MODULO_NO-

MINATOR
DINT 1 2147483647 1

R/

W

ABB specific parame-

ter. Used for Central

Motion Control imple-

mentation: Gearbox

modifier to MO-

DULO_RANGE

200

2

MODULO_DE-

NOMINATOR
DINT 1 2147483647 1

R/

W

ABB specific parame-

ter. Used for Central

Motion Control imple-

mentation: Gearbox

modifier to MO-

DULO_RANGE

200

3

EnableLi-

mit2Decelerate
BOOL FALSE TRUE FALSE

R/

W

Enable software limit

switches to decelerate

200

4

EnableLimi-

tAbort
BOOL FALSE TRUE FALSE

R/

W

Enable that software

limit switches will

abort ongoing move-

ment

200

5

EnableLimit-

Velocity
BOOL FALSE TRUE FALSE

R/

W

If the velocity is limi-

ted the unmoved posi-

tion will be covered

whenever possible

200

6

SWLi-

mit2DecPos
LREAL -2147483647 2147483647 2147483647

R/

W

Used as end position

for EnableLimit2Dece-

lerate

200

7

SWLi-

mit2DecNeg
LREAL -2147483647 2147483647 2147483647

R/

W

Used as end position

for EnableLimit2Dece-

lerate

200

8

MaxPositionGa-

pLL
LREAL 0 214748364700 0

R/

W

Used to stop the on-

going movement if po-

sition is behind

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/01_PLCopen/ABB-Specific/MCA_WriteParameterList.html#id1
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/01_PLCopen/ABB-Specific/MCA_WriteParameterList.html#id3
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/01_PLCopen/ABB-Specific/MCA_WriteParameterList.html#id5
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/01_PLCopen/ABB-Specific/MCA_WriteParameterList.html#id7

308
3ADR011116

308 Motion Controller with AC500 V3

InOut:

Scope Name Type Comment

Input

Execute BOOL Starts the function block at rising edge

Num WORD Number of parameters to write

pParameters

POINTER

TO MCA_Para-

meter_Struct

Points to an array of type MCA_Parame-

ter_Struct which holds the parameter num-

bers and values

Out-

put

Done BOOL
Shows the status of the function block. Done

= TRUE if the execution is finished

Busy BOOL The function block is not finished

Error BOOL
Signals that error has occurred within func-

tion block

ErrorID ERROR_ID

Error identification. For error details refer to

Enumeration ERROR_ID

Inout Axis Axis_Ref Reference to axis

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/MCA_Parameter_Struct.html#mca-parameter-struct
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/MCA_Parameter_Struct.html#mca-parameter-struct
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.5.5_Library/Enums/ERROR_ID.html#error-id
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/Axis_Ref.html#axis-ref

309
3ADR011116

309 Motion Controller with AC500 V3

10.2.1.1.1.19 MCA_DigitalCamSwitch (FB)

This function block implements Tappet functionality. The output pin is Switched on and

Off based on TrackID, Axis Position and Configuration in the MCA_CAMTappet array.

Users can either create MCA_CAMTappet array manually or by using the CamEditor to

configure tappets.

When using the CamEditor, MCA_CAMTappet array is generated automatically based on

the configuration and the array name follows the Cam object name with “_T”.

For example, Cam object’s name is “RotaryShear”, MCA_CAMTappet array is generated

as “RotaryShear_T. This can be directly passed to input pin name “Tappets” of function

block MCA_Tappet

InOut:

Scope Name Type Comment

Input
Enable BOOL

Enables the function block to evaluate tappet track.

A rising edge is not required, the block will be activa-

ted if Enable = TRUE

TrackID INT Track ID for which Output is needed. Range: >=1

Out-

put

InOpe-

ration
BOOL True indicates that Function Block is in Operation

Output BOOL Actual tappet value as per tappet table

Error BOOL Signals that error has occurred within function block

ErrorID ERROR_ID
Error identification. For error details refer to Enume-

ration ERROR_ID

Input Tappets
POINTER

TO MCA_CAMTappet

Reference to CAM_T description, points to an array

of MCA_CAMTappet, Must be an Array not a pointer

Inout AxisRef Axis_Ref Axis Ref: Reference to Tappet Axis.

10.2.1.1.1.20 MCA_MoveBuffer (FB)

This function block will, upon a rising edge on Execute, do a number of relative or abso-

lute moves, listed in a table (Array of MCA_Pos_Ref).

With VelocityMode = FALSE, the function block will position the axis to a complete stop

at target position and continue with the next move from the table automatically.

With VelocityMode = TRUE, the function block will end the positioning movement with

the given velocity and (if it is not the last movement) continue with the next move from

the table automatically.

If it is the last movement, the axis will come to a complete stop.

InOut:

User can utilize CAM editor in Automation builder to generate Tappet Table

(MCA_CAMTappet) automatically. AxisPosition in MCA_CAMTappet should be al-

ways in ascending order.

310
3ADR011116

310 Motion Controller with AC500 V3

Scope Name Type Comment

Input

Execute BOOL Starts the function block at rising edge

Move-

sToDo
WORD

Provide number of moves, not more then en-

tries in MoveParameter

TableIn-

dex
WORD

Index to an array of MCA_Pos_Ref, points to

the movement to be performed on rising

edge of Execute, start with 1 for the first en-

try

Out-

put

Done BOOL
Shows the status of the function block. Done

= TRUE if the execution is finished

Busy BOOL The function block is not finished

Active BOOL
Indicates that the function block has control

on the axis

Comman-

dAborted
BOOL

Command is aborted by another command

from other PLCopen function block

Error BOOL
Signals that error has occurred within func-

tion block

ErrorID ERROR_ID
Error identification. For error details refer to

Enumeration ERROR_ID

Move-

sPending
WORD

Indicates the number of moves still to exe-

cute

IndexNo WORD
Index executing or last index completed, star-

ting with “1”

Input
MovePa-

rameter

POINTER

TO MCA_POS_REF

array with all parameters for either absolute

or relative positioning movement

Inout Axis Axis_Ref Reference to axis

311
3ADR011116

311 Motion Controller with AC500 V3

10.2.1.1.1.21 MCA_MoveByExtRefRelative (FB)

This function block gives a reference position to the axis which is directly passed to the

position control loop.The positioning is relative, starting with a rising edge at Execute.

The axis will follow the given position without a ramp but immediately. The reference po-

sition is evaluated continuously.

To stop the motion, the function block has to be interrupted by another function block

issuing a new command

InOut:

Scope Name Type Comment

Input

Execute BOOL Starts the function block at rising edge

Distance LREAL

[u] Reference position, as relative position. New values

are accepted in a running system without a new rising

edge of Execute. The movement is relative from the 1.

rising edge.

Distance is not allowed to exceed +/-0x7FFFFFFF. The

value will be limited accordingly.

Buffer-

Mode

MC_Buf-

ferMode
Not supported, default mcABORTING used

Out-

put

Done BOOL
Shows the status of the function block. This output not

used in current version

Busy BOOL The function block is not finished

Active BOOL Indicates that the function block has control on the axis

Comman-

dAborted
BOOL

Command is aborted by another command from other

PLCopen function block

Error BOOL Signals that error has occurred within function block

ErrorID ERROR_ID
Error identification. For error details refer to Enumera-

tion ERROR_ID

Inout Axis Axis_Ref Reference to axis

10.2.1.1.2 MC Administrative

PLC open motion control Administrative function blocks

This block has to be called within the REAL-TIME task, same task as CMC_Ba-

sic_Kernel

312
3ADR011116

312 Motion Controller with AC500 V3

10.2.1.1.2.1 MC_CamTableSelect (FB)

This function block selects the CAM tables by setting the connections to the relevant ta-

bles

• A virtual axis can be used as master axis.

• MC_PProfile is an ABB specific data type.

• CamTableSelect makes data available. It prepares the provided data to be used

by MC_CamIn or MCA_CamInDirect

Example on adding a CAM table:

CamTable:ARRAY[0..2]OF MC_PProfile := [

(Mastr_position:= 0, interpolation_point:= 0, Velocity_ratio:= 1, Acceleration_ratio:= 1),

(Master_position:= 10, interpolation_point:= 10, Velocity_ratio:= 1, Acceleration_ratio:= 1

), (Master_position:= 20, interpolation_point:= 15, Velocity_ratio:= 1, Acceleration_ratio:=

1),

];

InOut:

Scope Name Type Comment

Input

Execute BOOL Starts the function block at rising edge

MasterAbsolute BOOL

CamTable holds absolute positions for

master. TRUE = Absolute, FALSE = Rela-

tive coordinates

SlaveAbsolute BOOL

CamTable holds absolute positions for

slave. TRUE = Absolute, FALSE = Relative

coordinates

Number_Of_Pairs INT
Number of sampling points, number of

elements in CamTable

iType
MC_ABB_iTy-

pes_Enum

Type of interpolation. Possible values

are:

MCA_SPLINE_COMPLETE

MCA_SPLINE_NATURAL

User can utilize CAM editor in Automation builder to generate Cam table

(MC_PProfile) automatically. For more details refer to Automation builder help.

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_ABB_iTypes_Enum.html#mc-abb-itypes-enum
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_ABB_iTypes_Enum.html#mc-abb-itypes-enum

313
3ADR011116

313 Motion Controller with AC500 V3

Scope Name Type Comment

MCA_POLY5

MCA_POLY3

MCA_LINEAR

CamTable
POINTER

TO MC_PProfile

Reference to CAM description, points to

an array of MC_PProfile

Output

Done BOOL
Shows the status of the function block.

Done = TRUE if the execution is finished

Busy BOOL
The function block with Busy = TRUE has

control on the axis

Error BOOL
Signals that error has occurred within

function block

ErrorID ERROR_ID

Error identification. For error details re-

fer to Enumeration ERROR_ID

CamTableID MC_Cam_Id

Refers to prepared data, to be used for

MC_CamIn or MCA_CamInDirect

Inout

Master Axis_Ref Reference to master axis

Slave Axis_Ref Reference to slave axis

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/MC_PProfile.html#mc-pprofile
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.5.5_Library/Enums/ERROR_ID.html#error-id
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/MC_Cam_Id.html#mc-cam-id
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/Axis_Ref.html#axis-ref
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/Axis_Ref.html#axis-ref

314
3ADR011116

314 Motion Controller with AC500 V3

10.2.1.1.2.2 MC_Power (FB)

This function block controls the power stage (on or off).

If this function block is called with Enable = TRUE and axis Disabled, it will either lead to

StandStill when no error inside the axis or ErrorStop if an error exists. An error indicates

that there is a hardware problem with the power stage.

• If power fails (also during operation) block will generate a transition to the state

ErrorStop.

• When MC_Power is called with Enable = FALSE the axis goes to state Disabled for

every state including ErrorStop.

• It is possible to set an error variable when the Command is TRUE for a while and

the Status remains FALSE with a Timer Function Block and an AND Function (with

inverted Status input). It indicates that there is a hardware problem with the

power stage

InOut:

Scope Name Type Initial Comment

Input

Enable BOOL Enable continuously on “TRUE”

EnablePositive BOOL TRUE

Enable positive movement direction, FALSE

will hold the axis without ramp, an ongoing

movement is aborted

EnableNegative BOOL TRUE

Enable negative movement direction, FALSE

will hold the axis without stop, an ongoing

movement is aborted

Output

Status BOOL Axis is activated

Error BOOL
Signals that error has occurred within func-

tion block

ErrorID ERROR_ID

Error identification. For error details refer to

Enumeration ERROR_ID

Inout Axis Axis_Ref

 Reference to axis

Error “NO_FIELD_ACCCESS” can get generated at the output ErrorID even when

function block is disabled.

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.5.5_Library/Enums/ERROR_ID.html#error-id
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/Axis_Ref.html#axis-ref

315
3ADR011116

315 Motion Controller with AC500 V3

10.2.1.1.2.3 MC_ReadActualPosition (FB)

This function block returns the actual position.

InOut:

Scope Name Type Comment

Input Enable BOOL Read continuously on “TRUE”

Output

Valid BOOL Value is available

Error BOOL
Signals that error has occurred within function

block

ErrorID
ER-

ROR_ID

Error identification. For error details refer to

Enumeration ERROR_ID

Position LREAL [u] New absolute position

Inout Axis Axis_Ref Reference to axis

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.5.5_Library/Enums/ERROR_ID.html#error-id
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.5.5_Library/Enums/ERROR_ID.html#error-id
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/Axis_Ref.html#axis-ref

316
3ADR011116

316 Motion Controller with AC500 V3

10.2.1.1.2.4 MC_ReadActualVelocity (FB)

This function block returns the value of the actual velocity as long as Enable is set.

Output Valid is true when the data-output “Velocity” is valid. If Enable is reset, the data

loses its validity, and all outputs are reset, no matter if new data is available.

InOut:

Scope Name Type Comment

Input Enable BOOL Read continuously on “TRUE”

Output

Valid BOOL Value is available

Error BOOL
Signals that error has occurred within func-

tion block

ErrorID
ER-

ROR_ID

Error identification. For error details refer to

Enumeration ERROR_ID

ActualVelocity LREAL The value of Actual velocity

Inout Axis Axis_Ref Reference to axis

The output ActualVelocity is a signed value.

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.5.5_Library/Enums/ERROR_ID.html#error-id
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.5.5_Library/Enums/ERROR_ID.html#error-id
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/Axis_Ref.html#axis-ref

317
3ADR011116

317 Motion Controller with AC500 V3

10.2.1.1.2.5 MC_ReadAxisError (FB)

This function block describes general axis errors not relating to the PLCopen function

blocks.

The error codes are generated by CMC_Basic_Kernel

InOut:

Scope Name Type Comment

Input Enable BOOL Read continuously on “TRUE”

Out-

put

Valid BOOL Value is available

Error BOOL
Signals that error has occurred within function

block

ErrorID
ER-

ROR_ID

Error identification. For error details refer to Enu-

meration ERROR_ID

AxisErro-

rID
WORD

Axis error. It shows the CMC_Basic_Kernel ErrorID,

Refer to enumeration ERROR_ID

Inout Axis Axis_Ref Reference to axis

This function block is the equivalent to read the AxisErrorID parameter using

MC_ReadParameter

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.5.5_Library/Enums/ERROR_ID.html#error-id
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.5.5_Library/Enums/ERROR_ID.html#error-id
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/Axis_Ref.html#axis-ref

318
3ADR011116

318 Motion Controller with AC500 V3

10.2.1.1.2.6 MC_ReadBoolParameter (FB)

It will support the Parameters defined as “standard” in the PLCopen. These parameters

will be transfered to the units as used for PLCopen function blocks

When a drive based axis implementation is used, the function block returns the value of a

drive specific BOOL parameter or a PLCopen BOOL parameter. When the Central Motion

Control axis implementation is used, a BOOL parameter according to the list PLCopen

parameter is returned

No
Parameter

Name

Data

Type
Min. Max. Default

R/

W
Comments

1
Commanded-

Position
DINT R

Commanded Posi-

tion

2 SWLimitPos DINT -2147483647 2147483647 2147483647
R/

W

Positive Software li-

mit switch position

3 SWLimitNeg DINT -2147483647 2147483647 -2147483647
R/

W

Negative Software

limit switch posi-

tion

4 EnableLimitPos BOOL FALSE TRUE FALSE
R/

W

Enable positive

software limit

switch

5
EnableLimit-

Neg
BOOL FALSE TRUE FALSE

R/

W

Enable negative

software limit

switch

6
EnablePostLag-

Monitoring
BOOL FALSE TRUE TRUE

R/

W

Enable monitoring

of position lag (fol-

lowing error)

7
MaxPosition-

Lag
DINT 1 2147483647*** R

Maximal position

lag

8
MaxVelocitySy-

stem
DINT 32767 R

Maximal allowed

velocity of the axis

in the motion sy-

stem

9
MaxVeloci-

tyAppl
DINT 0** 32767 32767

R/

W

Maximal allowed

velocity of the axis

in the application

10 ActualVelocity DINT -32767 32767 R Actual velocity

11
Commanded-

Velocity
DINT -32767 32767 R

Commanded Velo-

city

319
3ADR011116

319 Motion Controller with AC500 V3

No
Parameter

Name

Data

Type
Min. Max. Default

R/

W
Comments

12
MaxAccelera-

tionSystem
DINT 32767 R

Maximal allowed

acceleration of the

axis in the motion

system

13
MaxAccelera-

tionAppl
DINT 10 32767 32767

R/

W

Maximal allowed

acceleration of the

axis in the applica-

tion

14
MaxDecelera-

tionSystem
DINT 32767 R

Maximal allowed

deceleration of the

axis

15
MaxDecelera-

tionAppl
DINT 10 32767 32767

R/

W

Maximal allowed

deceleration of the

axis

16 MaxJerk DINT 0* 2147483647 2147483647
R/

W

Maximal allowed

jerk of the axis

2001
MODULO_NO-

MINATOR
DINT 1 2147483647 1

R/

W

ABB specific para-

meter. Used for

Central Motion

Control implemen-

tation: Gearbox

modifier to MO-

DULO_RANGE

2002
MODULO_DE-

NOMINATOR
DINT 1 2147483647 1

R/

W

ABB specific para-

meter. Used for

Central Motion

Control implemen-

tation: Gearbox

modifier to MO-

DULO_RANGE

2003
EnableLi-

mit2Decelerate
BOOL FALSE TRUE FALSE

R/

W

Enable software li-

mit switches to de-

celerate

2004
EnableLimitA-

bort
BOOL FALSE TRUE FALSE

R/

W

Enable that soft-

ware limit switches

will abort ongoing

movement

2005
EnableLimitVe-

locity
BOOL FALSE TRUE FALSE

R/

W

If the velocity is li-

mited the unmoved

position will be co-

vered whenever

possible

320
3ADR011116

320 Motion Controller with AC500 V3

No
Parameter

Name

Data

Type
Min. Max. Default

R/

W
Comments

2006
SWLi-

mit2DecPos
LREAL -2147483647 2147483647 2147483647

R/

W

Used as end posi-

tion for EnableLi-

mit2Decelerate

2007
SWLimit2Dec-

Neg
LREAL -2147483647 2147483647 2147483647

R/

W

Used as end posi-

tion for EnableLi-

mit2Decelerate

2008
MaxPosition-

GapLL
LREAL 0 214748364700 0

R/

W

Used to stop the

ongoing movement

if position is behind

*0 means: no limitation of jerk is performed.

**Axis will stay in stop.

***Is modified by CMC_Axis_Control_Parameter, the maximum Value is calculated in in-

crements, the value which is delivered by ReadParameter will be given in [u].

InOut:

Scope Name Type Comment

Input

Enable BOOL Read continuously on “TRUE”

Parameter-

Number
WORD Number of the parameter

Out-

put

Valid BOOL Value is available

Busy BOOL
The function block with Busy = TRUE has con-

trol on the axis

Error BOOL
Signals that error has occurred within function

block

ErrorID
ER-

ROR_ID

Error identification. For error details refer to

Enumeration ERROR_ID

Value BOOL
Value of the specified parameter in the data-

type

Inout Axis Axis_Ref Reference to axis

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/01_PLCopen/MC-Administrative/MC_ReadBoolParameter.html#id1
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/01_PLCopen/MC-Administrative/MC_ReadBoolParameter.html#id3
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/01_PLCopen/MC-Administrative/MC_ReadBoolParameter.html#id5
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/01_PLCopen/MC-Administrative/MC_ReadBoolParameter.html#id7
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.5.5_Library/Enums/ERROR_ID.html#error-id
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.5.5_Library/Enums/ERROR_ID.html#error-id
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/Axis_Ref.html#axis-ref

321
3ADR011116

321 Motion Controller with AC500 V3

10.2.1.1.2.7 MC_ReadParameter (FB)

It will support the Parameters defined as “standard” in the PLCopen. These parameters

will be transfered to the units as used for PLCopen function blocks

When a drive based axis implementation is used, the function block returns the value of a

drive specific parameter or a PLCopen parameter. When the Central Motion Control axis

implementation is used, a parameter according to the list PLCopen parameter is re-

turned

No
Parameter

Name

Data

Type
Min. Max. Default

R/

W
Comments

1
Commanded-

Position
DINT R Commanded Position

2 SWLimitPos DINT -2147483647 2147483647 2147483647
R/

W

Positive Software limit

switch position

3 SWLimitNeg DINT -2147483647 2147483647 -2147483647
R/

W

Negative Software li-

mit switch position

4 EnableLimitPos BOOL FALSE TRUE FALSE
R/

W

Enable positive soft-

ware limit switch

5
EnableLimit-

Neg
BOOL FALSE TRUE FALSE

R/

W

Enable negative soft-

ware limit switch

6
EnablePostLag-

Monitoring
BOOL FALSE TRUE TRUE

R/

W

Enable monitoring of

position lag (following

error)

7
MaxPosition-

Lag
DINT 1

2147483647*

**
 R Maximal position lag

8
MaxVelocitySy-

stem
DINT 32767 R

Maximal allowed velo-

city of the axis in the

motion system

9
MaxVeloci-

tyAppl
DINT 0** 32767 32767

R/

W

Maximal allowed velo-

city of the axis in the

application

10 ActualVelocity DINT -32767 32767 R Actual velocity

11
Commanded-

Velocity
DINT -32767 32767 R Commanded Velocity

12
MaxAccelera-

tionSystem
DINT 32767 R

Maximal allowed acce-

leration of the axis in

the motion system

322
3ADR011116

322 Motion Controller with AC500 V3

No
Parameter

Name

Data

Type
Min. Max. Default

R/

W
Comments

13
MaxAccelera-

tionAppl
DINT 10 32767 32767

R/

W

Maximal allowed acce-

leration of the axis in

the application

14
MaxDecelera-

tionSystem
DINT 32767 R

Maximal allowed dece-

leration of the axis

15
MaxDecelera-

tionAppl
DINT 10 32767 32767

R/

W

Maximal allowed dece-

leration of the axis

16 MaxJerk DINT 0* 2147483647 2147483647
R/

W

Maximal allowed jerk

of the axis

2001
MODULO_NO-

MINATOR
DINT 1 2147483647 1

R/

W

ABB spec. parameter.

Used f. Central Motion

Control implementa-

tion: Gearbox modifier

to MODULO_RANGE

2002
MODULO_DE-

NOMINATOR
DINT 1 2147483647 1

R/

W

ABB spec parameter.

Used f. Central Motion

Control implementa-

tion: Gearbox modifier

to MODULO_RANGE

2003
EnableLi-

mit2Decelerate
BOOL FALSE TRUE FALSE

R/

W

Enable software limit

switches to decelerate

2004
EnableLimitA-

bort
BOOL FALSE TRUE FALSE

R/

W

Enable that software li-

mit switches will abort

ongoing movement

2005
EnableLimitVe-

locity
BOOL FALSE TRUE FALSE

R/

W

If the velocity is limited

the unmoved position

will be covered whene-

ver possible

2006
SWLi-

mit2DecPos
LREAL -2147483647 2147483647 2147483647

R/

W

Used as end position

for EnableLimit2Dece-

lerate

2007
SWLimit2Dec-

Neg
LREAL -2147483647 2147483647 2147483647

R/

W

Used as end position

for EnableLimit2Dece-

lerate

2008
MaxPosition-

GapLL
LREAL 0

2147483647

00
0

R/

W

Used to stop the on-

going movement if po-

sition is behind

*0 means: no limitation of jerk is performed.

**Axis will stay in stop.

***Is modified by CMC_Axis_Control_Parameter, the maximum Value is calculated in in-

crements, the value which is delivered by ReadParameter will be given in [u].

InOut:

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/01_PLCopen/MC-Administrative/MC_ReadParameter.html#id1
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/01_PLCopen/MC-Administrative/MC_ReadParameter.html#id3
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/01_PLCopen/MC-Administrative/MC_ReadParameter.html#id5
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/01_PLCopen/MC-Administrative/MC_ReadParameter.html#id7

323
3ADR011116

323 Motion Controller with AC500 V3

Scop

e
Name Type Comment

Input

Enable BOOL Read continuously on “TRUE”

Parameter-

Number
WORD Number of the parameter

Out-

put

Valid BOOL Value is available

Busy BOOL
The function block with Busy = TRUE has control on

the axis

Error BOOL
Signals that error has occurred within function

block

ErrorID
ER-

ROR_ID

Error identification. For error details refer to Enu-

meration ERROR_ID

Value DINT Value of the specified parameter in the datatype

Inout Axis
Axis_Re

f

Reference to axis

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.5.5_Library/Enums/ERROR_ID.html#error-id
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.5.5_Library/Enums/ERROR_ID.html#error-id
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/Axis_Ref.html#axis-ref
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/Axis_Ref.html#axis-ref

324
3ADR011116

324 Motion Controller with AC500 V3

10.2.1.1.2.8 MC_ReadStatus (FB)

This function block returns in detail the status of the axis with respect to the motion cur-

rently in progress.

InOut:

Scope Name Type Comment

Input Enable BOOL Read continuously on “TRUE”

Output

Valid BOOL Value is available

Error BOOL
Signals that error has occurred within function

block

ErrorID ERROR_ID

Error identification. For error details refer to

Enumeration ERROR_ID

Errorstop BOOL Axis is in specific state

Disabled BOOL Axis is in specific state

Stopping BOOL Axis is in specific state

StandStill BOOL Axis is in specific state

DiscreteMotion BOOL Axis is in specific state

ContinuousMotion BOOL Axis is in specific state

SynchronizedMotion BOOL Axis is in specific state

Homing BOOL Axis is in specific state

ConstantVelocity BOOL
Axis is in specific state, Motor moves with con-

stant velocity

Accelerating BOOL
Axis is in specific state, Increasing energy of the

motor

Decelerating BOOL
Axis is in specific state, Decreasing energy of the

motor

Inout Axis Axis_Ref Reference to axis

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.5.5_Library/Enums/ERROR_ID.html#error-id
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/Axis_Ref.html#axis-ref

325
3ADR011116

325 Motion Controller with AC500 V3

10.2.1.1.2.9 MC_Reset (FB)

MC_Reset function block makes the transition from the state ErrorStop to StandStill by

resetting all internal axis-related errors. It does not affect the output of the function

block instances

Gives a reset to the axis as well, in any state. In addition, a reset message is sent to the

drive (e.g. output DRIVE_RESET_FAULT AT CMC_Basic_Kernel)

InOut:

Scope Name Type Comment

Input Execute BOOL Starts the function block at rising edge

Output

Done BOOL
Shows the status of the function block. Done =

TRUE if the execution is finished

Busy BOOL
The function block with Busy = TRUE has control

on the axis

Error BOOL
Signals that error has occurred within function

block

ErrorID
ER-

ROR_ID

Error identification. For error details refer to Enu-

meration ERROR_ID

Inout Axis Axis_Ref Reference to axis

Ouptut “Done” will be TRUE after a wait time of 5 seconds, even though Reset

operation is complete.

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.5.5_Library/Enums/ERROR_ID.html#error-id
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.5.5_Library/Enums/ERROR_ID.html#error-id
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/Axis_Ref.html#axis-ref

326
3ADR011116

326 Motion Controller with AC500 V3

10.2.1.1.2.10 MC_SetOverride (FB)

This function block sets the values of override for the whole axis and all functions that

are working on that axis.

The override parameters act as a factor that is multiplied to the commanded velocity,

acceleration, deceleration and jerk of the move function block.

• The input AccFactor acts on positive and negative acceleration (deceleration).

• This function block sets the factor. The override factor is valid until a new over-

ride is set.

• The default values of the override factors are 1.0.

• The value of the overrides can be between 0.0 and 1.0. Values > 1.0 and values <

0.0 are not allowed. The value 0.0 is not allowed for AccFactor and JerkFactor.

• Override does not act on slave axes. (Axes in the state Synchronized Motion).

• The function block does not influence the single axis state diagram.

• The override factors are just effective to modify the velocity, acceleration, decel-

eration and jerk which are provided as explicit values by PLCopen function

blocks. They do not modify a movement which is commanded by other means as

camming, gearing, profiling, where no explicit velocity, acceleration, deceleration

and jerk is in place

InOut:

Scope Name Type Initial Comment

Input

Enable BOOL

If TRUE, it writes the value of the override fac-

tor continuously. If FALSE it should keep the

last value

VelFactor LREAL 1
New override factor for the velocity, Range:

=0.0, >0.0, <1.0

AccFactor LREAL 1
New override factor for the acceleration or de-

celeration, Range: >0.0, < 1.0

JerkFactor LREAL 1
New override factor for the jerk, Range: >0.0,

<1.0

Output

Enabled BOOL The block is enabled and working

Error BOOL
Signals that error has occurred within function

block

ErrorID ERROR_ID

Error identification. For error details refer to

Enumeration ERROR_ID

Inout Axis Axis_Ref

 Reference to axis

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.5.5_Library/Enums/ERROR_ID.html#error-id
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/Axis_Ref.html#axis-ref

327
3ADR011116

327 Motion Controller with AC500 V3

10.2.1.1.2.11 MC_SetPosition (FB)

This function block shifts the coordinate system of an axis by manipulating both the set-

point position as well as the actual position of an axis with the same value without any

movement caused.

(Re-calibration with same following error). This can be used for instance for a reference

situation. This function block can also be used during motion without changing the com-

manded position, which is now positioned in the shifted coordinate system. This block

may just be called in: “StandStill”, “ContinuousMotion”, “ErrorStop” or “Disabled”.

• RELATIVE means that position is added to the actual position value of the axis at

the time of execution. This results in a recalibration by a specified distance.

• ABSOLUTE means that the actual position value of the axis is set to the value

specified in the position parameter.

InOut:

Scop

e
Name Type Comment

Input

Exe-

cute
BOOL Starts the function block at rising edge.

Posi-

tion
LREAL

[u] Reference position, used as Distance with Relative =

TRUE

Rela-

tive
BOOL TRUE = Relative, FALSE = Absolute

Out-

put

Done BOOL Execution is finished

Busy BOOL The function block is not finished

Error BOOL Signals that error has occurred within function block

Erro-

rID

ER-

ROR_ID

Error identification. For error details refer to Enumera-

tion ERROR_ID

Inout Axis
Axis_Re

f

Reference to axis

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.5.5_Library/Enums/ERROR_ID.html#error-id
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.5.5_Library/Enums/ERROR_ID.html#error-id
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/Axis_Ref.html#axis-ref
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/Axis_Ref.html#axis-ref

328
3ADR011116

328 Motion Controller with AC500 V3

10.2.1.1.2.12 MC_WriteBoolParameter (FB)

It will support the Parameters defined as “standard” in the PLCOpen. These parameters

will be transfered to the units as used for PLCOpen function blocks

When a drive based axis implementation is used, the Function Block writes the value of a

drive specific BOOL parameter or a PLCOpen BOOL parameter. When the Central Motion

Control axis implementation is used, a BOOL parameter according to the list PLCopen

parameter is written

No
Parameter

Name

Data

Type
Min. Max. Default

R/

W
Comments

1
CommandedPo-

sition
DINT R

Commanded Po-

sition

2 SWLimitPos DINT -2147483647 2147483647 2147483647
R/

W

Positive Software

limit switch posi-

tion

3 SWLimitNeg DINT -2147483647 2147483647 -2147483647
R/

W

Negative Soft-

ware limit switch

position

4 EnableLimitPos BOOL FALSE TRUE FALSE
R/

W

Enable positive

software limit

switch

5 EnableLimitNeg BOOL FALSE TRUE FALSE
R/

W

Enable negative

software limit

switch

6
EnablePostLag-

Monitoring
BOOL FALSE TRUE TRUE

R/

W

Enable monito-

ring of position

lag (following er-

ror)

7 MaxPositionLag DINT 1
2147483647**

*
 R

Maximal position

lag

8
MaxVelocitySy-

stem
DINT 32767 R

Maximal allowed

velocity of the

axis in the mo-

tion system

9 MaxVelocityAppl DINT 0** 32767 32767
R/

W

Maximal allowed

velocity of the

axis in the appli-

cation

10 ActualVelocity DINT -32767 32767 R Actual velocity

329
3ADR011116

329 Motion Controller with AC500 V3

No
Parameter

Name

Data

Type
Min. Max. Default

R/

W
Comments

11
CommandedVe-

locity
DINT -32767 32767 R

Commanded Ve-

locity

12
MaxAcceleration-

System
DINT 32767 R

Maximal allowed

acceleration of

the axis in the

motion system

13
MaxAcceleratio-

nAppl
DINT 10 32767 32767

R/

W

Maximal allowed

acceleration of

the axis in the ap-

plication

14
MaxDecelera-

tionSystem
DINT 32767 R

Maximal allowed

deceleration of

the axis

15
MaxDeceleratio-

nAppl
DINT 10 32767 32767

R/

W

Maximal allowed

deceleration of

the axis

16 MaxJerk DINT 0* 2147483647 2147483647
R/

W

Maximal allowed

jerk of the axis

2001
MODULO_NOMI-

NATOR
DINT 1 2147483647 1

R/

W

ABB specific pa-

rameter. Used for

Central Motion

Control imple-

mentation: Gear-

box modifier to

MODULO_RANGE

2002
MODULO_DENO-

MINATOR
DINT 1 2147483647 1

R/

W

ABB specific pa-

rameter. Used for

Central Motion

Control imple-

mentation: Gear-

box modifier to

MODULO_RANGE

2003
EnableLimit2De-

celerate
BOOL FALSE TRUE FALSE

R/

W

Enable software

limit switches to

decelerate

2004
EnableLimitA-

bort
BOOL FALSE TRUE FALSE

R/

W

Enable that soft-

ware limit swit-

ches will abort

ongoing move-

ment

2005
EnableLimitVelo-

city
BOOL FALSE TRUE FALSE

R/

W

If the velocity is

limited the

unmoved posi-

330
3ADR011116

330 Motion Controller with AC500 V3

No
Parameter

Name

Data

Type
Min. Max. Default

R/

W
Comments

tion will be cove-

red whenever

possible

2006 SWLimit2DecPos LREAL -2147483647 2147483647 2147483647
R/

W

Used as end posi-

tion for EnableLi-

mit2Decelerate

2007 SWLimit2DecNeg LREAL -2147483647 2147483647 2147483647
R/

W

Used as end posi-

tion for EnableLi-

mit2Decelerate

2008
MaxPosition-

GapLL
LREAL 0

21474836470

0
0

R/

W

Used to stop the

ongoing move-

ment if position

is behind

*0 means: no limitation of jerk is performed.

**Axis will stay in stop.

***Is modified by CMC_Axis_Control_Parameter, the maximum Value is calculated in in-

crements, the value which is delivered by ReadParameter will be given in [u].

InOut:

Sco

pe
Name Type Comment

In-

put

Execute BOOL Starts the function block at rising edge

Parame-

terNum-

ber

WORD
Number of the parameter (correspondence between

number and parameter is to be specified later)

Value BOOL New value of the specified parameter

Out-

put

Done BOOL
Shows the status of the function block. Done = TRUE

if the execution is finished

Busy BOOL The function block is not finished

Error BOOL Signals that error has occurred within function block

ErrorID
ER-

ROR_ID

Error identification. For error details refer to Enume-

ration ERROR_ID

Inou

t
Axis

Axis_Re

f

Reference to axis

10.2.1.1.2.13 MC_WriteParameter (FB)

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/01_PLCopen/MC-Administrative/MC_WriteBoolParameter.html#id1
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/01_PLCopen/MC-Administrative/MC_WriteBoolParameter.html#id3
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/01_PLCopen/MC-Administrative/MC_WriteBoolParameter.html#id5
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/01_PLCopen/MC-Administrative/MC_WriteBoolParameter.html#id7
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.5.5_Library/Enums/ERROR_ID.html#error-id
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.5.5_Library/Enums/ERROR_ID.html#error-id
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/Axis_Ref.html#axis-ref
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/Axis_Ref.html#axis-ref

331
3ADR011116

331 Motion Controller with AC500 V3

It will support the Parameters defined as “standard” in the PLCopen. These parameters

will be transfered to the units as used for PLCopen function blocks

When a drive based axis implementation is used, the function block writes the value of a

drive specific parameter or a PLCopen parameter. When the Central Motion Control axis

implementation is used, a parameter according to the list PLCopen parameter is written

No
Parameter

Name

Data-

Type
Min. Max. Default

R/

W
Comments

1
Commanded-

Position
DINT R Commanded Position

2 SWLimitPos DINT -2147483647 2147483647 2147483647
R/

W

Positive Software limit switch

position

3 SWLimitNeg DINT -2147483647 2147483647 -2147483647
R/

W

Negative Software limit switch

position

4
EnableLimit-

Pos
BOOL FALSE TRUE FALSE

R/

W

Enable positive software limit

switch

5
EnableLimit-

Neg
BOOL FALSE TRUE FALSE

R/

W

Enable negative software limit

switch

6

EnablePost-

LagMonito-

ring

BOOL FALSE TRUE TRUE
R/

W

Enable monitoring of position

lag (following error)

7
MaxPosition-

Lag
DINT 1

2147483647*

**
 R Maximal position lag

8
MaxVeloci-

tySystem
DINT 32767 R

Maximal allowed velocity of the

axis in the motion system

9
MaxVeloci-

tyAppl
DINT 0** 32767 32767

R/

W

Maximal allowed velocity of the

axis in the application

10 ActualVelocity DINT -32767 32767 R Actual velocity

11
Commanded-

Velocity
DINT -32767 32767 R Commanded Velocity

12
MaxAccelera-

tionSystem
DINT 32767 R

Maximal allowed acceleration of

the axis in the motion system

13
MaxAccelera-

tionAppl
DINT 10 32767 32767

R/

W

Maximal allowed acceleration of

the axis in the application

14
MaxDecelera-

tionSystem
DINT 32767 R

Maximal allowed deceleration of

the axis

15
MaxDecelera-

tionAppl
DINT 10 32767 32767

R/

W

Maximal allowed deceleration of

the axis

332
3ADR011116

332 Motion Controller with AC500 V3

No
Parameter

Name

Data-

Type
Min. Max. Default

R/

W
Comments

16 MaxJerk DINT 0* 2147483647 2147483647
R/

W
Maximal allowed jerk of the axis

2001
MODULO_NO-

MINATOR
DINT 1 2147483647 1

R/

W

ABB spec.parameter. Used

f.Central Motion Control imple-

mentation: Gearbox modifier to

MODULO_RANGE

2002
MODULO_DE-

NOMINATOR
DINT 1 2147483647 1

R/

W

ABB spec. parameter. Used f.

Central Motion Control imple-

mentation: Gearbox modifier to

MODULO_RANGE

2003

EnableLi-

mit2Decele-

rate

BOOL FALSE TRUE FALSE
R/

W

Enable software limit switches

to decelerate

2004
EnableLimitA-

bort
BOOL FALSE TRUE FALSE

R/

W

Enable that software limit swit-

ches will abort ongoing move-

ment

2005
EnableLi-

mitVelocity
BOOL FALSE TRUE FALSE

R/

W

If the velocity is limited the

unmoved position will be cove-

red whenever possible

2006
SWLi-

mit2DecPos
LREAL -2147483647 2147483647 2147483647

R/

W

Used as end position for

EnableLimit2Decelerate

2007
SWLimit2Dec-

Neg
LREAL -2147483647 2147483647 2147483647

R/

W

Used as end position for

EnableLimit2Decelerate

2008
MaxPosition-

GapLL
LREAL 0

2147483647

00
0

R/

W

Used to stop the ongoing move-

ment if position is behind

*0 means: no limitation of jerk is performed.

**Axis will stay in stop.

***Is modified by CMC_Axis_Control_Parameter, the maximum Value is calculated in in-

crements, the value which is delivered by ReadParameter will be given in [u].

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/01_PLCopen/MC-Administrative/MC_WriteParameter.html#id1
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/01_PLCopen/MC-Administrative/MC_WriteParameter.html#id3
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/01_PLCopen/MC-Administrative/MC_WriteParameter.html#id5
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/01_PLCopen/MC-Administrative/MC_WriteParameter.html#id7

333
3ADR011116

333 Motion Controller with AC500 V3

InOut:

Sco

pe
Name

Ty

pe
Comment

In-

put

Execute
BO

OL
Starts the function block at rising edge

Parameter-

Number

W

OR

D

Number of the parameter (correspondence between

number and parameter is to be specified later)

Value
DI

NT
New value of the specified parameter

Out

put

Done
BO

OL

Shows the status of the function block. Done = TRUE if

the execution is finished

Busy
BO

OL
The function block is not finished

Error
BO

OL
Signals that error has occurred within function block

ErrorID

ER

RO

R_I

D

Error identification. For error details refer to Enumera-

tion ERROR_ID

Ino

ut
Axis

Axi

s_

Re

f

Reference to axis

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.5.5_Library/Enums/ERROR_ID.html#error-id
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.5.5_Library/Enums/ERROR_ID.html#error-id
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.5.5_Library/Enums/ERROR_ID.html#error-id
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.5.5_Library/Enums/ERROR_ID.html#error-id
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/Axis_Ref.html#axis-ref
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/Axis_Ref.html#axis-ref
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/Axis_Ref.html#axis-ref
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/Axis_Ref.html#axis-ref

334
3ADR011116

334 Motion Controller with AC500 V3

10.2.1.1.3 MC Homing

10.2.1.1.3.1 MC_StepAbsSwitch (FB)

This function block performs a homing function by searching for an absolute positioned

external physical switch. An Absolute Switch has two “Off” or “On” areas, see example.

For central Motion Control implementation: The signal of the Absolute Switch has to be

written to the variable “absRefSwitch” of the data type CMC_Axis_IO

Example

This physical layout has the risk that homing is started in the wrong direction (escaping

the switch). To support such case, it implements a special behavior when Limit Switches

are found (or the AbsSwitch itself is “On” at Execute)-

• Axis State is set to Homing,

• The homing is commanded in the most likely direction were the sensor can be

found. In this example(-),

• The velocity is defined by the input,

• Both time and distance limits can cause an error if exceeded,

• If any LimitSwitch is found during Homing (any of them), then a special process

is started in the opposite direction, the AbsSwitch is searched to switch off (or

“On” depending on SwitchMode setting). The Edge (passed by), and homing pro-

cess is restarted in the original direction and with the same conditions. This en-

sures that the end conditions are always same,

Inside the operation area the limit switches have to be logically FALSE and out-

side the borders the signal of the corresponding limit switch has to be logically

TRUE. If needed the signal from the sensor must be inverted before it is con-

nected to an element the CMC_Axis_IO data type

335
3ADR011116

335 Motion Controller with AC500 V3

• If the SwitchMode is either MC_SwitchNegative or MC_SwitchPositive, then the

special process is also started in opposite direction depending from the switch

state at “Execute”,

• The direction changes only when the specified Velocity is reached (InVelocity),

• This function block does not modify the actual position,

• This function block does not leave the Homing State when done.

• This function block can only be used once for a homing sequence

An overlapping switch configuration is also possible. This has same the behavior as

working on the limit switches

If the input direction is set to a fixed direction (MC_Positive or MC_Negative), then the

initial switch state is ignored (used for example in rotary axis where only one sense of

rotation is allowed):

336
3ADR011116

336 Motion Controller with AC500 V3

InOut:

Scope Name Type Comment

Input

Execute BOOL Starts the function block at rising edge

Direction
MC_Homing_Di-

rection

Specifies the direction of the motion if any:

MC_Positive = Starts in positive direction always

MC_Negative = Starts in negative direction always

MC_SwitchPositive = Depends on Switch status at

Execute edge. If Switch is “Off”, direction is positive,

if “On” it is negative

MC_SwitchNegative = Like previous, but opposite

SwitchMode
MC_Ho-

ming_Edge

Sensor condition to finalize this function block in any

switch mode:

MC_On = When sensor is ON.

MC_Off = When sensor is OFF.

MC_EdgeOn = When Off to On transition in sensor

MC_EdgeOff = When On to Off transition in sensor

Velocity LREAL
[u/s] Value of the maximum velocity (not necessarily

reached). Range: >0

Acceleration LREAL
[u/s°°2] Value of the acceleration (increasing energy

of the motor). Range: >0

Deceleration LREAL
[u/s°°2] Value of the deceleration (decreasing energy

of the motor). Range: >0

TorqueLimit LREAL Not supported

TimeLimit LREAL
[s] If the function block condition is not met in the Ti-

meLimit, an error is issued. <=0: No time limit

DistanceLimit LREAL

[u] If the funciton block condition is not met within a

DistanceLimit travel, an error is issued. 0 = No di-

stance limit

With an overlapping switch configuration either MC_EdgeOn or MC_EdgeOff can

be used for the input SwitchMode. This depends on the switching behaviour of

the absolute switch and the used option for the input Direction

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_Homing_Direction.html#mc-homing-direction
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_Homing_Direction.html#mc-homing-direction
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_Homing_Edge.html#mc-homing-edge
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_Homing_Edge.html#mc-homing-edge

337
3ADR011116

337 Motion Controller with AC500 V3

Scope Name Type Comment

BufferMode MC_BufferMode Not supported, default mcABORTING used

Output

Done BOOL
Shows the status of the function block. Done = TRUE

if the execution is finished

Busy BOOL The function block is not finished

Active BOOL
Indicates that the function block has control on the

axis

Comman-

dAborted
BOOL

Command is aborted by another command from

other PLCopen function block

Error BOOL Signals that error has occurred within function block

ErrorID ERROR_ID

Error identification. For error details refer to Enume-

ration ERROR_ID

Specific Error numbers: + MC_TimeLimitExceeded +

MC_DistanceLimitExceeded + MC_TorqueLimitEx-

ceeded

Inout Axis Axis_Ref Reference to axis

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_BufferMode.html#mc-buffermode
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.5.5_Library/Enums/ERROR_ID.html#error-id
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/Axis_Ref.html#axis-ref

338
3ADR011116

338 Motion Controller with AC500 V3

10.2.1.1.3.2 MC_StepDirect (FB)

This function Block performs a static homing by directly forcing an actual position. No

physical motion is performed in this mode. This is equivalent to a MC_SetPosition action,

but clears the Homing State.

InOut:

Scope Name Type Comment

Input

Execute BOOL Starts the function block at rising edge

SetPosition LREAL
[u] Value of the absolute position to be

set when homing is done

BufferMode
MC_Buffer-

Mode

not supported, default mcABORTING

used

Output

Done BOOL
Shows the status of the function block.

Done = TRUE if the execution is finished

Busy BOOL The function block is not finished

Active BOOL
Indicates that the function block has

control on the axis

Comman-

dAborted
BOOL

Command is aborted by another com-

mand from other PLCopen function

block

Error BOOL
Signals that error has occurred within

function block

ErrorID ERROR_ID

Error identification. For error details re-

fer to Enumeration ERROR_ID

Inout Axis Axis_Ref Reference to axis

This function block modifies actual position and sets to the “SetPosition” input

value at the end.

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_BufferMode.html#mc-buffermode
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_BufferMode.html#mc-buffermode
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.5.5_Library/Enums/ERROR_ID.html#error-id
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/Axis_Ref.html#axis-ref

339
3ADR011116

339 Motion Controller with AC500 V3

10.2.1.1.3.3 MC_StepLimitSwitch (FB)

This function block performs a homing function by searching for sensor using only limit

switches. A limit switch has one “Off” or “On” area.

The signal of the Limit Switches have to be written to the variables “limitSwitchPos” and

“limitSwitchNeg” of the data type CMC_Axis_IO

Example

In this case the limit switches (always active once moving part working area has been

surpassed) are used for homing procedure.

• The axis State is changed to Homing.

• Home is commanded by user in the desired homing direction at the selected Ve-

locity.

• If LimitSwitch is found “On” on rising “Execute”, then the process is started in

the opposite direction as specified, LimitSwitch is search for “Off” (or On de-

pending in LimitSwitchMode setting) Edge (released), and process is restarted

again in original direction. This ensures that the end conditions are always the

same.

• The time and distance limits can cause error if exceeded.

• The direction changes only when the specified velocity is reached, this ensures

acceleration and deceleration spaces are fixed.

• This function block does not modify actual position.

• This function block does not leave the Homing State when done.

Inside the operation area the limit switches have to be logically FALSE and out-

side the borders the signal of the corresponding limit switch has to be logically

TRUE. If needed the signal from the sensor must be inverted before it is con-

nected to an element the AXIS_IO data type

340
3ADR011116

340 Motion Controller with AC500 V3

• This function block can only be used once for a homing sequence

In-

Out:

Scope Name Type Initial Comment

Input

Execute BOOL Starts the function block at rising edge

Direction
MC_Homing_Di-

rection

MC_Positive

Specifies the direction of the motion and

corresponding LimitSwitch to search for,

just MC_Positive and MC_Negative are

possible:

MC_Positive = Positive direction searching

positive LimitSwitch

MC_Negative = Negative direction sear-

ching negative LimitSwitch

Switch-

Mode

MC_Ho-

ming_Edge

Sensor condition to finalize this function

block:

MC_On = When sensor is ON.

MC_EdgeOn = When Off to On transition in

sensor

Velocity LREAL
[u/s] Value of the maximum velocity (not

necessarily reached). Range: >0

Accelera-

tion
LREAL

[u/s°°2] Value of the acceleration (increa-

sing energy of the motor). Range: >0. If va-

lue = 0, Acceleration will be equal to para-

meter paraMaxAccelerationAppl

Decelera-

tion
LREAL

[u/s°°2] Value of the deceleration (decrea-

sing energy of the motor). Range: >0. If va-

lue = 0, Deceleration will be equal to para-

meter paraMaxAccelerationAppl

TorqueLi-

mit
LREAL

[u] Not supported, switched off by default

(Maximum torque or force. <0 = No torque

limit)

TimeLimit LREAL

[s] If the function block condition is not

met in the TimeLimit, an error is issued.

<=0: No time limit.

DistanceLi-

mit
LREAL

[u] If the function block condition is not

met within a DistanceLimit travel, an error

is issued. <0: No distance limit.

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_Homing_Direction.html#mc-homing-direction
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_Homing_Direction.html#mc-homing-direction
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_Homing_Edge.html#mc-homing-edge
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_Homing_Edge.html#mc-homing-edge

341
3ADR011116

341 Motion Controller with AC500 V3

Scope Name Type Initial Comment

Buffer-

Mode
MC_BufferMode

 Not supported, default mcABORTING used

Output

Done BOOL
Shows the status of the function block.

Done = TRUE if the execution is finished

Busy BOOL The function block is not finished

Active BOOL
Indicates that the function block has con-

trol on the axis

Comman-

dAborted
BOOL

Command is aborted by another com-

mand from other PLCopen function block

Error BOOL
Signals that error has occurred within

function block

ErrorID ERROR_ID

Error identification. For error details refer

to Enumeration ERROR_ID

Specific Error numbers: + MC_TimeLimi-

tExceeded + MC_DistanceLimitExceeded +

MC_TorqueLimitExceeded

Inout Axis Axis_Ref

 Reference to axis

10.2.1.1.3.4 MC_StepRefPulse (FB)

This function block performs homing by searching for Zero pulse (also called Marker or

reference pulse) in encoder.

The reference pulse appears once per encoder revolution. The advantage in using Refer-

ence Pulse for homing is the higher accuracy and precision that can be achieved com-

pared to traditional optical, mechanical or magnetic sensors.

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_BufferMode.html#mc-buffermode
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.5.5_Library/Enums/ERROR_ID.html#error-id
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/Axis_Ref.html#axis-ref

342
3ADR011116

342 Motion Controller with AC500 V3

Example

The axis state is changed to Homing if not already in.

• Home is commanded by user in the desired homing direction at the programmed

velocity.

• First occurrence of the Reference Pulse, Homing is finished.

• Torque is limited. Time and Distance Limits can cause error if exceeded.

• This function block modifies actual position and sets to the “SetPosition” input

value at the end

• This function block clears the Homing State when Done.

343
3ADR011116

343 Motion Controller with AC500 V3

It is common that a first approach is performed against a mechanical sensor at higher

velocity, and after a Reference Pulse, at a lower velocity. This is a traditional 2-Step hom-

ing (Coarse by external Switch in reverse and Fine by Reference Pulse in forward). For

ease of use both functions could be grouped together in single function block. Ad-

vantage having the function blocks separate is that any combination is possible

(MC_Block and after MC_RefPulse, etc.), stating different velocity and conditions for

each Step (higly flexible), without increasing homing function block complexity too

much.

InOut:

Scope Name Type Comment

Input

Execute BOOL Starts the function block at rising edge

Direction

MC_Ho-

ming_Direc-

tion

Specifies the direction to start the motion, just

MC_Positive and MC_Negative are possible to

use:

MC_Positive = Starts in positive direction always

MC_Negative = Starts in negative direction al-

ways

Velocity LREAL
[u/s] Value of the maximum velocity (not neces-

sarily reached). Range: >0

Acceleration LREAL
[u/s°°2] Value of the acceleration (increasing

energy of the motor). Range: >0

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_Homing_Direction.html#mc-homing-direction
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_Homing_Direction.html#mc-homing-direction
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_Homing_Direction.html#mc-homing-direction

344
3ADR011116

344 Motion Controller with AC500 V3

Scope Name Type Comment

Deceleration LREAL
[u/s°°2] Value of the deceleration (decreasing

energy of the motor). Range: >0

SetPosition LREAL
[u] Value of the absolute position to be set when

homing is done

TorqueLimit LREAL
[u] Maximum torque or force. 0 = No torque li-

mit

TimeLimit LREAL

[s] If the function block condition is not met in

the TimeLimit, an error is issued. 0 = No time li-

mit

DistanceLimit LREAL

[u] If the funciton block condition is not met wi-

thin a DistanceLimit travel, an error is issued. 0

= No distance limit

BufferMode
MC_Buffer-

Mode

Not supported, default mcABORTING used

Output

Done BOOL
Shows the status of the function block. Done =

TRUE if the execution is finished

Busy BOOL The function block is not finished

Active BOOL
Indicates that the function block has control on

the axis

CommandAborted BOOL
Command is aborted by another command from

other PLCopen function block

Error BOOL
Signals that error has occurred within function

block

ErrorID ERROR_ID

Error identification. For error details refer to

Enumeration ERROR_ID

Specific Error numbers: + MC_TimeLimitExcee-

ded + MC_DistanceLimitExceeded + MC_Tor-

queLimitExceeded

Inout Axis Axis_Ref Reference to axis

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_BufferMode.html#mc-buffermode
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_BufferMode.html#mc-buffermode
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.5.5_Library/Enums/ERROR_ID.html#error-id
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/Axis_Ref.html#axis-ref

345
3ADR011116

345 Motion Controller with AC500 V3

10.2.1.1.4 MC MultiAxis

10.2.1.1.4.1 MC_CamIn (FB)

This function block implements Camming functionality. A slave axis is coupled to a mas-

ter axis by a position/position relation.

• It is not required that the master is stationary.

• If the actual master and slave positions do not correspond to the offset values

when MC_CamIn is executed, either an error occurs or the system deals with the

difference automatically.

• The Cam is placed either absolute or relative to the current master and slave po-

sitions:

• Absolute: The profile between master and slave is seen as an absolute relation-

ship.

• Relative: The relationship between master and slave is in a relative mode.

• If a cam-table is to be used “relative”, the first position has to be zero.

• This function block is not merged with the MC_CamTableSelect function block

because this separation enables changes on the fly.

• A mechanical analogy to a slave offset is a cam welded with additional constant

layer thickness. Because of this the slave positions have a constant offset and

the offset could be interpreted as axis offset of the master shaft, if linear guided

slave tappets are assumed.

The slave axis is NOT ramped out, which means the curve should end with veloc-

ity=0. The CAM could be interrupted with any other function block, according to

the statemachine. It is not required to use MC_CamOut.

346
3ADR011116

346 Motion Controller with AC500 V3

In case MasterSyncPosition and MasterStartDistance are equal to 0 (default value), the

Cam-Function is started with the rising edge of “Execute”. When the master did not yet

reach a position in the cam area, the slave axis is stopped.

With MasterStartDistance <> 0 the slave axis needs to be in state StandStill when acti-

vating MC_CamIn. The function block will wait until the master axis reaches the position

MasterSyncPosition - MasterStartDistance. The slave will then be started and be syn-

chronized to the CAM table, to the position and velocity which is indicated by the master

position MasterSyncPosition.

The MC_CamIn has parameters to scale the cam-table values (MasterScaling,

SlaveScaling). It has to be considered that MasterOffset and SlaveOffset are

scaled exactly like the corresponding cam-table values. The MasterSyncPosition

and MasterStartDistance are not scaled at all, these positions are related to the

actual master position whereas the MasterOffset and SlaveOffset are related to

the camtable. New set of values at inputs MasterOffset, SlaveOffset, MasterScal-

ing, SlaveScaling will be accepted only after the function block is aborted and

fresh rising edge is provided at Execute input.

The default behavior of this function block can be modified by the inputs in func-

tion MCA_Cam_Extra

A negative MasterScaling requires backward master movement, when combined

with MasterOffset. The MasterScaling also applies to the MasterOffset. Behav-

iour results from the requirement to have ascending master values in CamTable.

User can utilize CAM editor in Automation builder to generate Cam table

(MC_PProfile) automatically. For more details refer to Automation builder help.

347
3ADR011116

347 Motion Controller with AC500 V3

InOut:

Scope Name Type
Ini-

tial
Comment

Input

Execute BOOL Starts the function block at rising edge

MasterOffset LREAL 0

Offset of master table. Angular offset of the master

shaft to Cam. Actual position - MasterOffset will be

used to sample the CamTable

SlaveOffset LREAL 0

Offset of slave table. Sharpened cam (i.e higher eleva-

tion and deeper depression). Use the result from Cam-

Table + SlaveOffset as reference position

MasterScaling LREAL 1

Scaling factor for master positions in CamTable. From

the slave point of view the master overall profile is mul-

tiplied by this factor

SlaveScaling LREAL 1
Scaling factor for slave positions from CamTable. The

overall slave profile is multiplied by this factor

MasterSyncPo-

sition
LREAL

Slave axis should be synchronized to CamTable when

master axis reaches MasterSyncPosition

MasterStartDi-

stance
LREAL 0

If 0 : Start with rising edge of execute, >0 : Wait for Ma-

sterSyncPosition - MasterStartDistance to start the

CamTable

MasterVa-

lueSource
MC_Source

Defines the source for synchronization: mcSetValue -

Synchronization on master set value. mcActualValue -

Synchronization on master actual value

BufferMode
MC_Buffer-

Mode

 Not supported, default mcABORTING used

Out-

put

InSync BOOL Slave is synchronized to CamTable

Done BOOL
Shows the status of the function block. Done = TRUE if

the execution is finished

Busy BOOL The function block with Busy = TRUE has control on axis

Active BOOL Indicates that the function block has control on the axis

Comman-

dAborted
BOOL

Command is aborted by another command from other

PLCopen function block

Error BOOL Signals that error has occurred within function block

ErrorID ERROR_ID

Error identification. For error details refer to Enumera-

tion ERROR_ID

EndOfProfile BOOL

Pulsed output signaling the cyclic end of the CAM pro-

file. It is displayed every time when the end of CAM pro-

file is reached. In reverse direction, the ‘EndOfProfile’ is

displayed also at the end of the cam profile (in this case

the first point of the cam profile)

Inout Master Axis_Ref
 Reference to master axis

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_Source.html#mc-source
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_BufferMode.html#mc-buffermode
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_BufferMode.html#mc-buffermode
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.5.5_Library/Enums/ERROR_ID.html#error-id
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/Axis_Ref.html#axis-ref

348
3ADR011116

348 Motion Controller with AC500 V3

Scope Name Type
Ini-

tial
Comment

Slave Axis_Ref
 Reference to slave axis

CamTableID MC_Cam_Id

Identifier of CAM Table to be used in the MC_CamIn

function block. Prepared by MC_CamTableSelect

10.2.1.1.4.2 MC_CamOut (FB)

This function block disengages the Slave axis from the Master axis immediately

The slave axis will keep the actual velocity.

It is assumed that this command is followed by another command, for instance

MC_Stop, MC_GearIn, or any other command. If there is no new command, the default

condition should be: Maintain Last Velocity. If there is no new command the axis will

maintain its last velocity.

InOut:

Scope Name Type Comment

Input Execute BOOL Starts the function block at rising edge

Output

Done BOOL
Shows the status of the function block. Done =

TRUE if the execution is finished

Busy BOOL
The function block with Busy = TRUE has control

on the axis

Active BOOL
Indicates that the function block has control on

the axis

CommandAborted BOOL
Command is aborted by another command from

other PLCopen function block

Error BOOL
Signals that error has occurred within function

block

ErrorID ERROR_ID

Error identification. For error details refer to Enu-

meration ERROR_ID

Inout Slave Axis_Ref Reference to slave axis

It is not required to use this block to disengage the cam. MC_Stop/MC_Halt or

any other command could be used instead.

User can utilize CAM editor in Automation builder to generate Cam table

(MC_PProfile) automatically. For more details refer to Automation builder help.

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/Axis_Ref.html#axis-ref
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/MC_Cam_Id.html#mc-cam-id
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.5.5_Library/Enums/ERROR_ID.html#error-id
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/Axis_Ref.html#axis-ref

349
3ADR011116

349 Motion Controller with AC500 V3

10.2.1.1.4.3 MC_CombineAxes (FB)

This function block combines the motion of 2 axes into a third axis with selectable com-

bination method.

Basically it is a calculation of a new position setpoint based on the two position set-

points of the input axes. This function block is reflected in the state diagram like a syn-

chronized motion type. As application example one can work with a separate profile syn-

chronized to an object on a moving belt, or a rotating knife with flexible covered dis-

tance to be cut.

Example of Ice-cream

MC_CombineAxes can generate special synchronized movements that are not possible

or complex to generate in other ways. In the following example, a CAM function block

and the result of a Gear function block are both synchronized to a conveyor master, are

added to generate a virtual master for a MC_GearInPos function of the final axis that will

execute the movement. The particular application of this example could be a machine to

deposit the icecream waving layers on top of the icecream base travelling through the

freezer line in icecream factory. The dosing axis has to synchronize with a waving man-

ner to the conveyor carrying the icecream base block. And it has to do this in a particular

starting position and wave phase to achieve the expected result (therefore the

To stop the motion, the function block has to be interrupted by another function

block issuing a new command.

350
3ADR011116

350 Motion Controller with AC500 V3

GearInPos). With the CAM function block one can define different wave patterns easily

(like the one longer in the top of icecream).

Another case application can be chocolate bars with decoration (individual bars in

mouldings). The dosificator makes the wave synchronized with conveyor and returns for

the next.

351
3ADR011116

351 Motion Controller with AC500 V3

Application example of MC_CombineAxes

The corresponding timing diagram for MC_CombineAxes example

This block has to be called within the REAL-TIME task, same task as

CMC_BASIC_KERNEL

352
3ADR011116

352 Motion Controller with AC500 V3

InOut:

Scop

e
Name Type Comment

Input

Execute BOOL Starts the function block at rising edge

Combine-

Mode
BOOL

FALSE = Addition of two input axes positions, TRUE =

Subtraction of two input axes positions

GearRatio-

Numera-

torM1

INT
Gear ratio numerator for master axis 1 towards the

slave

GearRatio-

Denumera-

torM1

INT
Gear ratio denominator for master axis 1 towards the

slave

GearRatio-

Numera-

torM2

INT
Gear ratio numerator for master axis 2 towards the

slave

GearRatio-

Denumera-

torM2

INT
Gear ratio denominator for master axis 2 towards

the slave

MasterVa-

lueSourceM1

MC_So

urce

Decide to use the actual position or reference posi-

tion of master axis 1. mcSetValue: Synchronization on

master set value. mcActualValue: Synchronization on

master actual value

MasterVa-

lueSourceM2

MC_So

urce

Decide to use the actual position or reference posi-

tion of master axis 2. mcSetValue: Synchronization

on master set value. mcActualValue: Synchronization

on master actual value

Acceleration LREAL

[u/s°°2] Value of the acceleration (increasing energy

of the motor), just applied until “insync” is reached.

Range: >0

Deceleration LREAL

[u/s°°2] Value of the deceleration (decreasing energy

of the motor), just applied until “insync” is reached.

Range: >0

BufferMode

MC_Bu

ffer-

Mode

Not supported, default mcABORTING used

InSync BOOL Commanded gearing completed

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_Source.html#mc-source
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_Source.html#mc-source
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_Source.html#mc-source
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_Source.html#mc-source
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_BufferMode.html#mc-buffermode
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_BufferMode.html#mc-buffermode
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_BufferMode.html#mc-buffermode

353
3ADR011116

353 Motion Controller with AC500 V3

Scop

e
Name Type Comment

Out-

put

Busy BOOL The function block is not finished

Active BOOL
Indicates that the function block has control on the

axis

Comman-

dAborted
BOOL

Command is aborted by another command from

other PLCopen function block

Error BOOL Signals that error has occurred within function block

ErrorID

ER-

ROR_I

D

Error identification. For error details refer to Enume-

ration ERROR_ID

Inout

Master1
Axis_R

ef

Reference to master axis 1

Master2
Axis_R

ef

Reference to master axis 2

Slave
Axis_R

ef

Reference to slave axis

10.2.1.1.4.4 MC_GearIn (FB)

This function block commands a ratio between the velocity of the slave and master axis.

• The slave ramps up to the ratio of the master velocity and locks in when this is

reached. Any lost distance during synchronization is not caught up.

• The gearing ratio can be changed while MC_GearIn is running by a rising edge at

“Execute” or by using a consecutive MC_GearIn command without the necessity

to MC_GearOut first

• InGear is set the first time the ratio is reached.

• After being InGear, a position locking is performed.

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.5.5_Library/Enums/ERROR_ID.html#error-id
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.5.5_Library/Enums/ERROR_ID.html#error-id
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.5.5_Library/Enums/ERROR_ID.html#error-id
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/Axis_Ref.html#axis-ref
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/Axis_Ref.html#axis-ref
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/Axis_Ref.html#axis-ref
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/Axis_Ref.html#axis-ref
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/Axis_Ref.html#axis-ref
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/Axis_Ref.html#axis-ref

354
3ADR011116

354 Motion Controller with AC500 V3

Example of GearIn timing diagram

InOut:

Scope Name Type Comment

Input

Execute BOOL Starts the function block at rising edge

RatioNumera-

tor
INT

Gear ratio numerator, new value is upda-

ted only with rising edge of Execute in-

put

RatioDenomi-

nator
INT

Gear ratio denominator, new value is up-

dated only with rising edge of Execute in-

put

355
3ADR011116

355 Motion Controller with AC500 V3

Scope Name Type Comment

MasterVa-

lueSource
MC_Source

Decide to use the actual position or refe-

rence position of master axis

Acceleration LREAL

[u/s°°2] Value of the acceleration (increa-

sing energy of the motor), just applied

until “insync” is reached. Range: >0

Deceleration LREAL

[u/s°°2] Value of the deceleration (de-

creasing energy of the motor), just ap-

plied until “insync” is reached. Range: >0

BufferMode
MC_Buffer-

Mode

Not supported, default mcABORTING

used

Out-

put

InGear BOOL Commanded gearing completed

Busy BOOL The function block is not finished

Active BOOL
Indicates that the function block has

control on the axis

Comman-

dAborted
BOOL

Command is aborted by another com-

mand from other PLCopen function block

Error BOOL
Signals that error has occurred within

function block

ErrorID ERROR_ID

Error identification. For error details re-

fer to Enumeration ERROR_ID

Inout

Master Axis_Ref Reference to master axis

Slave Axis_Ref Reference to slave axis

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_Source.html#mc-source
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_BufferMode.html#mc-buffermode
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_BufferMode.html#mc-buffermode
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.5.5_Library/Enums/ERROR_ID.html#error-id
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/Axis_Ref.html#axis-ref
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/Axis_Ref.html#axis-ref

356
3ADR011116

356 Motion Controller with AC500 V3

10.2.1.1.4.5 MC_GearInPos (FB)

This function block commands a gear ratio between the position of the slave and master

axes from the synchronization point onwards.

• Any previous motion is continued until master crosses “MasterSyncPosition –

MasterStartDistance” in the correct direction (according to the sign of Master-

StartDistance).

• At that point in time the output StartSync is set. When a “Stop” command is exe-

cuted on the “Slave” axis before the synchronization has happened, it inhibits the

synchronization and the function block issues “CommandAborted”.

• If the MasterStartDistance is not specified, the system itself could calculate the

set point for StartSync based on the other relevant inputs

Example of GearInPos timing diagram

357
3ADR011116

357 Motion Controller with AC500 V3

358
3ADR011116

358 Motion Controller with AC500 V3

Different examples of MC_GearInPos

359
3ADR011116

359 Motion Controller with AC500 V3

InOut:

Scope Name Type Comment

Input

Execute BOOL Starts the function block at rising edge

Ratio-

Nume-

rator

INT

Gear ratio numerator, new value is updated only with

rising edge of Execute input, not while still waiting

to start

Ratio-

Deno-

minator

INT

Gear ratio denominator, new value is updated only

with rising edge of Execute input, not while still wai-

ting to start

Master-

Va-

lueSour

ce

MC_Sour

ce

Decide to use the actual position or reference posi-

tion of master axis

Ma-

sterSyn-

cPosi-

tion

LREAL

The position of the master in the path where the

group is insync with the master. (If the ‘MasterSync-

Position’ does not exist, at the first point of the path

the master and slave are synchronized)

Slave-

SyncPo-

sition

LREAL Slave Position at which the axes are running in sync

SyncMo

de
INT

This function block does not support different mo-

des. Synchronization direction is determined by the

sign of MasterStartDistance

1 = Sync in matching direction with MasterStartDi-

stance, limit used MasterStartDistance (with respect

to actual slave position) to avoid reverse slave direc-

tion

Master-

StartDi-

stance

LREAL

The master distance for the slave to start to

synchronize to the master. Start synchronizing when

the master passes MasterSyncPosition - Master-

StartDistance

Buffer-

Mode

MC_Buf-

ferMode

Not supported, default mcABORTING used

Out-

put

StartSy

nc
BOOL Synchronization was started

InSync BOOL
Commanded gearing completed and synchronization

position passed

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_Source.html#mc-source
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_Source.html#mc-source
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_BufferMode.html#mc-buffermode
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_BufferMode.html#mc-buffermode

360
3ADR011116

360 Motion Controller with AC500 V3

Scope Name Type Comment

Busy BOOL The function block is not finished

Active BOOL
Indicates that the function block has control on the

axis

Com-

man-

dAbor-

ted

BOOL
Command is aborted by another command from

other PLCopen function block

Error BOOL Signals that error has occurred within function block

ErrorID
ER-

ROR_ID

Error identification. For error details refer to Enume-

ration ERROR_ID

Inout

Master Axis_Ref Reference to master axis

Slave Axis_Ref Reference to slave axis

10.2.1.1.4.6 MC_GearOut (FB)

This function block disengages the Slave axis from the Master axis

• The slave axis will keep the actual velocity.

• It is assumed that this command is followed by another command, for instance

MC_Stop, MC_GearIn, or any other command. If there is no new command, the

default condition should be: maintain last velocity.

• After issuing the function block there is no function block active on the slave axis

till the next function block is issued (what can result in problems because no mo-

tion command is controlling the axis).

• Alternatively, one can read the actual velocity via MC_ReadActualVelocity and is-

sue MC_MoveVelocity on the slave axis with the actual velocity as input. The func-

tion block is here because of compatibility reasons

It is not required to use this block to disengage the axis. MC_Stop/MC_Halt or

any other command could be used instead.

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.5.5_Library/Enums/ERROR_ID.html#error-id
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.5.5_Library/Enums/ERROR_ID.html#error-id
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/Axis_Ref.html#axis-ref
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/Axis_Ref.html#axis-ref

361
3ADR011116

361 Motion Controller with AC500 V3

InOut:

Scope Name Type Comment

Input Execute BOOL Starts the function block at rising edge

Output

Done BOOL
Shows the status of the function block. Done

= TRUE if the execution is finished

Busy BOOL The function block is not finished

Active BOOL
Indicates that the function block has control

on the axis

Comman-

dAborted
BOOL

Command is aborted by another command

from other PLCopen function block

Error BOOL
Signals that error has occurred within func-

tion block

ErrorID
ER-

ROR_ID

Error identification. For error details refer to

Enumeration ERROR_ID

Inout Slave
Axis_Re

f

Reference to slave axis

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.5.5_Library/Enums/ERROR_ID.html#error-id
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.5.5_Library/Enums/ERROR_ID.html#error-id
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/Axis_Ref.html#axis-ref
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/Axis_Ref.html#axis-ref

362
3ADR011116

362 Motion Controller with AC500 V3

10.2.1.1.4.7 MC_HaltPhasing (FB)

This function block commands a controlled motion stop for the phasing movement.

The axis state is not changed

InOut:

Scope Name Type Comment

Input

Execute BOOL Starts the function block at rising edge

Deceleration LREAL

[u/s°°2] Value of the deceleration (de-

creasing energy of the motor). Range: >0.

If value = 0, Deceleration will be equal to

parameter paraMaxDecelerationAppl

Jerk LREAL [u/s°°°3] Value of the Jerk. Range: >=0

BufferMode
MC_Buffer-

Mode

Not supported, default mcABORTING

used

Out-

put

Done BOOL
Shows the status of the function block.

Done = TRUE if the execution is finished

Busy BOOL The function block is not finished

Active BOOL
Indicates that the function block has

control on the axis

CommandAbor-

ted
BOOL

Command is aborted by another com-

mand from other PLCopen function block

Error BOOL
Signals that error has occurred within

function block

ErrorID ERROR_ID

Error identification. For error details re-

fer to Enumeration ERROR_ID

AbsolutePhase-

Shift
LREAL

[u] Actual phase shift of master axis to

slave axis, valid while function block is

busy

Inout Axis Axis_Ref Reference to axis

MC_HaltPhasing can be aborted by another phasing command. This function

block is applicable for phasing function blocks only.

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_BufferMode.html#mc-buffermode
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_BufferMode.html#mc-buffermode
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.5.5_Library/Enums/ERROR_ID.html#error-id
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/Axis_Ref.html#axis-ref

363
3ADR011116

363 Motion Controller with AC500 V3

10.2.1.1.4.8 MC_PhasingAbsolute (FB)

This function block performs a movement for the relation to the master axis of the spec-

ified axis. A real movement is just performed in case the axis is in synchronized motion.

This function block creates an absolute phase shift in the master position of a slave axis.

The master position is shifted in relation to the real physical position. This is analogous

to opening a coupling on the master shaft for a moment and is used to delay or advance

an axis to its master. The phase shift is seen from the slave. The master does not know

that there is a phase shift experienced by the slave. The phase shift remains until an-

other “Phasing” command changes it again.

Phase, Velocity, Acceleration, Deceleration and Jerk of a phase shift are con-

trolled by the function block

364
3ADR011116

364 Motion Controller with AC500 V3

Timing example of MC_Phasing

365
3ADR011116

365 Motion Controller with AC500 V3

The following graph shows the effect of “Phasing”

InOut:

Scope Name Type Comment

Input

Execute BOOL Starts the function block at rising edge

PhaseShift LREAL
[u] = Technical unit, Absolute phase diffe-

rence in master

Velocity LREAL
[u/s] Value of the maximum velocity (not

necessarily reached). Range: >0

Acceleration LREAL
[u/s°°2] Value of the acceleration (increa-

sing energy of the motor). Range: >0

Deceleration LREAL
[u/s°°2] Value of the deceleration (de-

creasing energy of the motor). Range: >0

Jerk LREAL [u/s°°3] Value of the jerk. Range: >=0

To halt this function block user must use MC_HaltPhasing function block instead

of MC_Stop or MC_Halt

366
3ADR011116

366 Motion Controller with AC500 V3

Scope Name Type Comment

BufferMode
MC_Buffer-

Mode

Not supported, default mcABORTING

used

Out-

put

Done BOOL
Shows the status of the function block.

Done = TRUE if the execution is finished

Busy BOOL The function block is not finished

Active BOOL
Indicates that the function block has

control on the axis

Comman-

dAborted
BOOL

Command is aborted by another com-

mand from other PLCopen function block

Error BOOL
Signals that error has occurred within

function block

ErrorID ERROR_ID

Error identification. For error details re-

fer to Enumeration ERROR_ID

AbsolutePhase-

Shift
LREAL

[u] Actual phase shift of master axis to

slave axis, valid while function block is

busy

Inout Axis Axis_Ref Reference to axis

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_BufferMode.html#mc-buffermode
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_BufferMode.html#mc-buffermode
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.5.5_Library/Enums/ERROR_ID.html#error-id
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/Axis_Ref.html#axis-ref

367
3ADR011116

367 Motion Controller with AC500 V3

10.2.1.1.4.9 MC_PhasingRelative (FB)

This function block performs a movement for the relation to the master axis of the spec-

ified axis. A real movement is just performed in case the axis is in synchronized motion.

This function block creates a relative phase shift in the master position of a slave axis.

The master position is shifted in relation to the real physical position. This is analogous

to opening a coupling on the master shaft for a moment and is used to delay or advance

an axis to its master. The phase shift is seen from the slave. The master does not know

that there is a phase shift experienced by the slave. The phase shift remains until an-

other “Phasing” command changes it again.

Timing example of MC_Phasing

Phase, Velocity, Acceleration, Deceleration and Jerk of a phase shift are con-

trolled by the function block

368
3ADR011116

368 Motion Controller with AC500 V3

The following graph shows the effect of “Phasing”

InOut:

Scope Name Type Comment

Input

Execute BOOL Starts the function block at rising edge

PhaseShift LREAL
[u] = technical unit, Relative phase dif-

ference in master

Velocity LREAL
[u/s] Value of the maximum velocity

(not necessarily reached). Range: >0

Acceleration LREAL

[u/s°°2] Value of the acceleration (in-

creasing energy of the motor). Range:

>0

Deceleration LREAL

[u/s°°2] Value of the deceleration (de-

creasing energy of the motor). Range:

>0

Jerk LREAL [u/s°°3] Value of the jerk. Range: >=0

To halt this function block user must use MC_HaltPhasing function block instead

of MC_Stop or MC_Halt

369
3ADR011116

369 Motion Controller with AC500 V3

Scope Name Type Comment

BufferMode
MC_Buffer-

Mode

Not supported, default mcABORTING

used

Output

Done BOOL
Shows the status of the function block.

Done = TRUE if the execution is finished

Busy BOOL The function block is not finished

Active BOOL
Indicates that the function block has

control on the axis

Comman-

dAborted
BOOL

Command is aborted by another com-

mand from other PLCopen function

block

Error BOOL
Signals that error has occurred within

function block

ErrorID ERROR_ID

Error identification. For error details re-

fer to Enumeration ERROR_ID

CoveredPhase-

Shift
LREAL

Actual phase shift of master axis to

slave axis, valid while function block is

busy

Inout Axis Axis_Ref Reference to axis

10.2.1.1.5 MC SingleAxis

PLC open motion control single axis function blocks

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_BufferMode.html#mc-buffermode
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_BufferMode.html#mc-buffermode
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.5.5_Library/Enums/ERROR_ID.html#error-id
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/Axis_Ref.html#axis-ref

370
3ADR011116

370 Motion Controller with AC500 V3

10.2.1.1.5.1 MC_AccelerationProfile (FB)

This function block commands a time-acceleration locked motion profile.

Example of an acceleration profile

A profile is made from a number of sequential “A to B” positioning points. It is simple to

visualize, but requires a lot of sequences for a smooth profile. These requirements are

often beyond the capability of low-end servos. Alternatively, by using a modest amount

of constant acceleration segments it is possible to define a well-matching motion pro-

file. With this method the capability range of low-end servos can be extended. It is pos-

sible to make matching to either:

• Position versus time profile

• Master versus slave axis

Advantages

• Compact description of a profile.

• Smooth profile properties by nature.

• Low processor power requirements.

Disadvantages

• Higher programming abstraction level with existing tools.

Acceleration profile, 10 segments only

Alternatively to this function block, the CAM function block coupled to a virtual

master can be used.

371
3ADR011116

371 Motion Controller with AC500 V3

Resulting position profile

MC_TProfile is an ABB specific datatype.

When Done = TRUE (profile is completed), Axis will run with the last Velocity

value.

372
3ADR011116

372 Motion Controller with AC500 V3

InOut:

Scope Name Type
Ini-

tial
Comment

Input

Execute BOOL Starts the function block at rising edge

TimeScale LREAL 1
Overall time scaling factor of the profile.

Range: >0

AccelerationScale LREAL 1
Scale factor for acceleration amplitude.

Range: AccelerationScale <> 0

Offset LREAL 0
Overall offset for profile, the profile result will

be increased by Offset

Number_Of_Pairs INT
Number of sampling points, elements in Ti-

meAcceleration array. Range: >=2

iType
MC_ABB_iTy-

pes_Enum

Type of interpolation. Possible values are:

MCA_SPLINE_COMPLETE

MCA_SPLINE_NATURAL

MCA_POLY5

MCA_POLY3

MCA_LINEAR

TimeAcceleration
POINTER

TO MC_TProfile
 Reference to Time / Acceleration

BufferMode MC_BufferMode

 Not supported, default mcABORTING used

Out-

put

Done BOOL
Shows the status of the function block. Done

= TRUE if the execution is finished

Busy BOOL The function block is not finished

Active BOOL
Indicates that the function block has control

on the axis

CommandAborted BOOL
Command is aborted by another command

from other PLCopen function block

Error BOOL
Signals that error has occurred within func-

tion block

ErrorID ERROR_ID

Error identification. For error details refer to

Enumeration ERROR_ID

Inout Axis Axis_Ref
 Reference to axis

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_ABB_iTypes_Enum.html#mc-abb-itypes-enum
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_ABB_iTypes_Enum.html#mc-abb-itypes-enum
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/MC_TProfile.html#mc-tprofile
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_BufferMode.html#mc-buffermode
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.5.5_Library/Enums/ERROR_ID.html#error-id
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/Axis_Ref.html#axis-ref

373
3ADR011116

373 Motion Controller with AC500 V3

10.2.1.1.5.2 MC_Halt (FB)

This function block commands a controlled motion stop.

The axis is moved to the state “DiscreteMotion”, until the velocity is zero. With the Done

output set, the state is transferred to “STANDSTILL”.

• MC_Halt is used to stop the axis under normal operation conditions. In non-buff-

ered mode it is possible to set another motion command during deceleration of

the axis, which will abort the MC_Halt and will be executed immediately.

• If this command is active the next command can be issued. E.g. a driverless vehi-

cle detects an obstacle and needs to stop. MC_Halt is issued. Before the stand-

still is reached the obstacle is removed and the motion can be continued by set-

ting another motion command, so the vehicle does not stop.

Example

Behavior of MC_Halt in combination with MC_MoveVelocity

• A rotating axis is ramped down with Function Block MC_Halt.

• Another motion command overrides the MC_Halt command. MC_Halt allows this,

in contrast to MC_Stop. The axis can accelerate again without reaching stand-

still.

MC_Halt can be aborted by another command.

374
3ADR011116

374 Motion Controller with AC500 V3

InOut:

Scope Name Type Comment

Input

Execute BOOL Starts the function block at rising edge

Deceleration LREAL

[u/s°°2] Value of the deceleration (de-

creasing energy of the motor). Range: >0.

If value = 0, Deceleration will be equal to

parameter paraMaxDecelerationAppl

Jerk LREAL [u/s°°°3] Value of the Jerk. Range: >=0

BufferMode
MC_Buffer-

Mode

not supported, default mcABORTING

used

Out-

put

Done BOOL
Shows the status of the function block.

Done = TRUE if the execution is finished

Busy BOOL The function block is not finished

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_BufferMode.html#mc-buffermode
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_BufferMode.html#mc-buffermode

375
3ADR011116

375 Motion Controller with AC500 V3

Scope Name Type Comment

Active BOOL
Indicates that the function block has

control on the axis

Comman-

dAborted
BOOL

Command is aborted by another com-

mand from other PLCopen function block

Error BOOL
Signals that error has occurred within

function block

ErrorID ERROR_ID

Error identification. For error details re-

fer to Enumeration ERROR_ID

Inout Axis Axis_Ref Reference to axis

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.5.5_Library/Enums/ERROR_ID.html#error-id
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/Axis_Ref.html#axis-ref

376
3ADR011116

376 Motion Controller with AC500 V3

10.2.1.1.5.3 MC_HaltSuperImposed (FB)

This function block commands a halt to all superimposed motions of the axis. The under-

lying motion is not interrupted.

InOut:

Scope Name Type Comment

Input

Execute BOOL Starts the function block at rising edge

Deceleration LREAL

[u/s°°2] Value of the deceleration (de-

creasing energy of the motor). Range:

>0. If value = 0, Deceleration will be

equal to parameter paraMaxDecelera-

tionAppl

Jerk LREAL [u/s°°°3] Value of the jerk. Range: >=0

BufferMode
MC_Buffer-

Mode

Not supported, default mcABORTING

used

Output

Done BOOL
Shows the status of the function block.

Done = TRUE if the execution is finished

Busy BOOL
The function block is not finished and

new output values are to be expected

Active BOOL
Indicates that the function block has

control on the axis

Comman-

dAborted
BOOL

Command is aborted by another com-

mand from other PLCopen function

block

Error BOOL
Signals that error has occurred within

function block

ErrorID ERROR_ID

Error identification. For error details re-

fer to Enumeration ERROR_ID

Inout Axis Axis_Ref Reference to axis

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_BufferMode.html#mc-buffermode
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_BufferMode.html#mc-buffermode
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.5.5_Library/Enums/ERROR_ID.html#error-id
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/Axis_Ref.html#axis-ref

377
3ADR011116

377 Motion Controller with AC500 V3

10.2.1.1.5.4 MC_MoveAbsolute (FB)

This function block commands a controlled motion to a specified absolute position.

• This action completes with velocity zero if no further action are pending.

• If there is only one mathematical solution to reach the commanded position (like

in linear systems), the value of the input direction is ignored.

• For modulo axis, valid absolute position values are in the range of [0, [360, (360 is

excluded), or corresponding range. The application, however, may shift the com-

manded position of MC_MoveAbsolute into the corresponding modulo range. For

relative positions, modulo 360 is applicable.

• The Enum type “shortest_way” is focused to a trajectory which will go through

the shortest route. The decision which direction to go is based on the current po-

sition where the command is issued.

Example

The following figure shows two examples of the combination of two function blocks

MC_MoveAbsolute.

• The left part of timing diagram illustrates the case if the second function block is

called after the first one. If first reaches the commanded position of 6000 (and

the velocity is 0) then the output Done causes the second function block to move

to the position 10000.

• The right part of the timing diagram illustrates the case if the second move func-

tion block starts the execution while the first function block is still executing. In

this case the first motion is interrupted and aborted by the test signal during the

constant velocity of the first Function Block. The second function block moves

directly to the position 10000 although the position of 6000 is not yet reached

With every rising edge at “Execute”, modified input parameters will be used.

378
3ADR011116

378 Motion Controller with AC500 V3

Input validation is done at the rising edge of Execute. If function block is in Ac-

tive/Busy state, new value at input will not be validated. If value passed is invalid

function block will continue execution with last valid value.

379
3ADR011116

379 Motion Controller with AC500 V3

InOut:

Scope Name Type Comment

Input

Execute BOOL Starts the function block at rising edge

Position LREAL [u] Reference position

Velocity LREAL
[u/s] Value of the maximum velocity (not ne-

cessarily reached). Range: >0

Acceleration LREAL

[u/s°°2] Value of the acceleration (increasing

energy of the motor). Range: >0. If value = 0,

Acceleration will be equal to parameter para-

MaxAccelerationAppl

Deceleration LREAL

[u/s°°2] Value of the deceleration (decreasing

energy of the motor). Range: >0. If value = 0,

Deceleration will be equal to parameter para-

MaxDecelerationAppl

Jerk LREAL [u/s°°3] Value of the Jerk. Range: >=0

Direction
MC_Direc-

tion

Positive, shortest, negative, current, posi-

tive_stop, negative_stop, Current_Stop

BufferMode
MC_Buffer-

Mode

Not supported, default mcABORTING used

Out-

put

Done BOOL
Shows the status of the function block. Done =

TRUE if the execution is finished

Busy BOOL The function block is not finished

Active BOOL
Indicates that the function block has control on

the axis

Comman-

dAborted
BOOL

Command is aborted by another command

from other PLCopen function block

Error BOOL
Signals that error has occurred within function

block

ErrorID ERROR_ID

Error identification. For error details refer to

Enumeration ERROR_ID

Inout Axis Axis_Ref Reference to axis

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_Direction.html#mc-direction
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_Direction.html#mc-direction
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_BufferMode.html#mc-buffermode
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_BufferMode.html#mc-buffermode
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.5.5_Library/Enums/ERROR_ID.html#error-id
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/Axis_Ref.html#axis-ref

380
3ADR011116

380 Motion Controller with AC500 V3

10.2.1.1.5.5 MC_MoveAdditive (FB)

This function block commands a controlled motion of a specified relative distance addi-

tional to the most recent commanded position in the discrete motion state.

The most recent commanded position may be the result of a previous MC_MoveAdditive

motion which was aborted. If the function block is activated in the Continuous Mode the

specified relative distance is added to the actual position at the time of the execution.

Example

Examples of the combination of two function blocks while the axis is in state Discrete

Motion

• The left part of timing diagram illustrates the case if the second function block is

called after the first one. If the first one reaches the commanded distance 6000

(and the velocity is 0) then the output “Done” causes the second function block

to move to the distance 10000.

• The right part of the timing diagram illustrates the case if the second move func-

tion blocks starts the execution while the first function block is still executing. In

this case the first motion is interrupted and aborted by the test signal during the

constant velocity of the first function block. The second function block adds on

the previous commanded position of 6000 the distance 4000 and moves the axis

to the resulting position of 10000

381
3ADR011116

381 Motion Controller with AC500 V3

382
3ADR011116

382 Motion Controller with AC500 V3

InOut:

Scope Name Type Comment

Input

Execute BOOL Starts the function block at rising edge

Distance LREAL
[u] = Technical unit, Relative distance for

the motion

Velocity LREAL
[u/s] Value of the maximum velocity (not

necessarily reached). Range: >0

Acceleration LREAL

[u/s°°2] Value of the acceleration (increa-

sing energy of the motor). Range: >0. If

value = 0, Acceleration will be equal to

parameter paraMaxAccelerationAppl

Deceleration LREAL

[u/s°°2] Value of the deceleration (de-

creasing energy of the motor). Range: >0.

If value = 0, Deceleration will be equal to

parameter paraMaxDecelerationAppl

Jerk LREAL [u/s°°3] Value of the Jerk. Range: >=0

BufferMode
MC_Buffer-

Mode

Not supported, default mcABORTING

used

Out-

put

Done BOOL
Shows the status of the function block.

Done = TRUE if the execution is finished

Busy BOOL The function block is not finished

Active BOOL
Indicates that the function block has

control on the axis

Comman-

dAborted
BOOL

Command is aborted by another com-

mand from other PLCopen function block

Error BOOL
Signals that error has occurred within

function block

ErrorID ERROR_ID

Error identification. For error details re-

fer to Enumeration ERROR_ID

Inout Axis Axis_Ref Reference to axis

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_BufferMode.html#mc-buffermode
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_BufferMode.html#mc-buffermode
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.5.5_Library/Enums/ERROR_ID.html#error-id
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/Axis_Ref.html#axis-ref

383
3ADR011116

383 Motion Controller with AC500 V3

10.2.1.1.5.6 MC_MoveContinuousAbsolute (FB)

This function block commands a controlled motion to a specified absolute position end-

ing with the specified velocity.

• If the commanded position is reached and no new motion command is put into

the buffer, the axis continues to run with the specified “EndVelocity”.

• The function block will start the axis with state DiscreteMotion, while position-

ing.

• It will change to state Continuous Motion (meaning: it will not stop by itself) with

EndVelocity <> 0.

• It will change to standstill with EndVelocity = 0.

One use case for MC_MoveContinuousAbsolute is a linear cutter. One linear axis that is

carrying a laser device that is used to cut a workpiece

Start from lrIdlePos.

1. Move the laser with fast velocity over the position lrStartCutPos. The laser is off

during this movement

2. Turn back and make sure to have the speed lrCutVelocity when at lrStartCutPos. At

this position, switch the laser on

3. Travel over the work piece with this constant speed while the laser is on

4. When reaching lrEndCutPos switch off the laser and move back to idle position with

fast velocity

384
3ADR011116

384 Motion Controller with AC500 V3

During the cutting process the laser must be moved with a fix velocity, no acceleration or

deceleration phase can be tolerated. The laser must be moved to its waiting position af-

ter the cutting is done

Example

The explained movement can be achieved with the function block MC_MoveContinu-

ousAbsolute in the following way:

Started with a rising edge of xStartCuttingCycle, the instance “mca” of MC_MoveContin-

uousAbsolute will move the axis with “lrFastVelocity” over “lrStartCutPos”, turn back and

have the speed “lrCutVelocity” when reaching “lrStartCutPos” again in negative direction.

In this point in time, “InEndVelocity” is set and the laser is switched on. As no other mo-

tion function block interrupts this movement, MC_MoveContinuousAbsolute will keep

travelling in negative direction with the current speed. After the axis has overstepped

the position “lrEndPos”, where the laser is switched off, the MC_MoveAbsolute instance

“ma” moves the axis with high speed to its idle position

385
3ADR011116

385 Motion Controller with AC500 V3

InOut:

Scope Name Type Comment

Input

Execute BOOL Starts the function block at rising edge

ContinuousUp-

date
BOOL

Decide if new input parameters are pro-

cessed during the movement

Position LREAL [u] Reference position

EndVelocity LREAL

[u/s] Signed value for the end veloicty,

determines the direction when ending

the positioning movement

Velocity LREAL
[u/s] Value of the maximum velocity (not

necessarily reached). Range: >0

Acceleration LREAL

[u/s°°2] Value of the acceleration (increa-

sing energy of the motor). Range: >0,If

value = 0, Acceleration will be equal to

parameter paraMaxAccelerationAppl

Deceleration LREAL

[u/s°°2] Value of the deceleration (de-

creasing energy of the motor). Range:

>0,If value = 0, Deceleration will be equal

to parameter paraMaxDecelerationAppl

Input validation is done at the rising edge of Execute. If function block is in Ac-

tive/Busy state, new value at input will not be validated. If value passed is invalid

function block will continue execution with last valid value.

386
3ADR011116

386 Motion Controller with AC500 V3

Scope Name Type Comment

Jerk LREAL [u/s°°3] Value of the jerk. Range: >=0

Direction MC_Direction Positive, Shortest, Negative, Current

BufferMode
MC_Buffer-

Mode

Not supported, default mcABORTING

used

Out-

put

InEndVelocity BOOL Commanded position finally reached

Busy BOOL The function block is not finished

Active BOOL
Indicates that the function block has

control on the axis

Comman-

dAborted
BOOL

Command is aborted by another com-

mand from other PLCopen function block

Error BOOL
Signals that error has occurred within

function block

ErrorID ERROR_ID

Error identification. For error details re-

fer to Enumeration ERROR_ID

Inout Axis Axis_Ref Reference to axis

10.2.1.1.5.7 MC_MoveContinuousRelative (FB)

This function block commands a controlled motion of a specified relative distance, ending with the

specified velocity.

• If the commanded position is reached and no new motion command is put into

the buffer, the axis continues to run with the specified “EndVelocity”.

• The function block will start the axis with state DiscreteMotion, while position-

ing.

• It will change to state continuous motion (meaning: it will not stop by itself) with

EndVelocity <> 0.

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_Direction.html#mc-direction
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_BufferMode.html#mc-buffermode
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_BufferMode.html#mc-buffermode
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.5.5_Library/Enums/ERROR_ID.html#error-id
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/Axis_Ref.html#axis-ref

387
3ADR011116

387 Motion Controller with AC500 V3

• It will change to standstill with EndVelocity = 0.

• This function block is specified here for systems without the support for the

“BufferMode”.

Sampling traces showing the effect of the sign of the value of the input EndVelocity

Input EndVelocity with positive direction

Input EndVelocity with negative direction

Example for MC_MoveContinuousRelative

388
3ADR011116

388 Motion Controller with AC500 V3

InOut:

Scope Name Type Comment

Input

Execute BOOL Starts the function block at rising edge

ContinuousUp-

date
BOOL

Decide if new input parameters are pro-

cessed during the movement

Distance LREAL
[u] = Technical unit, Relative distance for

the motion

EndVelocity LREAL

[u/s] Signed value for the end veloicty,

determines the direction when ending

the positioning movement

Velocity LREAL
[u/s] Value of the maximum velocity (not

necessarily reached). Range: >0

Input validation is done at the rising edge of Execute. If function block is in Ac-

tive/Busy state, new value at input will not be validated. If value passed is invalid

function block will continue execution with last valid value.

389
3ADR011116

389 Motion Controller with AC500 V3

Scope Name Type Comment

Acceleration LREAL

[u/s°°2] Value of the acceleration (increa-

sing energy of the motor). Range: >0,If

value = 0, Acceleration will be equal to

parameter paraMaxAccelerationAppl

Deceleration LREAL

[u/s°°2] Value of the deceleration (de-

creasing energy of the motor). Range:

>0,If value = 0, Deceleration will be equal

to parameter paraMaxDecelerationAppl

Jerk LREAL [u/s°°3] Value of the jerk. Range: >=0

BufferMode
MC_Buffer-

Mode

Not supported, default mcABORTING

used

Out-

put

InEndVelocity BOOL Commanded position finally reached

Busy BOOL The function block is not finished

Active BOOL
Indicates that the function block has

control on the axis

Comman-

dAborted
BOOL

Command is aborted by another com-

mand from other PLCopen function block

Error BOOL
Signals that error has occurred within

function block

ErrorID ERROR_ID

Error identification. For error details re-

fer to Enumeration ERROR_ID

Inout Axis Axis_Ref Reference to axis

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_BufferMode.html#mc-buffermode
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_BufferMode.html#mc-buffermode
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.5.5_Library/Enums/ERROR_ID.html#error-id
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/Axis_Ref.html#axis-ref

390
3ADR011116

390 Motion Controller with AC500 V3

10.2.1.1.5.8 MC_MoveRelative (FB)

This function block commands a controlled motion of a specified distance relative to the

actual position at the time of the execution.

• This action completes with velocity zero if no further action are pending.

Example

The following figure shows the example of the combination of two MC_MoveRelative

function blocks:

• The left part of timing diagram illustrates the case if the second function block is

called after the first one. If the first one reaches the commanded distance 6000

(and the velocity is 0) then the output Done causes the second Function Block to

move to the distance 10000.

• The right part of the timing diagram illustrates the case if the second move func-

tion blocks starts the execution while the first function block is still executing. In

this case the first motion is interrupted and aborted by the test signal during the

constant velocity of the first function block. The second function block adds on

the actual position of 3250 the distance 4000 and moves the axis to the resulting

position of 7250.

391
3ADR011116

391 Motion Controller with AC500 V3

392
3ADR011116

392 Motion Controller with AC500 V3

InOut:

Scope Name Type Comment

Input

Execute BOOL Starts the function block at rising edge

Distance LREAL
[u] = Technical unit, Relative distance for

the motion

Velocity LREAL
[u/s] Value of the maximum velocity (not

necessarily reached). Range: >0

Acceleration LREAL

[u/s°°2] Value of the acceleration (increa-

sing energy of the motor). Range: >0. If

value = 0, Acceleration will be equal to

parameter paraMaxAccelerationAppl

Deceleration LREAL

[u/s°°2] Value of the deceleration (de-

creasing energy of the motor). Range: >0.

If value = 0, Deceleration will be equal to

parameter paraMaxDecelerationAppl

Jerk LREAL [u/s°°3] Value of the jerk. Range: >=0

BufferMode
MC_Buffer-

Mode

Not supported, default mcABORTING

used

Out-

put

Done BOOL
Shows the status of the function block.

Done = TRUE if the execution is finished

Busy BOOL The function block is not finished

Active BOOL
Indicates that the function block has

control on the axis

Comman-

dAborted
BOOL

Command is aborted by another com-

mand from other PLCopen function block

Error BOOL
Signals that error has occurred within

function block

ErrorID ERROR_ID

Error identification. For error details re-

fer to Enumeration ERROR_ID

Inout Axis Axis_Ref Reference to axis

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_BufferMode.html#mc-buffermode
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_BufferMode.html#mc-buffermode
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.5.5_Library/Enums/ERROR_ID.html#error-id
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/Axis_Ref.html#axis-ref

393
3ADR011116

393 Motion Controller with AC500 V3

10.2.1.1.5.9 MC_MoveSuperImposed (FB)

This function block commands a controlled motion of a specified relative distance addi-

tional to an existing motion. The existing Motion is not interrupted, but is superimposed

by the additional motion.

• If MC_MoveSuperImposed is active, then any other command in aborting mode

except MC_MoveSuperImposed will abort both motion commands: Both the

MC_MoveSuperImposed and the underlying motion command. In any other

mode, the underlying motion command is not aborted

• If MC_MoveSuperImposed is active and another MC_MoveSuperImposed is com-

manded, only the ongoing MC_MoveSuperImposed command is aborted, and re-

placed by the new MC_MoveSuperImposed, but not the underlying motion com-

mand

• The function block MC_MoveSuperimposed causes a change of the velocity, if ap-

plicable, the commanded position of an ongoing motion in all relevant states

• In the state StandStill the function block MC_MoveSuperimposed acts like

MC_MoveRelative.

• The values of Acceleration, Deceleration and Jerk are additional values to the on-

going motion, not absolute ones. With this, the underlying function block always

finishes its job in the same period of time regardless of whether a MC_MoveSu-

perimposed function block takes place concurrently

• MC_MoveSuperimposed acts on the slave axis, while MC_Phasing acts on the

master side, as seen from the slave.

394
3ADR011116

394 Motion Controller with AC500 V3

Timing diagram of MC_MoveSuperImposed

• The CommandAborted is not visible here, because the new command works on

the same instance

• The end position is between 7000 and 8000, depending on the timing of the

aborting of the second command set for the MC_MoveSuperimposed.

395
3ADR011116

395 Motion Controller with AC500 V3

Example of MC_MoveSuperimposed during Camming with modulo axes

In green color the slave position is shown both with and without MC_MoveSuperimposed

InOut:

Scope Name Type Comment

Input

Execute BOOL Starts the function block at rising edge

Distance LREAL
[u] = technical unit, Relative distance for the mo-

tion

Velocity-

Diff
LREAL

[u/s] Value of the maximum velocity difference to

the ongoing motion (not necessarily reached)

Accelera-

tion
LREAL

[u/s°°2] Value of the acceleration (increasing

energy of the motor). Range: >0. If value = 0, Acce-

leration will be equal to parameter paraMaxAcce-

lerationAppl

Decelera-

tion
LREAL

[u/s°°2] Value of the deceleration (decreasing

energy of the motor). Range: >0. If value = 0, Dece-

leration will be equal to parameter paraMaxDece-

lerationAppl

Jerk LREAL [u/s°°3] Value of the jerk. Range: >=0

At Slave velocity, the double line shows the effect of MoveSuperimposed while in

Synchronized Motion during Camming. The same is valid for the related slave po-

sition.

396
3ADR011116

396 Motion Controller with AC500 V3

Scope Name Type Comment

Out-

put

Done BOOL
Shows the status of the function block. Done =

TRUE if the execution is finished

Busy BOOL The function block is not finished

Active BOOL
Indicates that the function block has control on

the axis

Comman-

dAborted
BOOL

Command is aborted by another command from

other PLCopen function block

Error BOOL
Signals that error has occurred within function

block

ErrorID
ER-

ROR_ID

Error identification. For error details refer to Enu-

meration ERROR_ID

Inout Axis Axis_Ref Reference to axis

10.2.1.1.5.10 MC_MoveVelocity (FB)

This function block commands a never ending controlled motion at a specified velocity.

• The signal “InVelocity” is set when the commanded velocity equals the velocity

input.

• The signal “InVelocity” has to be reset when the block is aborted by another block

or at the falling edge of “Execute”.

• In combination with MC_MoveSuperimposed, the output “”nVelocity” stays TRUE

once the velocity setpoint of the axis has reached the commanded velocity

To stop the motion, the function block has to be interrupted by another function

block issuing a new command.

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.5.5_Library/Enums/ERROR_ID.html#error-id
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.5.5_Library/Enums/ERROR_ID.html#error-id
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/Axis_Ref.html#axis-ref

397
3ADR011116

397 Motion Controller with AC500 V3

Examples of the combination of two Function Blocks MC_MoveVelocity

• The left part of timing diagram illustrates the case if the second function block is

called after the first one is completed. If first reaches the commanded velocity

3000 then the output First.InVelocity AND the signal Next causes the second

function block to move to the velocity 2000.

• The right part of the timing diagram illustrates the case if the second function

block starts the execution while the first function block is not yet InVelocity. The

following sequence is shown: The first motion is started again by Go at the input

First.Execute. While the first function block is still accelerating to reach the veloc-

ity 3000 the first function block will be interrupted and aborted because the test

signal starts the Run of the second function block. Now the second function

block runs and decelerates the velocity to 2000.

Input validation is done at the rising edge of Execute. If function block is in Active/Busy
state, new value at input will not be validated. If value passed is invalid function block
will continue execution with last valid value.

398
3ADR011116

398 Motion Controller with AC500 V3

InOut:

Scope Name Type Comment

Input

Execute BOOL Starts the function block at rising edge

Velocity LREAL
[u/s] Value of the maximum velocity (not

necessarily reached). Range: >=0

Acceleration LREAL

[u/s°°2] Value of the acceleration (increa-

sing energy of the motor). Range: >0. If

value = 0, Acceleration will be equal to

parameter paraMaxAccelerationAppl

Deceleration LREAL

[u/s°°2] Value of the deceleration (de-

creasing energy of the motor). Range: >0.

If value = 0, Deceleration will be equal to

parameter paraMaxDecelerationAppl

Jerk LREAL [u/s°°3] Value of the jerk. Range: >=0

Direction MC_Direction Positive, Negative, Current

BufferMode
MC_Buffer-

Mode

Not supported, default mcABORTING

used

Out-

put

InVelocity BOOL Commanded velocity is reached

Busy BOOL The function block is not finished

Active BOOL
Indicates that the function block has

control on the axis

Comman-

dAborted
BOOL

Command is aborted by another com-

mand from other PLCopen function block

Error BOOL
Signals that error has occurred within

function block

ErrorID ERROR_ID

Error identification. For error details re-

fer to Enumeration ERROR_ID

Inout Axis Axis_Ref Reference to axis

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_Direction.html#mc-direction
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_BufferMode.html#mc-buffermode
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_BufferMode.html#mc-buffermode
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.5.5_Library/Enums/ERROR_ID.html#error-id
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/Axis_Ref.html#axis-ref

399
3ADR011116

399 Motion Controller with AC500 V3

10.2.1.1.5.11 MC_PositionProfile (FB)

This function block commands a time-position locked motion profile.

• MC_TProfile is an ABB specific data type.

• This functionality does not mean it runs one profile over and over again: It can

shift between different profiles.

• Alternatively to this function block, the CAM function block coupled to a virtual

master can be used.

Example of Time/Position Profile

400
3ADR011116

400 Motion Controller with AC500 V3

InOut:

Scop

e
Name Type

Ini-

tial
Comment

Input

Execute BOOL Starts the function block at rising edge

Time-

Scale
LREAL 1

Overall time scaling factor of the profile.

Range: >0

Posi-

tion-

Scale

LREAL 1
Overall Position scaling factor. Range: Posi-

tionScale <> 0

Offset LREAL 0
Overall offset for profile, the profile result will

be increased by Offset

Num-

ber_Of_

Pairs

INT
Number of sampling points, elements in Ti-

mePosition array. Range: >=2

IsAbso-

lute
BOOL

Use absolute position values from profile.

TRUE = Profile holds absolute position values

iType

MC_ABB

_iTy-

pes_En

um

Type of interpolation. Possible values are:

MCA_SPLINE_COMPLETE

MCA_SPLINE_NATURAL

MCA_POLY5

MCA_POLY3

MCA_LINEAR

TimePo-

sition

POIN-

TER

TO MC_

TProfile

Reference to Time/Position. MC_TProfile is

an ABB specific data type

IsAbsolute = TRUE, interpolation_point = Ac-

tual position IsAbsolute = FALSE, interpola-

tion_point = 0

Buffer-

Mode

MC_Buf

fer-

Mode

 Not supported, default mcABORTING used

The Time / Velocity and Time / Acceleration Profiles are similar to the Position

Profile, with sampling points on the Velocity or Acceleration lines.

Number_Of_Pairs input should always have equal to or less than actual pairs de-

fined in TimePosition input

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_ABB_iTypes_Enum.html#mc-abb-itypes-enum
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_ABB_iTypes_Enum.html#mc-abb-itypes-enum
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_ABB_iTypes_Enum.html#mc-abb-itypes-enum
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_ABB_iTypes_Enum.html#mc-abb-itypes-enum
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/MC_TProfile.html#mc-tprofile
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/MC_TProfile.html#mc-tprofile
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_BufferMode.html#mc-buffermode
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_BufferMode.html#mc-buffermode
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_BufferMode.html#mc-buffermode

401
3ADR011116

401 Motion Controller with AC500 V3

Scop

e
Name Type

Ini-

tial
Comment

Out-

put

Done BOOL
Shows the status of the function block. Done

= TRUE if the execution is finished

Busy BOOL The function block is not finished

Active BOOL
Indicates that the function block has control

on the axis

Com-

man-

dAbor-

ted

BOOL
Command is aborted by another command

from other PLCopen function block

Error BOOL
Signals that error has occurred within func-

tion block

ErrorID
ER-

ROR_ID

Error identification. For error details refer to

Enumeration ERROR_ID

Inout Axis
Axis_Re

f

 Reference to axis

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.5.5_Library/Enums/ERROR_ID.html#error-id
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.5.5_Library/Enums/ERROR_ID.html#error-id
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/Axis_Ref.html#axis-ref
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/Axis_Ref.html#axis-ref

402
3ADR011116

402 Motion Controller with AC500 V3

10.2.1.1.5.12 MC_Stop (FB)

This function block commands a controlled motion stop and transfers the axis to the

state “Stopping”.

It aborts any ongoing function block execution. While the axis is in state Stopping, no

other function block can perform any motion on the same axis. After the axis has

reached velocity zero, the Done output is set to TRUE immediately. The axis remains in

the state “Stopping” as long as Execute is still TRUE or velocity zero is not yet reached.

As soon as “Done” is TRUE and “Execute” is FALSE the axis goes to state “STANDSTILL”.

Example

Behavior of MC_Stop in combination with MC_MoveVelocity

1. A rotating axis is ramped down with function block MC_Stop.

2. The axis rejects motion commands as long as MC_Stop parameter Execute = TRUE.

Function block MC_MoveVelocity reports an error indicating the busy MC_Stop com-

mand.

MC_Stop can not be aborted by another command. It can be aborted only by an-

other MC_Stop function block

403
3ADR011116

403 Motion Controller with AC500 V3

InOut:

Scope Name Type Comment

Input

Execute BOOL Starts the function block at rising edge

Deceleration LREAL

[u/s°°2] Value of the deceleration (de-

creasing energy of the motor). Range: >0.

If value = 0, Deceleration will be equal to

parameter paraMaxDecelerationAppl

Jerk LREAL [u/s°°3] Value of the jerk. Range: >=0

BufferMode
MC_Buffer-

Mode

Not supported, default mcABORTING

used

Out-

put

Done BOOL
Shows the status of the function block.

Done = TRUE if the execution is finished

Busy BOOL The function block is not finished

Active BOOL
Indicates that the function block has

control on the axis

Comman-

dAborted
BOOL

Command is aborted by another com-

mand from other PLCopen function block

Error BOOL
Signals that error has occurred within

function block

ErrorID ERROR_ID

Error identification. For error details re-

fer to Enumeration ERROR_ID

Inout Axis Axis_Ref Reference to axis

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_BufferMode.html#mc-buffermode
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_BufferMode.html#mc-buffermode
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.5.5_Library/Enums/ERROR_ID.html#error-id
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/Axis_Ref.html#axis-ref

404
3ADR011116

404 Motion Controller with AC500 V3

10.2.1.1.5.13 MC_VelocityProfile (FB)

This function block commands a time-velocity locked motion profile.

• MC_TProfile is an ABB specific data type.

• This functionality does not mean it runs one profile over and over again: It can

shift between different profiles.

• Alternatively to this function block, the CAM function block coupled to a virtual

master can be used

InOut:

Scope Name Type
Ini-

tial
Comment

Input

Execute BOOL
Starts the function block

at rising edge

TimeScale LREAL 1
Overall time scaling factor

of the profile. Range: >0

VelocityScale LREAL 1

Overall velocity scaling

factor of the profile.

Range: VelocityScale <> 0

Offset LREAL 0

Overall offset for profile,

the profile result will be

increased by Offset

Num-

ber_Of_Pairs
INT

Number of sampling

points, elements in Time-

Velocity array. Range: >=2

iType
MC_ABB_iTy-

pes_Enum

Type of interpolation.

Possible values are:

MCA_SPLINE_COMPLETE

MCA_SPLINE_NATURAL

When Done = TRUE (profile is completed), Axis will run with the last Velocity

value.

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_ABB_iTypes_Enum.html#mc-abb-itypes-enum
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_ABB_iTypes_Enum.html#mc-abb-itypes-enum

405
3ADR011116

405 Motion Controller with AC500 V3

Scope Name Type
Ini-

tial
Comment

MCA_POLY5

MCA_POLY3

MCA_LINEAR

TimeVelocity
POINTER

TO MC_TProfile

Reference to time/velo-

city. MC_TProfile is an

ABB specific data type

BufferMode MC_BufferMode

Not supported, default

mcABORTING used

Out-

put

Done BOOL

Shows the status of the

function block. Done =

TRUE if the execution is fi-

nished

Busy BOOL
The function block is not

finished

Active BOOL

Indicates that the func-

tion block has control on

the axis

Comman-

dAborted
BOOL

Command is aborted by

another command from

other PLCopen function

block

Error BOOL

Signals that error has oc-

curred within function

block

ErrorID ERROR_ID

Error identification. For

error details refer to Enu-

meration ERROR_ID

Inout Axis Axis_Ref
 Reference to axis

10.2.1.2 CMC_Blocks

Central Motion control (CMC) related function and function blocks

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/MC_TProfile.html#mc-tprofile
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Enums/MC_BufferMode.html#mc-buffermode
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.5.5_Library/Enums/ERROR_ID.html#error-id
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/Axis_Ref.html#axis-ref

406
3ADR011116

406 Motion Controller with AC500 V3

10.2.1.2.1 CMC_Axis_Control_Parameter (FB)

Parameter block to provide basic information regarding the underlying axis behavior and

to configure the closed loop control for CMC_Basic_Kernel.

Some explanations for the following parameters

To change parameters follow these steps:

1. MC_Power.Enable = FALSE, this will disable the axis.

2. CMC_Axis_Control_Parameter.Enable = FALSE.

3. Modify the parameter.

4. CMC_Axis_Control_Parameter.Enable = TRUE.

The control loop consists of a proportional factor and a predictive velocity feedforward.

The proportinal factor is adjusted with “Control_Time”.

On maximum speed and Feed-Forward = 0, the drive would move a distance which

matches it´s actual following-error in Control_Time ms.

The feed-forward is adjusted with a percentage-value which means: FF_Percentage =

100% => the following error will be 0. Recommendation is to use FF_Percentage <= 80,

as higher values might result in overshoot.

The prediction horizon makes the feed-forwad at high values more stable as it antici-

pates the drives delay.

When the drives step-response (to a velocity step) is measured and aligned to corre-

spond a dead-time and a PT1,

• the Horizon will be exactly the dead-time

• the Control_Time corresponds to the time-constant of the PT1

Enable the function block before any PLCopen-block is used and this block has to

be used in combination with CMC_Basic_Kernel.

The motor has to reach Max_Rpm when Ref_Max is issued as Speed_Reference,

this relation is used to scale the control loop and following error supervision.

This function block passes all values into respective data types at the rising edge

of input Enable. Henceforth, there are no outputs or validation of input values.

407
3ADR011116

407 Motion Controller with AC500 V3

InOut:

Scop

e
Name Type Initial Comment

Input

Enable BOOL New values are used on rising edge

Pos_Lag

_Per-

centage

WORD 150

Allowed percentage for following error,

100% will be reached with constant velo-

city at Max_Rpm with FF_Percentage = 0.

Zero will switch off the monitoring

V_Chec

k_Time
TIME

TIME#100

ms

[ms] Tolerance time during which the velo-

city might deviate for 50%, zero will

switch off the monitoring

Con-

trol_Tim

e

LREAL 100

[ms] Determines the gain for position con-

trol loop.

A lower time means a larger proportional

gain for position control loop. The value

means: with FF_Percentage = 0, the drive

will run Control_Time ms behind its posi-

tion reference.(during movement with

constant velocity)20 <= Control_Time <=

100 recommended

FF_Per-

centage
WORD 0

Percentage for feed forward part of the

control loop, <80% recommended. For lar-

ger values, the parameter Horizon needs

to be used as the position will overshoot

otherwise.

Inte-

gral_Ti

me

WORD 0
(ms), Integration time for position control

loop, zero means no integral part is used.

Horizon LREAL 0

(ms) Gives a time in advance for the feed-

forward. This could compensate reaction

times. Horizon > 0 requires additional

computing power.

Cycle LREAL 10 (ms) Cycle time of the PLC program.

En_Mo-

dulo
BOOL

FALSE: The axis is a linear axis, TRUE: The

positions will be calculated as modulo po-

sitions, the position value issued to the

drive is still a 32bit value

408
3ADR011116

408 Motion Controller with AC500 V3

Scop

e
Name Type Initial Comment

Mo-

dulo_Ra

nge

DINT
Distance for rollover, maximum value is

0x3FFFFFFF.

Inc_Per_

R

DWOR

D
1024

Position resolution, Increments per revolu-

tion for actual position and Reference po-

sition

U_Per_R

ev_No-

minator

LREAL 1024
Units per revolution = U_Per_Rev_Nomina-

tor/U_Per_Rev_Denominator

U_Per_R

ev_De-

nomina-

tor

DINT 1
Units per revolution = U_Per_Rev_Nomina-

tor/U_Per_Rev_Denominator

Ref_Ma

x
DINT 32767

Maximum value for speed reference, has

to be the value when Max_Rpm is reached

Max_Rp

m
WORD 1500

Maximum rotation per minute, has to be

reached with Speed_Reference = Ref_Max

409
3ADR011116

409 Motion Controller with AC500 V3

10.2.1.2.2 CMC_Axis_Simu (FB)

Simulation block can be used with CMC_Basic_Kernel to create a virtual axis.

The virtual axis has realistic behavior with a delayed response to velocity changes which

result in a following error. Inputs and outputs have to be connected to the respective in-

puts and outputs of CMC_Basic_Kernel.

How to use the Axis Simulation

It is possible to use a simulated axis instead of a real drive. The axis simulation can be

used in the following use cases:

• When the real drive is not available the simulation can be used to test all available

motion functionalities to verify the application program.

• The simulation can be used to create a virtual master axis and synchronize other

axes to it.

Homing will be possible if the limit-switches (data type CMC_Axis_IO) are simulated also.

This is not done by CMC_Axis_Simu but could be realized in the PLC program

The drive velocity is simulated by PT1-Characteristic. The input T1 gives the time con-

stant for this PT1 as multiple of the cycle time. All other properties are simulated accord-

ing to the CMC_Axis_Control_Parameter

InOut:

Scop

e
Name Type

Ini-

tial
Comment

Input

Drive_Re-

set_Fault
BOOL

Binary signal to be used for re-

setting the drive error, if appli-

cable

Drive_Release BOOL Activate the drive

Drive_Set_Ref BOOL Activate homing

Drive_Set_Posi-

tion
DINT Position to be used at homing

The value of the time behaviour from the axis simulation function block set by

the input T1 has to be at least four times smaller than the value of the axis pa-

rameter CONTROL_TIME from the CMC_Axis_Control_Parameter function block

410
3ADR011116

410 Motion Controller with AC500 V3

Scop

e
Name Type

Ini-

tial
Comment

Speed_Refe-

rence
DINT Reference value for the drive

Control_Para-

meter

CMC_Axis_Con-

trol_Parameter

Identical parameter which are

used at CMC_Basic_Kernel, so

the required answer to

Speed_Reference is created

T1 INT 10 Delay time in cycles

Inout Actual_Position DINT Actual position [increments]

Out-

put

Drive_Ref_Ok BOOL Indication for homing

Drive_InOpera-

tion
BOOL

Indication that drive is run-

ning. The drive is switched on

and is active

Actual_Speed DINT Actual Position in incremenets

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/02_CMC_Blocks/CMC_Axis_Control_Parameter.html#cmc-axis-control-parameter
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/02_CMC_Blocks/CMC_Axis_Control_Parameter.html#cmc-axis-control-parameter

411
3ADR011116

411 Motion Controller with AC500 V3

10.2.1.2.3 CMC_Basic_Kernel (FB)

The kernel function block is the fundamental part of the Central Motion Control axis im-

plementation named Compact Motion. It performs floating point artithmetic for all cal-

culations

For more details of the Centrol motion control refer to the architecture chapter in the

system technology docuemnt.

InOut:

Scope Name Type Comment

Input

Enable BOOL
Release of function block. Enable has to be set before new con-

trol parameters are released by CMC_Axis_Control_Parameter.

Drive_Ref_

Ok
BOOL Indication for homing

Drive_InO-

peration
BOOL

Indication that drive is running. The drive is switched on and is

active

Drive_Ac-

tualPosi-

tion

DINT Actual Position in incremenets

Inout

Axis Axis_Ref Reference to the axis to be controlled

Con-

trol_Para-

meter

CMC_Axis_

Con-

trol_Para-

meter

Parameters for configuration and adjustment of the control loop

IO
CMC_Axis_

IO

By the structure IO (CMC_Axis_IO), some binary inputs are provi-

ded. The PLC program has to define a variable of type

CMC_Axis_IO and to assign the inputs.

Output

Error BOOL Signals that an error has occurred within the function block.

ErrorId ERROR_ID

The error codes ErrorId also sets the output-bit Error=TRUE and

sets the axis in state ERROR_STOP. To allow a new movement

For a central motion axis implementation the use of the Function Blocks

CMC_Basic_Kernel and CMC_Axis_Control_Parameter

If the Function Block is stored in a RETAIN memory area, the connected AXIS

has to be RETAIN

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/Axis_Ref.html#axis-ref
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/02_CMC_Blocks/CMC_Axis_Control_Parameter.html#cmc-axis-control-parameter
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/02_CMC_Blocks/CMC_Axis_Control_Parameter.html#cmc-axis-control-parameter
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/02_CMC_Blocks/CMC_Axis_Control_Parameter.html#cmc-axis-control-parameter
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/02_CMC_Blocks/CMC_Axis_Control_Parameter.html#cmc-axis-control-parameter
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/CMC_Axis_IO.html#cmc-axis-io
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/CMC_Axis_IO.html#cmc-axis-io
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Serial%20Communication/ModbusRtu_1.1.5.5_Library/Enums/ERROR_ID.html#error-id

412
3ADR011116

412 Motion Controller with AC500 V3

Scope Name Type Comment

the error-codes ErrorId require that either the axis is di-

sabled/enabled by MC_Power or the error reset is di-

sabled/enabled by MC_Reset.

The error codes ErrorID_WARNING will not set Error = TRUE, and

will not set the axis to ERROR_STOP. The error codes Erro-

rID_WARNING do not require the MC_Reset or MC_Power. It is

possible the axis is stopped and ongoing motion is aborted by a

WARNING. The value will be shown until: + An other error or war-

ning occurs + MC_Reset or MC_Power is used

Drive_Re-

set_Fault
BOOL

Binary signal to be used for resetting the drive error, if applica-

ble

Drive_Re-

lease
BOOL Activate the drive

Drive_Set_

Ref
BOOL Activate homing

Drive_Set_

Position
DINT Position to be used at homing

Speed_Re-

ference
DINT Reference value for the drive

Posi-

tion_Refe-

rence

DINT Position reference for the drive in increments

Input
Enable_Vir-

tual
BOOL

Use the axis as virtual axis. Block inputs which are usualy recei-

ved from the real axis are ignored. Required values are genera-

ted internally

413
3ADR011116

413 Motion Controller with AC500 V3

10.2.1.2.4 CMC_Binary2Modulo (FB)

Convert a 32 bit value (Position_Reference) to Modulo_Range.

Purpose: Convert Value to 0 <= Modulo_Value <= Modulo_Range

Precondition: Enable the block together with CMC_Modulo2Binary, use the two

blocks as a pair

Use case: A drive configured as a rollover axis expects the position reference in

a modulo style. Use this block to convert the position refrence.

InOut:

Scope Name Type Comment

Input

Enable BOOL Enable the block execution

Binary_Value DINT 32 bit value

Modulo_Range DINT
Max used value for Modulo_Va-

lue

Output Modulo_Value DINT Modulo value

10.2.1.2.5 CMC_Get_Units_From_Inc (FUN)

This function converts the drive’s position value (DINT) which is exchanged between

drive and PLC to the corresponding scaled position unit (LREAL) which is used by the

PLCopen function blocks.

Use case

The drive or an IO-device is used to capture an axis encoder position in relation to a bi-

nary signal (touch trigger). This position is delivered in [increments]. If then the position

is to be used in the PLCopen context, a [unit] position is required. It can be difficult to

calculate this unit-position. Not just the scaling for position units has to be considered

but also the position might have experienced several correction measures. Measures like

“SetPositionContinuous” or corrections due to modulo position overrun. To create the

unit-value which matches a certain increment value, the function

CMC_Get_Units_From_Inc has to be used.

Return value

The position [u], which describes exactly the same position as Actual_Position_Inc, just

transferred in to the axis coordinate system and delivered in [u].

414
3ADR011116

414 Motion Controller with AC500 V3

InOut:

Scope Name Type Comment

Return
CMC_Get_Units_From_I

nc
LREAL

Input Actual_Position_Inc DINT

A position [increments], for

example captured by the

drive as result for a touch

trigger

Inout Kernel CMC_Basic_Kernel

Kernel block instance which

belongs to the specific axis.

10.2.1.2.6 CMC_Modulo2Binary (FB)

Convert a <32 bit value to 32 bit for use as Actual_Position.

Purpose: Convert Value which is 0 <= Value <= Modulo_Range to Binary_Value (with 32-

Bit overflow)

Precondition: Enable the block together with CMC_Binary2Modulo, use the two blocks as a pair

Use case: A drive configured as a rollover axis delivers the actual position in a modulo style

while the CMC_Basic_Kernel expects a binary, or an absolute encoder with <32 bit position value is used
as actual position. Use this block to convert the position to a 32 bit value.

InOut:

Scope Name Type Comment

Input

Enable BOOL
Enable the block execution. Enable = FALSE =>

Binary_Value := Modulo_Value

Modulo_Value DINT Actual value

Mo-

dulo_Range
DINT (Max allowed value for Modulo_Value)+1

Output Binary_Value DINT Binary value

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/02_CMC_Blocks/CMC_Basic_Kernel.html#cmc-basic-kernel

415
3ADR011116

415 Motion Controller with AC500 V3

10.2.1.2.7 CMC_PidT1 (FB)

PIDT1 Controller

• The PI controller changes its output Cv (manipulated variable) until input Pv (con-

trolled variable) is equal to input Sp (command variable).

• Additional pre filter for DT1 - Component available (optional).

• I or DT1 components can be switched off by setting the respective time equal to

zero.

InOut:

Scope Name Type Comment

Input

Sp REAL Command variable (set point)

Pv REAL ProcessValue, Actual Value

Kp REAL
Proportional coefficient, specified as a percentage va-

lue

Ti_Cycles REAL Integral action time scaled to the PLC cycle time

Td_Cy-

cles
REAL Derivative action time scaled to the PLC cycle time

T1_Cycles REAL Returning time scaled to the PLC cycle time

Max_Cv REAL High limit for the manipulated variable Cv

Min_Cv REAL Low limit for the manipulated variable Cv

Set
BOO

L
Enable for setting to initial value Init

Init_Cv REAL Initial value for the manipulated variable Cv

Reset
BOO

L
Reset of the manipulated variable Cv to 0

416
3ADR011116

416 Motion Controller with AC500 V3

Scope Name Type Comment

Out-

put

Cv REAL Output for the manipulated variable Control Value

State_Ma

x

BOO

L
High limit has been reached

State_Mi

n

BOO

L
Low limit has been reached

10.2.1.2.8 CMC_SIPosiLoop (FB)

The function block can be used for a simple interpolation. Alternatively, the function

block CMC_SInterpolation can be used. A “stand alone” position control loop

This function block has to be used along with function block CMC_SInterPolation

Behavior of inputs

InSync Active Behavior

FALSE x Output Position = ActualPosition

TRUE FALSE
Interpolates output Position to reach TargetPosition with the given

velocity and acceleration.

TRUE TRUE Ramps down to velocity = 0.

This block has to be called within the REAL-TIME task

417
3ADR011116

417 Motion Controller with AC500 V3

Behavior of outputs

InSync Active Behavior

FALSE TRUE Function block is activated, position and velocity is not yet reached.

TRUE FALSE
Function block is activated, position is reached, output Position =

TargetPosition.

FALSE TRUE Function block is either disabled or stopped, velocity

Different use cases for this block:

Use in Combination with MC_MoveByExternalReference:

A positioning axis can be created with modifying the parameters for positioning “on the

fly”, without the need of a certain statemachine to follow.

Use in Combination with MCA_SetDynamicFollower:

The function block will smooth the movement when a group has to follow a conveyor.

It will create defined ramps to accelerate to the conveyors position and also can be used

to prevent a position jump when switching between 2 conveyors or before switching of

the follower.

Use to Create a Simple, basic positioning Axis:

A very basic, simple positioning axis can be created by using this blokc without the

PLCopen blocks.

Be aware that there is not additional check if the axis really follows, also no scaling for

the position is included.

If function block CMC_SIPosiLoop is used, it will check for position or velocity following

error.

InOut:

Scope Name Type Initial Comment

Input

Enable BOOL
Level triggered, close = 1, open = 0, a rising edge re-

quired to clear any error condition

NewPara BOOL

At least one rising edge required to set parameter,

TRUE: internal values calculated from input parame-

ters, level triggered

Position LREAL [u] Reference position

ActualPosi-

tion
LREAL [u] Actual position

Pos_Lag_Per

centage
LREAL 100

[%] Allowed percentage for following error, 100%

will be reached with constant velocity at Max_Rpm

with FF_Percentage = 0. Zero will switch off the mo-

nitoring

V_Check_Ti

me
TIME

TIME#100

ms

[ms] Tolerance time during which the velocity might

deviate for 50%, zero will switch off the monitoring

418
3ADR011116

418 Motion Controller with AC500 V3

Scope Name Type Initial Comment

Con-

trol_Time
LREAL 100 [ms] Determines the gain for position control loop

FF_Percen-

tage
LREAL 0

[%] Percentage for feed forward part of the control

loop

Cycle LREAL 10 [ms] Cycle time of the PLC program

U_Per_Rev_

Nominator
DWORD 1024

Units per motor revolution = U_Per_Rev_Nomina-

tor/U_Per_Rev_Denominator

U_Per_Rev_

Denomina-

tor

DWORD 1
Units per motor revolution = U_Per_Rev_Nomina-

tor/U_Per_Rev_Denominator

Ref_Max LREAL 32767
Maximum value for SpeedReference, has to be the

value when Max_Rpm is reached

Max_Rpm WORD 1500
Maximum rotation per minute, has to be reached

with SpeedReference = Ref_Max

Output

Closed BOOL Position control loop activated and closed

ParaError BOOL Wrong parameter

PosFollowin-

gError
BOOL Following error detected

SpeedRefe-

rence
LREAL

Speed reference. Range -Ref_Max <= SpeedRefe-

rence <= Ref_Max

VelFollowin-

gError
BOOL Velocity error detected

10.2.1.2.9 CMC_SInterPolation (FB)

The function block can be used for a simple point-to-point interpolation.

It can be combined with the function block CMC_SIPosiLoop as position control loop.

The function block allows to create a very simple, basic axis for linear movement. The

function block can be either used independent to create a basic axis with/without posi-

tion control loop or it can be used in combination with PLCopen function blocks.

The function block creates a positioning interpolation towards TargetPosition and uses

the given velocity and acceleration values. The function block has to be used within the

real-time cycle. The result is given to output Position. The TargetPosition and also Veloc-

ity and Acceleration can be changed anytime and will be used at once. With Enable =

FALSE, the function block sets the output Position to ActualPosition, this is similar to an

open loop.

419
3ADR011116

419 Motion Controller with AC500 V3

Behavior of inputs:

Enable Stop Behavior

FALSE x Output Position = ActualPosition

TRUE FALSE
Interpolates output Position to reach TargetPosition with the given

velocity and acceleration.

TRUE TRUE Ramps down to velocity = 0.

Behavior of outputs:

InSync Active Behavior

FALSE TRUE Function block is activated, position and velocity is not yet reached.

TRUE FALSE
Function block is activated, position is reached, output Position =

TargetPosition.

FALSE TRUE Function block is either disabled or stopped, velocity

Different use cases for this block:

Use in Combination with MC_MoveByExternalReference:

A positioning axis can be created with modifying the parameters for positioning “on the

fly”, without the need of a certain statemachine to follow.

420
3ADR011116

420 Motion Controller with AC500 V3

Use to Create a Simple, basic positioning Axis:

A very basic, simple positioning axis can be created by using this blokc without the

PLCopen blocks.

Be aware that there is not additional check if the axis really follows, also no scaling for

the position is included.

If function block CMC_SIPosiLoop is used, it will check for position or velocity following

error.

InOut:

Scope Name Type Initial Comment

Input

Enable BOOL
Level triggered, Enables the interpola-

tion

Stop BOOL
Stop, level triggered, interpolate down

to velocity = 0

TargetPosi-

tion
LREAL [u] Target position

ActualPosi-

tion
LREAL [u] Actual position

Velocity LREAL 1
[u/s] Value of the maximum velocity

(not necessarily reached). Range: >0

Acceleration LREAL 1
[u/s^2]Value of the acceleration and

deceleration. Range: >0

Cycle LREAL 10 [ms] Cycle time of the PLC program.

Out-

put

Position LREAL [u] New absolute position

InSync BOOL Position reached TargetPosition

Active BOOL Interpolation active

10.2.1.3 Data types

10.2.1.3.1 Enums

This block has to be called within the REAL-TIME task

421
3ADR011116

421 Motion Controller with AC500 V3

10.2.1.3.1.1 ERROR_ID (ENUM)

This enumeration contains all the errors generated for the motion control function

blocks.

InOut:

Name Initial Comment

MC_Ok 0 No error

Wrong_State 1

PLCOpen block was activated, but axis not in a allo-

wed state to start, or axis left the moving state wi-

thout a PLCOpen block requiring the state change

Drive_Problem 2 Drive indicates an error. e.g. Tripped

Parameter_Exceeds_Li-

mit
3

Input parameter at PLCopen block exceeds allowed

limits

No_Field_Access 4 No fieldbus connection to drive

Bus_Problem 5 Not used

Abs_Switch_Error 6

During homing, limit switch not according to mo-

ving direction. e.g. the positive switch occurred

when moving in negative direction

Timeout 7 Timeout in block execution

NAK 8 Parameter access not applicable

MC_TimeLimitExceeded 9 Used by function blocks with TimeLimit

MC_DistanceLimitExcee-

ded
10 Used by function blocks with DistanceLimit

MC_TorqueLimitExcee-

ded
11 Used by function blocks with TorqueLimit

Not_Implemented 12 Functioanlity not implemented for certain axis type

ErrorID_POSITION_FOL-

LOW
101

Following error, caused by > position error => ER-

RORSTOP.(parameter POS_LAG_PERCENTAGE)

ErrorID_POSSW 102

Positive software limit switch => ERRORSTOP. The

actual position did exceed the positive Software li-

mit switch position. This supervision has to be acti-

vated with MC_WriteParameter.

422
3ADR011116

422 Motion Controller with AC500 V3

Name Initial Comment

ErrorID_NEGSW 103

Negative software limit switch => ERRORSTOP. The

actual position did exceed the negative Software li-

mit switch position. This supervision has to be acti-

vated with MC_WriteParameter.

ErrorID_VELO-

CITY_FAULT
104

The measured velocity and commanded velocity are

> 50% (related to maximum velocity) apart, for a

certain time =>ERRORSTOP (parameter V_CHECK-

TIME)

ErrorID_INTERPOLA-

TION_FAULT
105

following error, caused by interpolation problem

=>ERRORSTOP. Position following error occurred,

but reason most likely a interpo- lation problem,

not drive problem (e.g. CAM Table, position step).

ErrorID_WARNING_VE-

LOCITYLIMIT
110

Velocity or acceleration/deceleration are in limita-

tion, set by parameter EnableLimitVelocity, MaxVe-

locityAppl, MaxDecelerationAppl

ErrorID_WARNING_POSI-

TIONLIMITPOS
111

Position is in limitation towards position limit

(SWLimit2DecPos), axis decelerates near positive

software limit switch

ErrorID_WARNING_POSI-

TIONLIMITNEG
112

Position is in limitation towards position limit

(SWLimit2DecNeg)., axis decelerates near negative

software limit switch

ErrorID_WARNING_POSI-

TIONOVERRUN
113

A linear axis created a 32bit position overrun (>

2147483647 u=>inc) =>configure modulo

ErrorID_WAR-

NING_ABORT
114

Axis aborted due to too large position gap due to

velocity limitation

ErrorID_WARNING_MO-

VEMENT_DIRECTION
115

Either positive or negative direction blocked by

MC_Power

423
3ADR011116

423 Motion Controller with AC500 V3

10.2.1.3.1.2 MC_ABB_iTypes_Enum (ENUM)

Different types of interpolation to be used for cam table or time based profile move-

ment.

InOut:

Name Comment

MCA_SPLINE_COMPLETE
Cubic spline interpolation without jerk, start and end of profile with ve-

locity = 0.

MCA_SPLINE_NATURAL Cubic spline interpolation without jerk

MCA_POLY5
Polynomial interpolation with linear acceleration between interpola-

tion points.

MCA_POLY3
Polynomial interpolation with linear velocity between interpolation

points.

MCA_LINEAR
Linear interpolation with constant velocity between interpolation

points.

10.2.1.3.1.3 MC_BufferMode (ENUM)

Only mcABORTING supported

InOut:

Name

mcABORTING

mcBUFFERED

mcBLENDINGlow

mcBLENDINGprevious

mcBLENDINGnext

mcBLENDINGhigh

424
3ADR011116

424 Motion Controller with AC500 V3

10.2.1.3.1.4 MC_Direction (ENUM)

Enumeration to determine the moving direction to be used for some PLCopen blocks.

Some of the values are just valid for a modulo axis, as the direction for a positioning

movement for a linear axis is determied by the position.

InOut:

Name Comment

DEFAULT

POSITIVE Default direction

SHORTEST Positive direction

NEGATIVE Shortest direction

CURRENT Negative direction

POSI-

TIVE_STOP
Current direction

NEGA-

TIVE_STOP

Move and stop positive, just valid with a modulo axis and if the actual mo-

vement is already positive. An additional modulo distance will be moved if

it is not possible to ramp down to the given position.

CUR-

RENT_STOP

Move and stop negative, just valid with a modulo axis and if the actual mo-

vement is already negative. An additional modulo distance will be moved if

it is not possible to ramp down to the given position. Move and stop in the

current direction, just valid with a modulo axis. An additional modulo di-

stance will be moved if it is not possible to ramp down to the given posi-

tion.

10.2.1.3.1.5 MC_Homing_Direction (ENUM)

Homing Directions

InOut:

Name Comment

MC_SwitchNegative Switch Negative

MC_SwitchPositive Switch Positive

MC_Positive Positive

MC_Negative Negative

425
3ADR011116

425 Motion Controller with AC500 V3

10.2.1.3.1.6 MC_Homing_Edge (ENUM)

InOut:

Name Comment

MC_EdgeOn Edge On

MC_EdgeOff Edge Off

MC_On On

MC_Off Off

10.2.1.3.1.7 MC_Homing_Mode (ENUM)

InOut:

Name Comment

MC_REFPULSE Reference pulse

MC_DIRECT Direct

10.2.1.3.1.8 MC_Source (ENUM)

Determine if a slave axis would follow the masters actual position (mcActualValue) or

reference position (mcSetValue). If the master is controlled by the PLC (as a real axis or

virtual axis) it is preferrble to use mcSetValue.

InOut:

Name Comment

mcActualValue Actual value

mcSetValue Set value

10.2.1.3.2 Structs

426
3ADR011116

426 Motion Controller with AC500 V3

10.2.1.3.2.1 Axis_Parameter (STRUCT)

PLCopen parameter and supplier specific parameter. Limitations, position control, modi-

fication of behaviour

InOut:

Name Type Initial Comment

posWindow LREAL 10
The limit for the axis to reach the target position

and indicate “Done” in a positioning move

v_Window LREAL 10
The limit for the axis to reach the target velocity

and indicate “InVelocity” in a velocity move

busdelay TIME TIME#1s0ms Bus delay time

paraSWLimitPos LREAL 2147483647
PLCOpen Parameter 02 Positive Softwarelimit

switch position.

paraSWLimitNeg LREAL -2147483647
PLCOpen Parameter 03 Negative Softwarelimit

switch position.

paraEnableLimit-

Pos
BOOL

PLCOpen Parameter 04 Enable positive software li-

mit switch.

paraEnableLimit-

Neg
BOOL

PLCOpen Parameter 05 Enable negative software li-

mit switch.

paraEnablePo-

sLagMonitoring
BOOL TRUE

PLCOpen Parameter 06 Enable monitoring of posi-

tion lag (following error).

paraMaxPosition-

Lag
LREAL PLCOpen Parameter 07 Maximal position lag.

paraMaxVeloci-

tySystem
LREAL 16#3FFFFFFF

PLCOpen Parameter 08 Maximal allowed velocity of

the axis in the motion system

paraMaxVeloci-

tyAppl
LREAL 16#3FFFFFFF

PLCOpen Parameter 09 Maximal allowed velocity of

the axis in the application.

paraMaxAccelera-

tionSystem
LREAL 16#3FFFFFFF

PLCOpen Parameter 12 Maximal allowed accelera-

tion of the axis in the motion system.

paraMaxAccelera-

tionAppl
LREAL 16#3FFFFFFF

PLCOpen Parameter 13 Maximal allowed accelera-

tion of the axis in the application.

paraMaxDecelera-

tionSystem
LREAL 16#3FFFFFFF

PLCOpen Parameter 14 Maximal allowed decelera-

tion of the axis

paraMaxDecelera-

tionAppl
LREAL 16#3FFFFFFF

PLCOpen Parameter 15 Maximal allowed decelera-

tion of the axis.

paraMaxJerk LREAL 16#7FFFFFFF
PLCOpen Parameter 16 Maximal allowed jerk of the

axis.

paraGearBox_Nu-

merator
DINT 1

ABB specific parameter 2001. Used for Central Mo-

tion Control implementation: Gearbox modifier to

MODULO_RANGE

427
3ADR011116

427 Motion Controller with AC500 V3

Name Type Initial Comment

paraGearBox_De-

numerator
DINT 1

ABB specific parameter 2002. Used for Central Mo-

tion

paraEnableLi-

mit2Decelerate
BOOL

ABB specific parameter 2003. Enable software limit

switches to decelerate

paraEnableLimitA-

bort
BOOL

ABB specific parameter 2004. Enable that software

limit switches will abort ongoing movement

FALSE = Limits position and velocity, decelerates

and shows a warning until the position limit is

reached, then ERROR STOP TRUE = Switches off any

ongoing motion and decelerates to the position li-

mit, then ERROR STOP

paraEnableLi-

mitVelocity
BOOL

ABB specific parameter 2005. Enable that velocity is

limited

paraSWLi-

mit2DecPos
LREAL 2147483647

ABB specific parameter 2006 Positive Softwarelimit

position, used with EnableLimit2Decelerate.

paraSWLimit2Dec-

Neg
LREAL -2147483647

ABB specific parameter 2007 Negative Softwareli-

mit position,, used with EnableLimit2Decelerate.

paraMaxPosition-

Gap
LREAL

ABB specific parameter 2008. Maximum allowed

position to be lost by paraEnableLimitVelocity, will

stop the ongoing movement

paraFilterVariant INT
Filter for actual velocity, 0 = PT1, 1 = LinearRegres-

sion

paraFilterTime INT 10 Time in PLC cycles, used with paraFilterVariant

paraFilterForecast INT 0 Time in PLC cycles, used with paraFilterVariant = 1

paraReverseDirec-

tion
INT 0

Changes the direction for actual and reference po-

sitions based on the mode selected.

0 = normal direction, 1 = reverse input position, 2 =

reverse output position and speed reference, 3 = re-

verse both

paraEarlyClosed-

Loop
BOOL FALSE

TRUE: hold the position when DRIVE_RELEASE ist

set (not wait for DRIVE_INOPERATION=TRUE)

paraLateOpen-

Loop
BOOL FALSE

TRUE: hold the position until DRIVE_INOPERA-

TION=FALSE

paraWarningDirec-

tionAsError
BOOL FALSE

TRUE: if MC_Power has disabled a direction, a mo-

vement in this direction set the axis to ERRORSTOP,

FALSE: just interrupt the movement

position_control
CMC_Pos

_Control

 Values related to position control loop

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/CMC_Pos_Control.html#cmc-pos-control
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/CMC_Pos_Control.html#cmc-pos-control

428
3ADR011116

428 Motion Controller with AC500 V3

10.2.1.3.2.2 Axis_Ref (STRUCT)

Holds the main information regarding the axis. It is used to identify an axis and connect

the various PLCopen blocks and KERNEL block which belong to the specific axis.

InOut:

Name Type Comment

user
CMC_Axis_Us

er

User Axis details

inout
CMC_Axis_InO

ut

This structure should handle the in-out values to/from the

open-motion function blocks to the fieldbus or the internal

motion software. It represents a neutral interface

actual
CMC_Axis_Ac-

tual

Some actual values like positions and velocity per cycle

parame-

ter

Axis_Parame-

ter

Parameter which are written/read with MC_WriteParame-

ter/MC_ReadParameter blocks and also parameter used

for position control loop

expert Expert

Expert parameters available to use only with ‘ Motion Wi-

zard ‘ project.

10.2.1.3.2.3 CMC_Axis_Actual (STRUCT)

Some actual axis values which are used inside position control loop

InOut:

Name Type Comment

POSITION LREAL Actual position [u]

CON-

TROL_POSI-

TION

LREAL
Used control position [u], could be limited by software limit

switch or velocity limitation

D_XS LREAL Actual reference velocity, [u/cycle]

DD_XS LREAL
Actual acceleration/deceleration (without superimposed

movement)

D_XI LREAL Actual velocity, [u/cycle]

D_XSS LREAL Actual following error, [u]

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/CMC_Axis_User.html#cmc-axis-user
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/CMC_Axis_User.html#cmc-axis-user
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/CMC_Axis_InOut.html#cmc-axis-inout
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/CMC_Axis_InOut.html#cmc-axis-inout
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/CMC_Axis_Actual.html#cmc-axis-actual
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/CMC_Axis_Actual.html#cmc-axis-actual
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/Axis_Parameter.html#axis-parameter
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/Axis_Parameter.html#axis-parameter
file:///C:/ProgramData/AP/LibDoc/ABB/MotionControl/1.2.0.36/Default/jjnDvB5sutTiKS4I91wGhyWb3q0/expert.html%23expert

429
3ADR011116

429 Motion Controller with AC500 V3

Name Type Comment

ACT_POS_GA

P
LREAL Actual position gap, caused by velocity limitation

REFE-

RENCE_PROP
LREAL

Proportional part for speed reference, calculated from

D_XSS

REFE-

RENCE_FF
LREAL Feed forward for speed reference, calculated from D_XS

REFE-

RENCE_ITG
LREAL Integral part for speed reference, calculated from D_XSS

10.2.1.3.2.4 CMC_Axis_IO (STRUCT)

The limit switches are interpreted in positive logic. The logic for the reference encoder

could be choosen

InOut:

Name Type Comment

limitSwitchPos BOOL Limit switch positive

limitSwitchNeg BOOL Limit switch negative

absRefSwitch BOOL Reference switch

430
3ADR011116

430 Motion Controller with AC500 V3

10.2.1.3.2.5 CMC_Axis_InOut (STRUCT)

This structure should handle the in-out values to/from the open-motion function blocks

to the fieldbus or the internal motion software. It represents a neutral interface.

InOut:

Name Type Comment

basicImp zCMC_AXIS_IPO_DATA
Parameter data for a basic positioning or velocity

move

used_destination LREAL Needed for coordinated movement

tp_ref
POINTER TO zCMC_TPro-

file_TABLE

Parameter data for position profile/velocity profile/

acceleration profile

pp_ref
POINTER TO zCMC_PPro-

file_TABLE
Parameter data for cam table

cp_ref POINTER TO MC_Cam_Id
Additional parameter for cam table to modify the

movement

profile_scale
zCMC_AXIS_PRO-

FILE_SCALE
Profile Scale

gear_scale zCMC_AXIS_GEAR_SCALE Gearing Scale

start_mode zCMC_AXIS_START_MODES Start Modes

superImp zCMC_AXIS_IPO_DATA Parameter data for a superimposed move

override zCMC_AXIS_OVERRIDE Axis overrides

phasing zCMC_AXIS_PHASING
Phasing my be buffered, but not followed by buffe-

red => single

correction zCMC_AXIS_IPO_DATA Parameter data for a MCA_SetPositionContinuous

release BOOL Release

quit BOOL Quit

setPosition BOOL Set Position

setRef BOOL Set Reference

refresh_Position BOOL Refresh position

ignoreLimit BOOL Limit switches allowed during homing

actual_position LREAL
Used to communicate the actual position to/from

MC-function blocks, identical to actual.POSITION

actual_velocity LREAL Actual velocity

actual_control_posi-

tion
LREAL

Used to communicate the control position to/from

MC-function blocks

actual_D_XS LREAL Actual control velocity, related to CYCLE

MC_error zCMC_ABB_ERRORINFO Error Information

actPhaseShift LREAL Actual phase shift

actCorrection LREAL Actual correction

axis_error_code WORD Axis error codes

drive_error_code WORD Drive error codes

remote_ok BOOL Remote operation OK

start_level BOOL Start Level

inSync BOOL In syncronisation

in_window BOOL In Window

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/Structs/MC_Cam_Id.html#mc-cam-id
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControl_1.1.0.18_Library/Data-types/InternalDataTypes/zCMC_ABB_ERRORINFO.html#zcmc-abb-errorinfo

431
3ADR011116

431 Motion Controller with AC500 V3

Name Type Comment

closed BOOL Closed

ref_ok BOOL Reference ok

in_velocity BOOL In Velocity

pos_profile_ready BOOL Position profile is ready

cam_profile_ready BOOL Cam profile is ready

start_mode_error BOOL Error in start mode

axis_error BOOL Axis error

drive_error BOOL Drive error

enablePositive BOOL Enable positive movement

enableNegative BOOL Enable negative movement

10.2.1.3.2.6 CMC_Axis_User (STRUCT)

User Axis details

InOut:

Name Type Comment

number INT Parameter number

typ INT 1 = ACS800_dc, 2=ACSM1_dc, 3=ACS350_dc 11=EASY

name STRING Name

10.2.1.3.2.7 CMC_Pos_Control (STRUCT)

Some parameter which are used for position control. These Parameters are calculated

from CMC_Axis_Control_Parameter, They can be modified directly by accesisng this

structure. Any modification would be effective immediately. A rising edge at

“CMC_Axis_Control_Parameter” will overwrite the manual modifications. The seperate

values for backward movement will be identical to the forward values and can be

modifed manually if required.

InOut:

Name Type Initial Comment

KP LREAL 1 Proportional gain

KF LREAL 1 Used feed forward gain

KP_BACK LREAL 1 Proportional gain for backward movement

KF_BACK LREAL 1 Used feed forward gain for backward movement

KF_100 LREAL 1 Feed forward gain of 100%

TI INT Integration time for PI-Control. Just P Control is

used when TI = 0

432
3ADR011116

432 Motion Controller with AC500 V3

Name Type Initial Comment

KI INT Proportional gain for integral part of controler

MAX_TIME TIME Maximum time for velocity supervision

D_XS_MAX LREAL Maximum system velocity in u/cycle

REF_MAX_POS DINT 32767
Maximum value to be used for SPEED_REFERENCE

in positive direction

REF_MAX_NEG DINT 32767
Maximum value to be used for SPEED_REFERENCE

in negative direction

10.2.1.3.2.8 Expert (STRUCT)

Expert parameters available to use only with ‘ Motion Wizard ‘ project.

InOut:

Name Type Comment

Virtual BOOL Specifies if the axis is virtual or real

Modulo BOOL True if Axis is configured as Modulo Axis.

ModuloValue LREAL Modulo Value for Axis

EncoderResolution DWORD Increments Per Revolution

ScalingNumerator LREAL Scaling Numerator

ScalingDenominator DINT Scaling Denominator

Error BOOL Error Bit for axis

ErrCode DINT Error Code for Axis

ActPosition LREAL Actual Position of Axis

ActVelocity LREAL Actual Velocity of Axis

OperatingMode BYTE Operating Mode (Drive Operating Mode)

Kernel iBasicKernel

Kernel Block

AxisIO CMC_AXIS_IO Axis IO

file:///C:/ProgramData/AP/LibDoc/ABB/MotionControl/1.2.0.36/Default/836FfIQdqb5gDO9rLZTZnRKPeEM/ibasickernel.html%23ibasickernel
file:///C:/ProgramData/AP/LibDoc/ABB/MotionControl/1.2.0.36/Default/jjnDvB5sutTiKS4I91wGhyWb3q0/cmc-axis-io.html%23cmc-axis-io

433
3ADR011116

433 Motion Controller with AC500 V3

Name Type Comment

ECAT
iBasicEther-

cat

Ethercat Application Block

AxisStatus
zCMC_STA-

TES
Axis State

SetPosition LREAL
Set Position Reference (MC Source: Set Po-

sition)

TouchProbeFunction UINT
TouchProbeFunction for Touch Probe Ap-

plication

TouchProbeStatus UINT
TouchProbe Status for Touch Probe Appli-

cation

TouchProbePositionPos1 DINT TouchProbe 1 Rising Edge

TouchProbePositionNeg1 DINT TouchProbe 1 Falling Edge

TouchProbePositionPos2 DINT TouchProbe 2 Rising Edge

TouchProbePositionNeg2 DINT TouchProbe 2 Falling Edge

TargetTorque INT

EtherCAT object 16#6071, Target torque

value for the torque controller in profile

torque mode

MaxProfileVelocity UDINT
EtherCAT object 16#607F, Max profile velo-

city

file:///C:/ProgramData/AP/LibDoc/ABB/MotionControl/1.2.0.36/Default/836FfIQdqb5gDO9rLZTZnRKPeEM/ibasicethercat.html%23ibasicethercat
file:///C:/ProgramData/AP/LibDoc/ABB/MotionControl/1.2.0.36/Default/836FfIQdqb5gDO9rLZTZnRKPeEM/ibasicethercat.html%23ibasicethercat

434
3ADR011116

434 Motion Controller with AC500 V3

10.2.1.3.2.9 MCA_Parameter_Struct (STRUCT)

Used from MCA_WriteParameterList and MCA_ReadParameterList

InOut:

Name Type Comment

ParameterNumber WORD Number of the parameter

Value DINT New value of the specified parameter

10.2.1.3.2.10 MCA_Pos_Ref (STRUCT)

Used for MCA_Indexing

InOut:

Name Type Comment

Position LREAL [u] Reference position.

Velocity LREAL [u/s] Value of the maximum velocity (not necessarily reached)

Acceleration LREAL [u/s°°2] Value of the acceleration (increasing energy of the motor)

Deceleration LREAL [u/s°°2] Value of the deceleration (decreasing energy of the motor)

Jerk LREAL [u/s°°°3] Value of the Jerk

Mode BOOL TRUE = absolute, FALSE = relative

10.2.1.3.2.11 MC_Cam_Id (STRUCT)

Modification for cam table movement.

Some additional parameter can be provided by accessing the varibales in this data struc-

ture, after the cam table has been processed by MC_CamTableSelect

InOut:

Name Type Comment

MasterPeriodic_Distance LREAL
Applicable in case the master is not a modulo axis, the CAM mo-

vement will be repeated using this distance

SlavePeriodic_Distance LREAL
Applicable in case the slave is not a modulo axis, the CAM move-

ment will be repeated using this distance

freeze_master_backward BOOL

If the master moves backward, this movement is not used for

the CAM. Just if it passes the frozen position in forward direc-

tion, the slave will follow! If the positive movement has a certain

velocity when passing the “freeze”-point, a velocity jump will

happen

ignoreMasterSyncPosi-

tion
BOOL

To be used with MC_CamIn, the CamIn will start directly to

synchronize, and will sync within MasterStartDistance, starting

with the actual positions

it is possible to use this option when:

(master = standstill, slave = standstill) (master = moving, slave =

moving) (master = moving, slave = standstill)

in case:

435
3ADR011116

435 Motion Controller with AC500 V3

Name Type Comment

master = standstill, slave = moving, the slave axis will came to

an abrupt standstill, as it is not possible to determine a velocity

scaling

10.2.1.3.2.12 MC_PProfile (STRUCT)

The data type MC_PProfile is used for CamTable. An array has to be defined and pro-

vided at MC_CamTableSelect. Several CamTables could be defined and the axis could

change between them on the fly. There is no routine of smooth movement from on table

to the next so the user has to take care just to switch on appropriate positions

InOut:

Name Type
Ini-

tial
Comment

master_position LREAL

Masterposition of interpolation point. Be careful, the

values have to be in ascending order: MC_PProfile_Ar-

ray[x].master_position < MC_Profile_Array[x+1].ma-

ster_position

interpola-

tion_point
LREAL Slaveposition of interpolation point

velocity_ratio LREAL 0

Velocity value for interpolation point, is just relevant for

MCA_POLY5 and MCA_POLY3. It describes the relation

of slave- velocity to master-velocity, e.g. velocity_ra-

tio=1 “Master and Slave have the same velocity.

acceleration_ra-

tio
LREAL 0

Acceleration to be reached at this point. It is just rele-

vant for MCA_POLY5. It gives the relation of slave- acce-

leration according to master acceleration.

User can utilize CAM editor in Automation builder to generate Cam table

(MC_PProfile) automatically. For more details refer to Automation builder help.

436
3ADR011116

436 Motion Controller with AC500 V3

10.2.1.3.2.13 MC_TProfile (STRUCT)

This structure is used for time based profile movement, e.g. MC_PositionProfile

InOut:

Name Type Comment

interpola-

tion_point
LREAL Depending on usage, position, velocity or acceleration.

first_derivative LREAL

Equivalent to velocity on PositionProfile or acceleration on Velo-

cityProfile. Is just relevant on usage of MCA_POLY5 und

MCA_POLY3 relevant.

second_deriva-

tive
LREAL

Equivalent to acceleration on PositionProfile. Is just relevant

with MCA_POLY5.

delta_time TIME Time - Distance in ms to previous interpolation point.

10.2.2 MotionControlLoad (Library)

Motion Control library according to PLCOpen definition for Load control functionality.

This Library implementation is based on the “PLCOpen Motion Part 6 – Fluid Power Ex-

tensions”.

This library contains PLC open standard blocks (MC), and Central Motion control (CMC)

function blocks. The library also contains visualization for each function block.

This Library must be used along with ABB_MotionControl_AC500 Library which requires

a runtime license.

Copyright: We reserve all rights in these programs and the information therein. Repro-

duction, use or disclosure to third parties without express authority is strictly forbidden.

(c) 2006-2021 ABB, all rights reserved

10.2.2.1 01_PLCopen

PLC open motion control function blocks for load control and torque control.

10.2.2.1.1 MC_LimitLoad (FB)

This function block activates a limitation of the load values provided by an axis.

This may be torque, force, pressure or differential pressure. The measures taken to keep

the limits are vendor specific; switching between load and motion control depends on

the external load conditions of the axis. The function block sets the ‘Busy’ output when

the limiting measures are stand-by on the axis. The ‘Active’ output is set, when the limit-

ing measures are active on the axis.

Use Case Rational:

The function block MC_LimitLoad is intended to provide overload protection for a pro-

cess in terms of driving forces, torque or pressures during motion (e.g. mould protection

in injection moulding machines). If load values on the axis exceed the given limit, appro-

437
3ADR011116

437 Motion Controller with AC500 V3

priate measures are taken to keep this limit, implying that the motion will not be follow-

ing the programmed path but now depends on the load conditions. However, the ‘Active’

output of the MC_MoveXXX will stay TRUE in this case, following the modified PLCopen

definition “The ‘Active’ output indicates that the function block has control of the path

generation for the axis”. This is despite the fact that, physically, only the load-conditions

or the movement of an axis can be independently controlled with set values. With actual

load below programmed limit, the programmed motion will proceed. The Function block

can be applied in different scenarios which could be e.g.

• A more centralized application in terms of a “protection mode”, where the com-

plete motion is load limited. In this case the function block would be enabled in-

dependently from the motion program itself.

A more decentralized application in terms of additional functionality during the motion

program. In this case the function block would be activated by and within the motion

program itself. An application example is the mould protection scenario mentioned

above, restricting the limiter activity to a certain phase of the programmed motion. En-

suring that limits are only supervised e.g. while one certain MC_MoveXXX has primary

control on the axis can be achieved by enabling MC_LimitLoad by the ‘Active’ output of

the MC_MoveXXX. In this way the limitation is only activated when the MC_MoveXXX

takes control on the axis for the first time and is deactivated when the MC_MoveXXX

loses control on the axis by ‘Done’, ‘CommandAborted’ or ‘Error’.

If this block is used during a discrete (positioning) or synchronous movement,

the axis will not reach the planned position

This function block should not be used together with MC_LoadControl function

block.

Issuing MC_LimitLoad does not cause a motion of the axis itself. It is meant to

work in parallel to a motion command. It is not guaranteed that activity of the

limiting measures will be seen by the function block: a short pulse of the limited

quantities could be over before the next Function Block cycle occurs.

Use just one instance of this block per load axis, because the “Enable” has to de-

fine clearly if the functionality is activated. It is not foreseen to interrupt an in-

stance by another of the same type, so the behavior is undefined.

InOut:

Scope Name Type Comment

Input

Enable BOOL
Allows function block to modify (clamp) a mo-

tion command

Load LREAL

Value of the maximum applicable load on the

axis (Torque, force or pressure in technical unit

[u])

Direction MC_Direction

Supported direction: Positive, negative, cur-

rent, default. The direction determines if just

positive or negative load values are to be limi-

ted, or both (default)

438
3ADR011116

438 Motion Controller with AC500 V3

Scope Name Type Comment

Output

Busy BOOL
The function block is not finished. Output is

independent of Axis status

Active BOOL
Indicates that the function block has influence

on the axis

Error BOOL
Signals that error has occurred within function

block

ErrorID

AC500_Motion-

Control.ER-

ROR_ID

Error identification. For error details refer to

enumeration ERROR_ID from AC500_Motion-

Control library

Inout Load_Axis Load_Ref Reference to axis

10.2.2.1.2 MC_LimitMotion (FB)

This function block limits the movement of an axis. Changes in load can result in inex-

pectant velocity/acceleration deviations, and thus inaccurate limitations

This function block activates a limitation of the motion values of an axis. These are ‘Posi-

tion’, ‘Velocity’, ‘Acceleration’, ‘Deceleration’ and ‘Jerk’. The measures taken to keep the

limits are vendor specific; switching between motion and load control depends on the

external load conditions of the axis. The function block sets the ‘Busy’ output when the

limiting measures are standby on the axis. The ‘Active’ output is set, when the limiting

measures are active on the axis.

Use Case Rational

The function block MC_LimitMotion is intended to protect a process from undefined

movements during load/torque control Possible application: e.g. force fitting. The func-

tion block is intended to be used in conjunction with a MC_LoadControl or MC_Torque-

Control having primary control on the axis. The MC_LimitMotion should be enabled by

the ‘Active’ output of the MC_LoadControl / MC_TorqueControl. If motion values on the

axis exceed the given limit, appropriate measures are taken to keep to these limits, im-

plying that the load/torque will not follow the programmed trajectory but depend on the

external load conditions. However, the ‘Active’ output of the MC_LoadCon-

trol/MC_TorqueControl will stay TRUE in this case, following the modified PLCopen defi-

nition “The ‘Active’ output indicates, that the function block has control on the set-value

generation of the axis”. This is despite the fact, that physically only the load-conditions

or the movement of an axis can be controlled. With actual motion states below pro-

grammed limits, the programmed load/torque trajectory will proceed. Enabling the lim-

iter block with activation of the MC_LoadControl/MC_TorqueControl ensures that limits

are only supervised when the MC_LoadControl/MC_TorqueControl takes control on the

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlLoad_1.0.0.18_Library/Data-types/Load_Ref.html#load-ref

439
3ADR011116

439 Motion Controller with AC500 V3

axis for the first time. Disabling the limiter block with de-activation of the MC_LoadCon-

trol/MC_TorqueControl ensures that limits are no more supervised when the MC_Load-

Control/MC_TorqueControl looses control on the axis by ‘CommandAborted’ or ‘Error’

It is not guaranteed that activity of the limiting measures will be seen by the

function block: a short pulse of the limited quantities could be over before the

next Function Block cycle occurs.

With the given direction CURRENT or DEFAULT, the position will not be limited

and the velocity will be limited in both directions. With the given direction POSI-

TIVE, the position will be limited below the given value and the velocity will be

limited in both direction. The function block will not start a movement in the op-

posite direction when the position is already higher when the function block is

enabled. It will at maximum reduce the velocity to 0. (same principle behavior in

negative direction). The limitations will just be activated when the axis is actually

controlled by the LOAD value, e.g. LoadProfile or LoadControl

Use just one instance of this block per load axis, because the “Enable” has to de-

fine clearly if the functionality is activated. It is not foreseen to interrupt an in-

stance by another of the same type, so the behavior is undefined.

InOut:

Scope Name Type Comment

Input

Enable BOOL
Allows function block to modify (clamp) a

load command

Position LREAL

[u] = technical unit. The position limitation

is just activated if Direction is Positive or

Negative, and will limit the position if

reached in the respective direction

Velocity LREAL

[u/s] = technical unit. Absolute value of the

maximum velocity. Velocity=0 will switch

off the velocity limitation

Acceleration LREAL

[u/s°°2] = technical unit. Value of the maxi-

mum acceleration (acceleration is applica-

ble with same sign of torque and velocity)

Acceleration = 0 will switch off the accele-

ration limitation.

Deceleration LREAL

[u/s°°2] = technical unit. Value of the maxi-

mum deceleration (deceleration is applica-

ble with opposite signs of torque and velo-

city) deceleration = 0 will switch off the de-

celeration limitation.

Jerk LREAL Value of the maximum jerk (not used)

Direction MC_Direction
Supported direction: Positive, negative,

current, default. The direction determines if

440
3ADR011116

440 Motion Controller with AC500 V3

Scope Name Type Comment

just positive or negative load values are to

be limited, or both (default)

Output

Busy BOOL
The function block is not finished. Output

is independent of Axis status

Active BOOL
Indicates that the function block has in-

fluence on the axis

Error BOOL
Signals that error has occurred within func-

tion block

ErrorID

AC500_Motion-

Control.ER-

ROR_ID

Error identification. For error details refer

to enumeration ERROR_ID from AC500_Mo-

tionControl library

Inout Load_Axis Load_Ref Reference to axis

10.2.2.1.3 MC_LoadControl (FB)

This function block commands a controlled torque/force/pressure movement.

This function block continuously exerts a torque or force or pressure of the specified

magnitude. This magnitude is approached using a defined ramp (‘LoadRamp’), and the

function block sets the ‘InLoad’ output if the commanded load level is reached. Positive

torque, force and differential pressure is in the positive direction of velocity, pressure is

physically unsigned.

Example

The function block LoadControl provides base functionality for any application in which

the devolution of forces, torque or pressures provided by an axis to a process has to be

actively defined and controlled (e.g. in presses).

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlLoad_1.0.0.18_Library/Data-types/Load_Ref.html#load-ref

441
3ADR011116

441 Motion Controller with AC500 V3

Using this command leads to undefined motion of the axis, unless other (motion

controlled) axes or mechanical structures (arrester) are involved.

442
3ADR011116

442 Motion Controller with AC500 V3

InOut:

Scope Name Type Initial Comment

Input

Execute BOOL Starts the function block at rising

edge

Conti-

nuousUpdate
BOOL

Decide if new input parameters are

processed during the movement.

This input is checked only when Exe-

cute gets TRUE

Load LREAL
[u] = technical unit. Value of the

load, Torque/ Force/ Pressure. Posi-

tive and negative values are allowed

LoadRamp LREAL

[u/s] = technical unit. Absolute value

of the input is considered. If

LoadRamp = 0, will result in a jump

for load- change, as fast as possible

Direction MC_Direction Default

Supported direction: Positive, nega-

tive, current, default. The direction

determines if just positive or nega-

tive load values are to be limited, or

both (default)

BufferMode MC_BufferMode Not supported, default mcABOR-

TING used

Output

InLoad BOOL Commanded load finally reached,

the actual load can be different

Busy BOOL The function block is not finished

Active BOOL Indicates that the function block

has control on the axis

CommandAbor-

ted
BOOL

Command is aborted by another

command from other PLCopen func-

tion block

Error BOOL Signals that error has occurred wi-

thin function block

ErrorID
AC500_MotionCon-

trol.ERROR_ID

Error identification. For error details

refer to enumeration ERROR_ID

from AC500_MotionControl library

Inout Load_Axis Load_Ref

 Reference to axis

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlLoad_1.0.0.18_Library/Data-types/Load_Ref.html#load-ref

443
3ADR011116

443 Motion Controller with AC500 V3

10.2.2.1.4 MC_LoadProfile (FB)

This Function Block commands a time-load locked motion profile. The load in the final

element in the profile should be maintained. The state remains ‘ContinuousMotion’.

Following points gives more details on using the function block

• An array of MC_TProfile has to be created to hold pairs of Load/time. The ad-

dress of this array has to be used at the TimeLoad input.

• The values “first_derivative” and “second_derivative” are just used when a poly-

nomial interpolation is applied.

• When the first delta_time value is different from 0, this time is used to approach

the first load value. Otherwise, the first value is used as a jump.

This functionality does not mean it runs one profile over and over again: it can

switch between different profiles.

When ProfileCompleted = TRUE (profile is completed), Axis will run with the last

load value.

InOut:

Scop

e
Name Type Initial Comment

Input

Execute BOOL

Starts the function block at rising edge.The

axis will be controlled with the last load va-

lue from the profile, and be kept in load

control when finished.

TimeSca

le
LREAL 1

Scaling for time value in profile. Range:

TimeScale > 0

LoadSca

le
LREAL 1

Scaling for load value in profile. Range:

LoadScale <> 0

Offset LREAL [u] = technical unit. Overall offset for tor-

que, force or pressure profile

Num-

ber_Of_

Pairs

INT

Number of sampling points (time/load).

Value should be less than or equal to Array

size of TimeLoad input. Range: Num-

ber_Of_Pairs >2

444
3ADR011116

444 Motion Controller with AC500 V3

Scop

e
Name Type Initial Comment

iType

MC_ABB_i

Ty-

pes_enum

Type of interpolation. Possible values are:

MCA_SPLINE_COMPLETE,

MCA_SPLINE_NATURAL,

MCA_POLY5,

MCA_POLY3,

MCA_LINEAR

Time-

Load

POINTER

TO

MC_TPro-

file

 Reference to time/load. MC_TProfile is an

ABB specific data type

Direc-

tion

MC_Direc-

tion

Defaul

t

Supported direction: Positive, negative,

current, default. The direction determines if

just positive or negative load values are to

be limited, or both (default)

Buffer-

Mode

MC_Buf-

ferMode
 Not supported, default mcABORTING used

Out-

put

Profil-

eCom-

pleted

BOOL Profile completed, Commanded position fi-

nally reached

Busy BOOL The function block is not finished

Active BOOL Indicates that the function block has con-

trol on the axis

Com-

mand-

Aborted

BOOL Command is aborted by another command

from other PLCopen function block

Error BOOL Signals that error has occurred within func-

tion block

ErrorID

AC500_M

otionCon-

trol.ER-

ROR_ID

Error identification. For error details refer

to enumeration ERROR_ID from AC500_Mo-

tionControl library

Inout
Load_Ax

is
Load_Ref

 Reference to axis

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlLoad_1.0.0.18_Library/Data-types/Load_Ref.html#load-ref

445
3ADR011116

445 Motion Controller with AC500 V3

10.2.2.1.5 MC_LoadSuperimposed (FB)

This Function Block commands a controlled torque/force/pressure movement.

This function block commands a controlled load update (increase/decrease) of a speci-

fied relative value additional to an existing load. The existing load control operation is

not interrupted, but is superimposed by the additional load.

• If MC_LoadSuperImposed is ‘Active’, then any other command in aborting mode

except MC_LoadSuperImposed will abort both load commands: both the

MC_LoadSuperImposed and the underlying load command. In any other mode,

the underlying load command is not aborted

• If MC_LoadSuperImposed is ‘Active’ and another MC_LoadSuperImposed is com-

manded, only the ongoing MC_LoadSuperImposed command is aborted, and re-

placed by the new MC_LoadSuperImposed command, but not the underlying load

command

• The values of ‘LoadRampIncrease’ and ‘LoadRampDecrease’ are additional values

to the ongoing load control, and not absolute ones. With this, the underlying

function block always finishes its job in the same period of time regardless of

whether a MC_LoadSuperImposed function block takes place concurrently.

• The output ‘Active’ has a different behavior as in buffered function blocks.

• The load control will be activated when the axis is on position control at the start

of this block. Any ongoing positioning movement will be interrupted.

Use Case Rational:

The function block MC_LoadSuperImposed is intended to allow a superimposed load

command to be issued on top of an existing load command without superceding the

original load command. If not a load command but a position command is active when

MC_LoadSuperimposed is enabled, the ongoing movement will be aborted and the axis

be switched to load control. In case that no load control is active when the block is ena-

bled, it will take the actual load value and increase or decrease the load staring from this.

When disabled, it will return to this value.

Possible Application:

Actuator: hydraulic cylinder with fluid pressure sensor actuates the press of plastic injection molding

machine in a continuous load operation.

Request: prior to MC_LoadSuperImposed call, a MC_LoadControl block is ‘Active’ with a command

of 7,500 kPa to press melted plastic into the mold. Once the MC_LoadControl

‘InLoad’ condition is achieved a superimposed pressure of 5,000 kPa is added several

times to cause a hammering effect to relieve stresses in the plastic.

Result

The MC_LoadControl pressure command of 7,500 kPa is superimposed with a discrete

pressure command of 5,000 kPa. Once the ‘LoadSuperImposed’ command is active the

system pressure rises to 12,500 kPa. When the superimposed pressure command has

been achieved the MC_LoadSuperImposed block is done and the original command

given by the MC_LoadControl resumes the original pressure command.

446
3ADR011116

446 Motion Controller with AC500 V3

The MC_LoadSuperImposed block is executed several times without affecting the origi-

nal pressure command given by the MC_LoadControl block.

Busy and Active will remain TRUE after function block is disabled until Load is

ramped down.

447
3ADR011116

447 Motion Controller with AC500 V3

InOut:

Scope Name Type Initial Comment

Input

Enable BOOL

Activate the Motion when Enable =

TRUE.The axis will be controlled to

Load=0 with falling edge, and be kept

in load control.

Load LREAL

[u] = technical unit. Load that is to be

superimposed. Torque/force/pres-

sure

LoadRa

mpIn-

crease

LREAL

[u/s] = technical unit. Value of the

load ramp increase of the additional

load

LoadRa

mpDe-

crease

LREAL

[u/s] = technical unit. Value of the

load ramp decrease of the additional

load

Direc-

tion

MC_Direc-

tion

De-

fault

Supported direction: Positive, nega-

tive, current, default. The direction

determines if just positive or negative

load values are to be limited, or both

(default)

Out-

put

InLoad BOOL Commanded load finally reached

Busy BOOL The function block is not finished

Active BOOL
Indicates that the function block has

control on the axis

Com-

man-

dAbor-

ted

BOOL

Command is aborted by another com-

mand from other PLCopen function

block

Error BOOL
Signals that error has occurred within

function block

ErrorID

AC500_Mo-

tionCon-

trol.ER-

ROR_ID

Error identification. For error details

refer to enumeration ERROR_ID from

AC500_MotionControl library

Inout
Load_A

xis
Load_Ref

 Reference to axis

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlLoad_1.0.0.18_Library/Data-types/Load_Ref.html#load-ref

448
3ADR011116

448 Motion Controller with AC500 V3

449
3ADR011116

449 Motion Controller with AC500 V3

10.2.2.1.6 MC_TorqueControl (FB)

This Function Block commands a controlled torque/force/pressure movement and also

limits the movement of an axis.

This Function Block continuously exerts a torque or force of the specified magnitude.

This magnitude is approached using a defined ramp (‘TorqueRamp’), and the Function

Block sets the ‘InTorque’ output if the commanded torque level is reached. This function

block is applicable for force and torque. When there is no external load, force is applica-

ble. Positive torque is in the positive direction of velocity.

• The movement is limited by velocity, acceleration / deceleration or by the value

of the torque.

• Specific additional tests are outside this function block. For instance, checking

on the traveled distance could be done via tracing the actual positions during the

action.

Example

The example below shows the typical behavior of an intermediate “resistive” load (see

‘Deceleration’ limit) with some “inertia” (see ‘TorqueRamp’ limit).

450
3ADR011116

450 Motion Controller with AC500 V3

This example could be implemented in a function block diagram like:

This function should not be use together with MC_LimitMotion for the same axis.

This function block is implemented as wrapper of two blocks MC_LimitMotion

and MC_LoadControl

451
3ADR011116

451 Motion Controller with AC500 V3

InOut:

Scope Name Type Comment

Input

Execute BOOL Starts the function block at rising edge

Conti-

nuousU

pdate

BOOL

Decide if new input parameters are processed during

the movement. This input is checked only when Exe-

cute gets TRUE

Torque LREAL
[u] = technical unit. Value of the Torque or Force or

Pressure. Positive and negative values are allowed

Torque-

Ramp
LREAL

[u/s] = technical unit. Absolute value of the input is

considered. If TorqueRamp = 0, will result in a jump

for load-change, as fast as possible

Position LREAL

[u] = technical unit. The position limitation is just acti-

vated if Direction is Positive or Negative, and will limit

the position if reached in the respective direction

Velocity LREAL

[u/s] = technical unit. Absolute value of the maximum

velocity. Velocity=0 will switch off the velocity limita-

tion

Accele-

ration
LREAL

[u/s°°2] = technical unit. Value of the maximum acce-

leration (acceleration is applicable with same sign of

torque and velocity) Acceleration=0 will switch off the

acceleration limitation.

Decele-

ration
LREAL

[u/s°°2] = technical unit. Value of the maximum dece-

leration (deceleration is applicable with opposite si-

gns of torque and velocity) deceleration=0 will switch

off the deceleration limitation.

Jerk LREAL Value of the maximum jerk (not used)

Direc-

tion

MC_Di-

rection

Supported direction: Positive, negative, current, de-

fault. The direction determines if just positive or ne-

gative load values are to be limited, or both (default)

Buffer-

Mode

MC_Buf-

ferMode
Not supported, default mcABORTING used

Out-

put

InTor-

que
BOOL

Commanded load finally reached, the actual load can

be different

452
3ADR011116

452 Motion Controller with AC500 V3

Scope Name Type Comment

Busy BOOL The function block is not finished

Active BOOL
Indicates that the function block has control on the

axis

Com-

man-

dAbor-

ted

BOOL
Command is aborted by another command from

other PLCopen function block

Error BOOL Signals that error has occurred within function block

ErrorID

AC500_M

otion-

Con-

trol.ER-

ROR_ID

Error identification. For error details refer to enume-

ration ERROR_ID from AC500_MotionControl library

Inout
Load_A

xis
Load_Ref Reference to axis

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlLoad_1.0.0.18_Library/Data-types/Load_Ref.html#load-ref

453
3ADR011116

453 Motion Controller with AC500 V3

10.2.2.2 CMC_Blocks

Central Motion control (CMC) related function blocks for load control.

10.2.2.2.1 CMC_Load_Motion_Kernel (FB)

This block uses the CMC_Basic_Kernel for motion control regarding position and veloc-

ity, and extends the functionality to include loadcontrol

The Load_Ref axis can be used with all PLCopen blocks when usually Axis_Ref is used.

In addition, a number of function blocks are available th control/limit specifically for the

load.

These function blocks require an axis of type Load_Ref

Enable_Virtual = TRUE: Load_ActValue is not simulated!

Some explanations for the following parameters:

• An internal PIDT1 control is used for load control

• P - propotional term

• I - integral term

• D - derivative term

• T1 - first order delay for derivative term

• Transfer function U/E = Load_KP * (1 + 1/(Load_TI * s) + Load_TD * S/(1 +

Load_T1 * s))

The actuator (drive) has to be accessed outside the CMC_Load_Motion_Kernel block. Ac-

tual values and reference values might be transferred by a synchronised bus or by I/Os.

• All inputs and outputs of the function block which are named “Drive_xxxx” should

be used to connect to the actuator (drive). It does not matter whether this con-

nection is done by fieldbus or by conventional IOs.

• The Axis structure is used to connect to the PLCopen blocks

• The Load_Axis structure is used to connect the fluid power PLCopen blocks

• The Control_Parameter structure is used for configuration of control loop.

• The IO structure gives a connection to limit or reference switches.

454
3ADR011116

454 Motion Controller with AC500 V3

When using this function block you can use the Visualization

“MC_VISU_Load_statemachine” to see the State diagram status. For the function

block visualization use the “CMC_VISU_FB_Basic_Kernel” visu from ABB_Motion-

Control_AC500 library and map to instance of this function block.

InOut:

Scope Name Type Initial Comment

Input

Enable BOOL

Release of function block. Enable has to

be set before new control parameters are

released by CMC_Axis_Control_Parame-

ter.

Drive_Ref

_Ok
BOOL Indication for homing

Drive_InO

peration
BOOL

Indication that drive is running. The drive

is switched on and is active

Drive_Ac-

tualPosi-

tion

DINT Actual Position in incremenets

Load_TI LREAL 100
[ms] Integration time for load control, 0

will switch of the integral term

Load_TD LREAL 0
[ms] Time for derivative control, 0 will

switch of the deriavtive term

Load_T1 LREAL 10
[ms] Time for a first oder delay, applied

to the derivative term

Load_KP LREAL 1 Proportional gain

Load_Ma

xRef
LREAL 32767

Max positive reference, used if load con-

trol takes over

Load_Min

Ref
LREAL -32767

Max negative reference, used if load con-

trol takes over

Load_Di-

rection
BOOL TRUE

TRUE => positive movement => increa-

sing load

Load_Act

Value
LREAL Measured value for load or torque

455
3ADR011116

455 Motion Controller with AC500 V3

Scope Name Type Initial Comment

Inout

Load_Axi

s

Load_

Ref

 Reference to axis

Con-

trol_Para-

meter

CMC_

Axis_C

on-

trol_P

ara-

meter

Parameters for configuration and adjust-

ment of the control loop

IO

CMC_

Axis_I

O

By the structure IO (CMC_Axis_IO), some

binary inputs are provided. The PLC pro-

gram has to define a variable of type

CMC_Axis_IO and to assign the inputs.

Input
Enable_Vi

rtual
BOOL

Use the axis as virtual axis. Block inputs

which are usualy received from the real

axis are ignored. Required values are ge-

nerated internally. Enable_Virtual = TRUE:

Load_ActValue is not simulated

Out-

put

Error BOOL
Signals that an error has occurred within

the function block.

ErrorID

AC500

_Mo-

tion-

Con-

trol.ER

ROR_I

D

Error identification. For error details refer

to enumeration ERROR_ID from

AC500_MotionControl library

Drive_Re-

set_Fault
BOOL

Binary signal to be used for resetting the

drive error, if applicable

Drive_Re-

lease
BOOL Activate the drive

Drive_Set

_Ref
BOOL Activate homing

Drive_Set

_Position
DINT Position to be used at homing

Drive_Re-

ference
DINT A speed reference

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlLoad_1.0.0.18_Library/Data-types/Load_Ref.html#load-ref
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlLoad_1.0.0.18_Library/Data-types/Load_Ref.html#load-ref

456
3ADR011116

456 Motion Controller with AC500 V3

10.2.2.3 Data types

Data type and structures required for the library

10.2.2.3.1 CMC_Load_InOut (STRUCT)

This structure should handle the in-out values to/from the PLCopen-motion function

blocks to the internal motion software

InOut:

Name Type Comment

Load LREAL

LoadRamp LREAL
[u] torque/force/pres-

sure

SuperImp CMC_LOAD_SUPER [u/s] Load Ramp value

LimitLoadValue LREAL Superimposed

LimitLoadDirection MC_DIRECTION
[u] torque/force/pres-

sure

limitLoadActivate BOOL
Positive,negative, cur-

rent, default

LimitLoadActivationNum-

ber
DWORD Limit Load is Activated

LimitMotionPosition LREAL
Limit Load activation

number

LimitMotionVelocity LREAL MotionLimitation

LimitMotionAcceleration LREAL Limit Load velocity

LimitMotionDeceleration LREAL
Limit Load accelera-

tion

LimitMotionDirection MC_DIRECTION
Limit Load decelera-

tion

limitMotionActivate BOOL
Positive,negative, cur-

rent, default

LimitMotionActivation-

Number
DWORD Limit Motion activated

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlLoad_1.0.0.18_Library/Data-types/CMC_Load_Super.html#cmc-load-super

457
3ADR011116

457 Motion Controller with AC500 V3

Name Type Comment

tp_ref
POINTER TO zCMC_TProfile_TA-

BLE

Limit motion activa-

tion number

profile_scale zCMC_AXIS_PROFILE_SCALE
TProfile table refe-

rence

start_mode zCMC_AXIS_START_MODES Profile scaling

actual_load LREAL Start mode

active BOOL Actual load

direction MC_Direction Activate

isActive DWORD Direction

start BOOL Is Active

stop BOOL Start

in_limit_positive BOOL Stop

in_limit_negative BOOL Limit is positive

in_motion_limit BOOL Limit is negative

isActive_LoadControl BOOL Motion Limit

start_confirmation BOOL Active Load control

in_load BOOL Start is confirmed

load_profile_ready BOOL In Load

start_level BOOL Load Profile is ready

start_mode_error BOOL Start Level

10.2.2.3.2

458
3ADR011116

458 Motion Controller with AC500 V3

10.2.2.3.3 CMC_Load_Super (STRUCT)

InOut:

Name Type Comment

Load LREAL

LoadRampIncrease LREAL [u] torque/force/pressure

LoadRampDecrease LREAL
[u/s] Load ramp increase

value

isActive DWORD
[u/s] Load ramp decrease

value

start BOOL Is active

stop BOOL Start

in_load BOOL Stop

active BOOL In Load

start_level BOOL Active

start_confirmation BOOL Start level

459
3ADR011116

459 Motion Controller with AC500 V3

10.2.2.3.4 Load_Ref (STRUCT)

Holds the main information regarding the axis. It is used to identify a load axis and con-

nect the various PLCopen blocks and KERNEL block which belong to the specific load

axis.

InOut:

Name Type Comment
Inherited

from

user CMC_Axis_User User Axis details Axis_Ref

inout CMC_Axis_InOut

This structure should handle the in-out va-

lues to/from the open-motion function

blocks to the fieldbus or the internal motion

software. It represents a neutral interface

Axis_Ref

actual CMC_Axis_Actual
Some actual values like positions and velo-

city per cycle
Axis_Ref

para-

meter
Axis_Parameter

Parameter which are written/read with

MC_WriteParameter/MC_ReadParameter

blocks and also parameter used for position

control loop

Axis_Ref

load_i

nout
CMC_Load_InOut

10.2.2.4 Visualizations

Function block and state machine visualizations

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlLoad_1.0.0.18_Library/Data-types/CMC_Load_InOut.html#cmc-load-inout

460
3ADR011116

460 Motion Controller with AC500 V3

10.2.3 MotionControlEco (Library)

The library provides function blocks to use the PWM and PTO of the eCoV3 PLC to realize

the motion control applications.

Along with the kernel function blocks in this library user can use the MC, MCA function

blocks from the AC500_MotionControl Library to realize various motion control function-

alities like camming, homing and so on. For more details of the available function blocks

refer to ABB_MotionControl_AC500 library.

Refer the Automation Builder online help for details on the eCoV3 PLC configuration of

PWM, PTO and other limitations.

Copyright: We reserve all rights in these programs and the information therein. Repro-

duction, use or disclosure to third parties without express authority is strictly forbidden.

(c) 2006-2021 ABB, all rights reserved

10.2.3.1 Data types

Structures related to PTO and PWM configuration.

10.2.3.1.1 OBIO_PTO_Motion_Parameter (STRUCT)

Parameters to be configured for the PTO Motion Control application

InOut:

Name Type Initial Comment

Channel BYTE 0

0..1, refers to PTO Channels of eCo V3 and

requires the outputs to be configured ac-

cordingly

Cw_Ccw BOOL FALSE Default: pulse and Direction

Invert_Direction BOOL FALSE

With Create_PTO_Position=TRUE: invert

Direction for the complete axis. otherwise:

invert just Direction for PTO

Precise BOOL

Add a pulse movement to reach exactly the

required position. If min_frequency is too

high to control it from PLC program

Create_PTO_Posi-

tion
BOOL TRUE

If TRUE, use number of pto pulses as ac-

tual position, if FALSE, actual position has

to be provided as input DRIVE_ACTUALPO-

SITION

Min_Frequency DWORD 400

Define a low frequency limit, to avoid a too

slow acceleration start.

Deviation with max frequency is 1%, slo-

west possible frequency is max/625, de-

viation for slowest frequency is 0.002%.

The max frequency is derived from

CMC_AXIS_CONTROL_PARAMETER.

461
3ADR011116

461 Motion Controller with AC500 V3

10.2.3.1.2 OBIO_PWM_Motion_Parameter (STRUCT)

Parameters to be configured for the PWM Motion Control application

InOut:

Name Type
Ini-

tial
Comment

Channel BYTE 0

0..7, refers to PWM Channels of eCo V3 and re-

quires the outputs to be configured accordin-

gly.

We recommend to use channels which has fa-

ster PWM

PosDirectionState
BOO

L

Define if the direction output should have a

high (TRUE) or low state to move forward

Create_PWM_Posi-

tion

BOO

L
TRUE

If TRUE, use number of PWM pulses as actual

position, if FALSE, actual position has to be pro-

vided as input DRIVE_ACTUALPOSITION

DirectionDelay DINT 10
Define a minumum delay for direction change

[ms]

10.2.3.2 eCo Kernel Function blocks

This folder contains the Kernel function blocks required for the PWM and PTO configura-

tion in eCo V3 PLC along with Motion Control Library.

462
3ADR011116

462 Motion Controller with AC500 V3

10.2.3.2.1 OBIO_PTOMotionKernel (FB)

This function block extends the basic motion kernel functionality, so that it can be used

for the eco PTO outputs and connect a stepper drive.

• 2 axes are possible in total. For each axis one instance of this function block

must be called.

• Different parameters related to the PTO can be adjusted in OBIO_PTO_Mo-

tion_Parameter

• It is possible to use either the stepper pulses as actual position, or connect a

seperate value to Drive_ActualPosition

Adjust PTO related parameter in OBIO_PTO_Motion_Parameter

The function block behaves as follows:

• If the input Drive_InOperation is not connected, the required state is created in-

ternally.

• If a drive delivers a corresponding signal, the Drive_Release/Drive_InOperation

sequence can be used as with CMC_Basic_Kernel.

• If the input Drive_ActualPosition is not connected, the stepper pulses can be

used instead.

• The input Drive_ActualPosition can be connected to an external encoder position

value. (configure in OBIO_PTO_Motion_Parameter)

The function block connects internally to the PTO outputs. The PTO configura-

tion for the output is required, but no seperate function block to use PTO out-

puts.

PTO parameters and input Enable_Virtual is not recommended to change on the

fly or running system. This can lead to unexpected behavior of the system.

This function block supports the visualization “CMC_VISU_FB_Basic_Kernel” from

the ABB_MotionControl_AC500 library. User needs to manually map the instance

of function block in Visualization reference.

463
3ADR011116

463 Motion Controller with AC500 V3

InOut:

Scope Name Type Initial Comment

Input

Enable BOOL

Release of function block. Enable has to be set

before new control parameters are released by

CMC_Axis_Control_Parameter.

Drive_Ref_Ok BOOL Indication for homing

Drive_InOpera-

tion
BOOL

Indication that drive is running. The drive is swit-

ched on and is active

Drive_ActualPo-

sition
DINT Actual Position in incremenets

Inout

Axis Axis_Ref Reference to the axis to be controlled

Control_Para-

meter

CMC_Axis_C

ontrol_Para-

meter

Parameters for configuration and adjustment of the

control loop

IO
CMC_Axis_I

O

By the structure IO (CMC_Axis_IO), some binary in-

puts are provided. The PLC program has to define a

variable of type CMC_Axis_IO and to assign the in-

puts.

Output

Error BOOL
Signals that an error has occurred within the func-

tion block.

ErrorId ERROR_ID

The error codes ErrorId also sets the output-bit Er-

ror=TRUE and sets the axis in state ERROR_STOP.

To allow a new movement the error-codes ErrorId

require that either the axis is disabled/enabled by

MC_Power or the error reset is disabled/enabled by

MC_Reset.

The error codes ErrorID_WARNING will not set Error

= TRUE, and will not set the axis to ERROR_STOP.

The error codes ErrorID_WARNING do not require

the MC_Reset or MC_Power. It is possible the axis is

stopped and ongoing motion is aborted by a WAR-

NING. The value will be shown until: + An other error

or warning occurs + MC_Reset or MC_Power is used

Drive_Re-

set_Fault
BOOL

Binary signal to be used for resetting the drive error,

if applicable

Drive_Release BOOL Activate the drive

Drive_Set_Ref BOOL Activate homing

Drive_Set_Posi-

tion
DINT Position to be used at homing

Speed_Refe-

rence
DINT Reference value for the drive

Position_Refe-

rence
DINT Position reference for the drive in increments

464
3ADR011116

464 Motion Controller with AC500 V3

Input Enable_Virtual BOOL

Use the axis as virtual axis. Block inputs which are

usualy received from the real axis are ignored. Re-

quired values are generated internally

Output PTO_ErrorID

AC500_On-

boardIO.Er-

ror_ID

0
Error code. For error details refer to AC500_Onboar-

dIO library Enum Error_ID

Inout
PTO_Mo-

tion_Parameter

OBIO_PTO_

Motion_Pa-

rameter

 Specific parameter set for PTO axis

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlEco_1.0.0.6_Library/Data-types/OBIO_PTO_Motion_Parameter.html#obio-pto-motion-parameter
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlEco_1.0.0.6_Library/Data-types/OBIO_PTO_Motion_Parameter.html#obio-pto-motion-parameter
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlEco_1.0.0.6_Library/Data-types/OBIO_PTO_Motion_Parameter.html#obio-pto-motion-parameter

465
3ADR011116

465 Motion Controller with AC500 V3

10.2.3.2.2 OBIO_PWMMotionKernel (FB)

This function block extends the basic motion kernel functionality, so that it can be used

for the eco PWM outputs and connect a stepper drive.

• 8 axes are possible in total. We recommend to use the fast PWM axes. Each axis

needs one instance of this kernel block called.

• Different parameters related to the PWM can be adjusted in OBIO_PWM_Mo-

tion_Parameter

• It is possible to use either the stepper pulses as actual position, or connect a

seperate value to Drive_ActualPosition

Adjust PWM related parameter in OBIO_PWM_Motion_Parameter

The function block behaves as follows:

• If the input Drive_InOperation is not connected, the required state is created in-

ternally.

• If a drive delivers a corresponding signal, the Drive_Release/Drive_InOperation

sequence can be used as with CMC_Basic_Kernel.

• If the input Drive_ActualPosition is not connected, the stepper pulses can be

used instead.

• The input Drive_ActualPosition can be connected to an external encoder position

value. (configure in OBIO_PWM_Motion_Parameter)

The block connects internally to the PWM outputs. The PWM configuration for the out-

put is required, but no seperate FB to use PWM outputs.

PTO parameters and input Enable_Virtual is not recommended to change on the fly or

running system. This can lead to unexpected behavior of the system.

This function block supports the visualization “CMC_VISU_FB_Basic_Kernel” from the

ABB_MotionControl_AC500 library. User needs to manually map the instance of func-

tion block in Visualization reference.

3ADR011116 466

InOut:

Scope Name Type
Ini-

tial
Comment

Input

Enable BOOL

Release of function block. Enable has to be set

before new control parameters are released by

CMC_Axis_Control_Parameter.

Drive_Ref_Ok BOOL Indication for homing

Drive_InOperation BOOL
Indication that drive is running. The drive is switched

on and is active

Drive_ActualPosi-

tion
DINT Actual Position in incremenets

Inout

Axis Axis_Ref Reference to the axis to be controlled

Control_Parameter
CMC_Axis_Con-

trol_Parameter

Parameters for configuration and adjustment of the

control loop

IO CMC_Axis_IO

By the structure IO (CMC_Axis_IO), some binary in-

puts are provided. The PLC program has to define a

variable of type CMC_Axis_IO and to assign the in-

puts.

Output

Error BOOL
Signals that an error has occurred within the func-

tion block.

ErrorId ERROR_ID

The error codes ErrorId also sets the output-bit Er-

ror=TRUE and sets the axis in state ERROR_STOP. To

allow a new movement the error-codes ErrorId re-

quire that either the axis is disabled/enabled by

MC_Power or the error reset is disabled/enabled by

MC_Reset.

The error codes ErrorID_WARNING will not set Error

= TRUE, and will not set the axis to ERROR_STOP.

The error codes ErrorID_WARNING do not require the

MC_Reset or MC_Power. It is possible the axis is

stopped and ongoing motion is aborted by a WAR-

NING. The value will be shown until: + An other error

or warning occurs + MC_Reset or MC_Power is used

Drive_Reset_Fault BOOL
Binary signal to be used for resetting the drive error,

if applicable

Drive_Release BOOL Activate the drive

Drive_Set_Ref BOOL Activate homing

Drive_Set_Position DINT Position to be used at homing

Speed_Reference DINT Reference value for the drive

Position_Reference DINT Position reference for the drive in increments

Input Enable_Virtual BOOL

Use the axis as virtual axis. Block inputs which are

usualy received from the real axis are ignored. Requi-

red values are generated internally

3ADR011116 467

Output
PWM_ErrorID

AC500_Onboar-

dIO.Error_ID
0

Error code. For error details refer to AC500_Onboar-

dIO library Enum Error_ID

Direction BOOL Moving direction, connect this to a binary output

Inout
PWM_Motion_Para-

meter

OBIO_PWM_Mo-

tion_Parameter

 Specific parameter set for PWM axis

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlEco_1.0.0.6_Library/Data-types/OBIO_PWM_Motion_Parameter.html#obio-pwm-motion-parameter
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/MotionControlEco_1.0.0.6_Library/Data-types/OBIO_PWM_Motion_Parameter.html#obio-pwm-motion-parameter

3ADR011116 468

10.2.4 Ecat_CiA402 (Library)

This library is based on the AC500 system library for EtherCAT. This library will help in Motion control

application.

The library has no password protection and is open to be modified to match the required applica-

tion. For the editable version of library check the example folder. Further functional description of

the other parts of the Motion Control Libraries are available in the “AC500_MotionControl” Library.

Copyright: We reserve all rights in these programs and the information therein. Reproduction, use or

disclosure to third parties without express authority is strictly forbidden. (c) 2006-2021 ABB, all

rights reserved

10.2.4.1 Data Types

10.2.4.1.1 CiA

10.2.4.1.1.1 ECAT_CiA_Object_App (STRUCT)

The values are stored in an array form of type ECAT_CiA_Object_APP.

InOut:

Name Type Comment

Index WORD Index for SDO Object

Subindex BYTE Subindex for SDO Object

DatType BYTE Indicates if value is 0 = BYTE, 1 = WORD, 2 = DWORD

Value DINT Value to read or write

Read BOOL When TRUE, this element will be read when the list is processed by

ECAT_Read_Coe_List

Write BOOL When TRUE, this element will be written when the list is processed by

ECAT_Write_Coe_List

Dummy WORD Reserve

Name STRING A name for the element, not necessary for the function

3ADR011116 469

10.2.4.2 POUs

This folder contains the functions and function blocks in the library.

10.2.4.2.1 CoE

10.2.4.2.1.1 ECAT_Read_Byte_App (FB)

The function block reads an 8 bit value from an EtherCAT node. It uses EcatCoeRead to do so.

The differences to “EcatCoeRead” are:

o The block is dedicated to a specific value length

o The value will be received in correct byte order

o The behaviour for Execute, Done, Error corresponds to PLCopen definitions:

o Execute starts the block with a rising edge

o The executions ends with output Done or Error

o Outputs Done and Error are mutually exclusive

o Outputs Done and Error stay active as long as Execute is TRUE, but for at least 1 cycle

when Execute is FALSE

Note: User must make sure correct function block is used to read thevalue based on the pa-

rameter data type. For instance, use ECAT_Read_Byte_App for Parameter with data type

BYTE.

InOut:

Scope Name Type Initial Comment

Input

Execute BOOL FALSE Starts the function block

at rising edge

Device IDeviceCM579EtherCAT Name of the Coupler De-

vice connected, Ex:

CM579_ETHCAT

Node WORD 0 Node number for Ether-

CAT device. Ex: 1001,

1002

Idx WORD 0 Index of the SDO object

SubIdx BYTE 0 Subindex of the SDO ob-

ject

Tout UINT 0 Timeout in milliseconds

Output Done BOOL FALSE Shows the status of the

function block. Done =

3ADR011116 470

TRUE if the execution is

finished

Error BOOL FALSE Signals that error has

occurred within Function

block

Ecat_Erro-

rID

AC500_EtherCAT.ER-

ROR_ID

 Error code. Refer ER-

ROR_ID from the

AC500_ECatBase Library

Value BYTE Value read

10.2.4.2.1.2 ECAT_Read_COE_List_App

The function block reads a list of parameters to the drive by using the EcatCoeRead.

The differences to EcatCoeRead are:

• A list of parameters which are stored in an array could be read automatically and more con-

venient as it would be by using single blocks.

• The values will be received in correct byte order

• The behaviour for Execute, Done, Error correspond to PLCopen definitions:

o Execute starts the block with a rising edge

o The executions ends with output Done or Error

o Outputs Done and Error are mutually exclusive

o Outputs Done and Error stay active as long as Execute is TRUE, but for at least 1 cycle

when Execute is FALSE

The input Num gives the number of elements in the array to be processed. The output Active_Num

shows the actually active element. When an error occurs, the sequence is stopped and the Ac-

tive_Num indicates which element could not be written.

Note: User must make sure correct function block is used to read the value based on the pa-

rameter data type. For instance, use ECAT_Read_Byte_App for Parameter with data type

BYTE.

InOut:

Scope Name Type Initial Comment

Input

Device IDeviceCM579EtherCAT

Name of the Coupler Device con-

nected,

Ex: CM579_ETHCAT

Node WORD
Node number for EtherCAT de-

vice. Ex: 1001, 1002

Tout UNIT Timeout in milliseconds

3ADR011116 471

Num WORD Number of parameters in the list

Parameters
POINTER TO

ECAT_CiA_Object_App
 Address of parameter list

Output

Done BOOL

Shows the status of the func-

tion block. Done = TRUE if the

execution is finished

Error BOOL FALSE
Signals that error has occurred

within Function block

Ecat_Erro-

rID

AC500_EtherCAT.ER-

ROR_ID

Error code. Refer ERROR_ID

from the AC500_ECatBase Li-

brary

Active BOOL The function block is active

Active_Num WORD
Index of parameters which ist

actually read

10.2.4.2.1.3 ECAT_Read_DInt_App (FB)

The function block reads a 32 bit value from an EtherCAT node. It uses EcatCoeRead to do so.

The differences to “EcatCoeRead” are:

• The block is dedicated to a specific value length

• The value will be received in correct byte order

• The behaviour for Execute, Done, Error correspond to PLCopen definitions:

o Execute starts the block with a rising edge

o The executions ends with output Done or Error

o Outputs Done and Error are mutually exclusive

o Outputs Done and Error stay active as long as Execute is TRUE, but for at least 1 cycle

when Execute is FALSE

User must make sure correct function block is used to read the value based on the parame-

ter data type. For instance, use ECAT_Read_Byte_App for Parameter with data type BYTE.

InOut:

Scope Name Type Initial Comment

Input Execute BOOL FALSE
Starts the function block at ri-

sing edge

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/Ecat_CiA402_1.1.0.12_Library/Data-types/CiA/ECAT_CiA_Object_App.html#ecat-cia-object-app

3ADR011116 472

Device IDeviceCM579EtherCAT
Name of the Coupler Device

connected, Ex: CM579_ETHCAT

Node WORD 0
Node number for EtherCAT de-

vice. Ex: 1001, 1002

Idx WORD 0 Index of the SDO object

SubIdx BYTE 0 Subindex of the SDO object

Tout UINT 0 Timeout in milliseconds

Output

Done BOOL FALSE

Shows the status of the func-

tion block. Done = TRUE if the

execution is finished

Error BOOL FALSE
Signals that error has occurred

within Function block

Ecat_Erro-

rID

AC500_EtherCAT.ER-

ROR_ID

Error code. Refer ERROR_ID

from the AC500_ECatBase Li-

brary

Value DINT Value read

Node WORD 0
Node number for EtherCAT de-

vice. Ex: 1001, 1002

3ADR011116 473

10.2.4.2.1.4 ECAT_Read_Int_App (FB)

The function block reads a 16 bit value from an EtherCAT node. It uses EcatCoeRead to do so.

The differences to “EcatCoeRead” are:

• The block is dedicated to a specific value length

• The value will be received in correct byte order

• The behaviour for Execute, Done, Error correspond to PLCopen definitions:

o Execute starts the block with a rising edge

o The executions ends with output Done or Error

o Outputs Done and Error are mutually exclusive

o Outputs Done and Error stay active as long as Execute is TRUE, but for at least 1 cycle

when Execute is FALSE

User must make sure correct function block is used to read the value based on the parame-

ter data type. For instance, use ECAT_Read_Byte_App for Parameter with data type BYTE.

InOut:

Scope Name Type Initial Comment

Input

Execute BOOL FALSE Starts the function block at rising edge

Device
IDeviceCM579Ether-

CAT

Name of the Coupler Device connected, Ex:

CM579_ETHCAT

Node WORD 0 Node number for EtherCAT device. Ex: 1001, 1002

Idx WORD 0 Index of the SDO object

SubIdx BYTE 0 Subindex of the SDO object

Tout UINT 0 Timeout in milliseconds

Out-

put

Done BOOL FALSE
Shows the status of the function block. Done =

TRUE if the execution is finished

Error BOOL FALSE
Signals that error has occurred within Function

block

Ecat_Erro-

rID

AC500_EtherCAT.ER-

ROR_ID

Error code. Refer ERROR_ID from the AC500_ECat-

Base Library

Value INT Value read

3ADR011116 474

10.2.4.2.1.5 ECAT_Write_Byte_App (FB)

The function block writes an 8 bit value to an EtherCAT node. It uses EcatCoeWrite to do so.

The differences to “EcatCoeWrite” are:

• The block is dedicated to a specific value length

• The value will be written in correct byte order

• The behaviour for Execute, Done, Error correspond to PLCopen definitions:

o Execute starts the block with a rising edge

o The executions ends with output Done or Error

o Outputs Done and Error are mutually exclusive

o Outputs Done and Error stay active as long as Execute is TRUE, but for at least 1 cycle

when Execute is FALSE

InOut:

Scope Name Type Initial Comment

Input

Execute BOOL FALSE
Starts the function block at ri-

sing edge

Device IDeviceCM579EtherCAT
Name of the Coupler Device

connected, Ex: CM579_ETHCAT

Node WORD 0
Node number for EtherCAT de-

vice. Ex: 1001, 1002

Idx WORD 0 Index of the SDO object

SubIdx BYTE 0 Subindex of the SDO object

Value BYTE Value to write

Output

Tout UINT 0 Timeout in milliseconds

Done BOOL FALSE

Shows the status of the func-

tion block. Done = TRUE if the

execution is finished

Error BOOL FALSE
Signals that error has occurred

within Function block

Ecat_Erro-

rID

AC500_EtherCAT.ER-

ROR_ID

Error code. Refer ERROR_ID

from the AC500_ECatBase Li-

brary

3ADR011116 475

10.2.4.2.1.6 ECAT_Write_Coe_List_App (FB)

The function block writes a list of parameters to the drive by using the EcatCoeWrite.

The differences to EcatCoeWrite are:

• A list of parameters which are stored in an array could be written automatically and more

convenient as it would be by using single blocks.

• The values will be written in correct byte order

• The behaviour for Execute, Done, Error correspond to PLCopen definitions:

o Execute starts the block with a rising edge

o The executions ends with output Done or Error

o Outputs Done and Error are mutually exclusive

o Outputs Done and Error stay active as long as Execute is TRUE, but for at least 1 cycle

when Execute is FALSE

The input Num gives the number of elements in the array to be processed. The output Active_Num

shows the actually active element. When an error occurs, the sequence is stopped and the Ac-

tive_Num indicates which element could not be written.

3ADR011116 476

InOut:

Scope Name Type Initial Comment

Input

Execute BOOL Starts the function block at rising edge

Device
IDeviceCM579Ether-

CAT

Name of the Coupler Device connected, Ex:

CM579_ETHCAT

Node WORD Node number for EtherCAT device. Ex: 1001, 1002

Tout UINT Timeout in milliseconds

Num WORD Number of parameters in the list

Parame-

ters

POINTER

TO ECAT_CiA_Ob-

ject_APP

 Address of parameter list

Output

Done BOOL
Shows the status of the function block. Done = TRUE if

the execution is finished

Error BOOL FALSE Signals that error has occurred within Function block

Ecat_Erro-

rID

AC500_EtherCAT.ER-

ROR_ID
 Error code. Refer ERROR_ID from AC500_ECatBase Library

Active BOOL The function block is active

Ac-

tive_Num
WORD Index of parameter which is actually written

https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/Ecat_CiA402_1.1.0.12_Library/Data-types/CiA/ECAT_CiA_Object_App.html#ecat-cia-object-app
https://abbautomationbuilder.s3.eu-west-1.amazonaws.com/WebHelp/AB_2_5/Libraries/ABB%20-%20AC500/Use%20Cases/Motion/Ecat_CiA402_1.1.0.12_Library/Data-types/CiA/ECAT_CiA_Object_App.html#ecat-cia-object-app

3ADR011116 477

10.2.4.2.1.7 ECAT_Write_DInt_App (FB)

The function block writes a 32 bit value to an EtherCAT node. It uses EcatCoeWrite to do so

The differences to “EcatCoeWrite” are:

• The block is dedicated to a specific value length

• The value will be written in correct byte order

• The behaviour for Execute, Done, Error correspond to PLCopen definitions:

o Execute starts the block with a rising edge

o The executions ends with output Done or Error

o Outputs Done and Error are mutually exclusive

o Outputs Done and Error stay active as long as Execute is TRUE, but for at least 1 cycle

when Execute is FALSE

InOut:

Scope Name Type Initial Comment

Input

Execute BOOL FALSE Starts the function block at rising edge

Device
IDeviceCM579Ether-

CAT

Name of the Coupler Device connected, Ex:

CM579_ETHCAT

Node WORD 0 Node number for EtherCAT device. Ex: 1001, 1002

Idx WORD 0 Index of the SDO object

SubIdx BYTE 0 Subindex of the SDO object

Value DINT Value to write

Tout UINT 0 Timeout in milliseconds

Out-

put

Done BOOL FALSE
Shows the status of the function block. Done =

TRUE if the execution is finished

Error BOOL FALSE
Signals that error has occurred within Function

block

Ecat_Erro-

rID

AC500_EtherCAT.ER-

ROR_ID

Error code. Refer ERROR_ID from the AC500_ECat-

Base Library

3ADR011116 478

10.2.4.2.1.8 ECAT_Write_Int_App (FB)

The function block writes a 16 bit value to an EtherCAT node. It uses EcatCoeWrite to do so

The differences to “EcatCoeWrite” are:

• The block is dedicated to a specific value length

• The value will be written in correct byte order

• The behaviour for Execute, Done, Error correspond to PLCopen definitions:

o Execute starts the block with a rising edge

o The executions ends with output Done or Error

o Outputs Done and Error are mutually exclusive

o Outputs Done and Error stay active as long as Execute is TRUE, but for at least 1 cycle

when Execute is FALSE

InOut:

Scope Name Type Initial Comment

Input

Execute BOOL
FALS

E

Starts the function block at rising

edge

Device IDeviceCM579EtherCAT
Name of the Coupler Device con-

nected, Ex: CM579_ETHCAT

Node WORD 0

Node number for EtherCAT de-

vice.

Ex: 1001, 1002

Idx WORD 0 Index of the SDO object

SubIdx BYTE 0 Subindex of the SDO object

Value INT Value to write

Output

Tout UINT 0 Timeout in milliseconds

Done BOOL
FALS

E

Shows the status of the function

block. Done = TRUE if the execu-

tion is finished

Error BOOL
FALS

E

Signals that error has occurred

within Function block

Ecat_Erro-

rID

AC500_EtherCAT.ER-

ROR_ID

Error code. Refer ERROR_ID from

the AC500_ECatBase Library

3ADR011116 479

10.2.4.2.2 Drive

10.2.4.2.2.1 ECAT_CiA402_Control_App (FB)

The function block controls the statemachine for a drive with 402 profile and connected to EtherCAT.

• It has to be connected to the Kernel block which controls the statemachine

• It can be connected to Axis_Ref, this gives information to PLCopen blocks about drive prob-

lems.

The function block evaluates the status word of a drive and to write the control word.

• En = FALSE: the control word is set to “0”, no command will be accepted

• Drive_Fault = FALSE and Drive_Remote_Ok = TRUE: the drive is ready to be switched on

• Drive_Release: a positive edge will switch on the drive. In case of a fault, the control word will

not be modified. A positive edge on drive_release or drive_reset_fault will be necessary to

switch on again

• Drive_InOperation = TRUE: the drive is in state “Operation enabled”

The block also has a visualization element which can show the actual state

“Visu_ECAT_CiA402_STATE”.

InOut:

Scope Name Type Comment

Input

En BOOL Enable the function block

Device IDeviceCM579EtherCAT
Name of the Coupler Device con-

nected, Ex: CM579_ETHCAT

Node WORD
Node number for EtherCAT device,

(1001, 1002…)

Drive_Op_Mode BYTE

Use 8 = CSP (position), 9 = CSV (velo-

city), 0: will not be modified (use a va-

lue if drive based homing is required

Drive_Re-

set_Fault
BOOL

Directly mapped to RESET in drive con-

trol word

Drive_Release BOOL Switch on the drive by a positive edge

Out-

put

Drive_Set_Ref BOOL Activate homing

Drive_Set_Posi-

tion
DINT Position to be used at homing

3ADR011116 480

Sw WORD Statusword from drive

Ignore_Drive_Fa

ult
BOOL

A drive fault in SW will not change the

state machine

Error BOOL
Signals that error has occurred within

Function block

Ecat_ErrorID
AC500_EtherCAT.ER-

ROR_ID

Error code. Refer ERROR_ID from the

AC500_ECatBase Library

Drive_Re-

mote_Ok
BOOL

Directly mapped from remote bit in

drive status word

Drive_Fault BOOL
Directly mapped from fault bit in drive

status word, connect with Axis_Ref

Drive_ErrorCode WORD
Read from object 16#603F, Connect

with Axis_Ref

Out-

put

Drive_Ref_Ok BOOL Indication for homing

Drive_InOpera-

tion
BOOL

Drive successfully switched on, state

OPERATION_ENABLED

Cw WORD Controlword for the drive

10.2.4.2.3 Homing

10.2.4.2.3.1 ECAT_402ParameterHoming_APP (FB)

This function block sends the parameter needed for homing to the drive it will send every parameter

with a value <> 0

3ADR011116 481

InOut:

Scope Name Type Initial Comment

Input

Execute BOOL
Starts the function block at rising

edge

Device
IDeviceCM579Ether-

CAT

Name of the Coupler Device con-

nected, Ex: CM579_ETHCAT

Node WORD 0
Node number for EtherCAT de-

vice, (1001, 1002…)

Velocity LREAL Velocity during homing [units/s]

Acceleration LREAL
Acceleration during homing

[units/s^2]

Deceleration LREAL
Deceleration during homing

[units/s^2]

Jerk LREAL Jerk during homing [units/s^3]

HomeBackoff LREAL

[u] HomeBackoff determines the

back-off speed from a home

switch

HomeCreep-

Speed
LREAL

[u/s] During the final stage of ho-

ming moves, the axis operates at

creep speed when locating an in-

dex pulse. The creep speed is ex-

pressed in user velocity units

HomingMode SINT

HomingMode defines the type of

homing sequence to be perfor-

med when the drive is powered

up and then enabled

Output

Done BOOL

Shows the status of the function

block. Done = TRUE if the execu-

tion is finished

Busy BOOL The function block is active

Error BOOL
Signals that error has occurred

within Function block

ErrorID
AC500_MotionCon-

trol.ERROR_ID

Shows error number, Refer ER-

ROR_ID enum in AC500_Motion-

Control library

Ecat_ErrorID
AC500_EtherCAT.ER-

ROR_ID

Error code. Refer ERROR_ID from

the AC500_ECatBase Library

Inout Axis Axis_Ref Reference to axis

3ADR011116 482

10.2.4.2.3.2 ECAT_HomingOnTouchProbe_APP (FB)

This function block perfoms a homing on a latched position value, e.g. Touch Probe on Z-pulse of an

encoder. The execution of the function block will do the following:

• Axis state will change to HOMING

• Axis will move with configured parameters until rising edge of Tp_Done

• Axis will stop, axis state will change to STANDSTILL

• Position value from Tp_Value will be used to set a new positon to the axis

• Function block output signal Done will be TRUE as long Execute input signal is TRUE, but at

least for one cycle

This function block uses instances of MC_StepRefPulse and MC_SetPosition

InOut:

Scope Name Type Comment

Input

Execute BOOL
Starts the function block at rising

edge

Tp_Done BOOL
Uses rising edge that signals a new

latch value is available

Tp_Value LREAL Latch Value, position in [units]

Direction
MC_Homing_Direc-

tion

Specifies the direction to start the ho-

ming, just MC_Positive and MC_Nega-

tive are possible to use:

MC_Positive = Starts in positive direc-

tion always

MC_Negative = Starts in negative di-

rection always

Velocity LREAL Velocity during homing [units/s]

Acceleration LREAL
Acceleration during homing

[units/s^2]

3ADR011116 483

Scope Name Type Comment

Deceleration LREAL
Deceleration during homing

[units/s^2]

SetPosition LREAL
New position to be set where latch va-

lue occures [units]

TimeLimit LREAL Time limit to finish homing [s]

DistanceLi-

mit
LREAL Distance limit to finish homing [units]

Out-

put

Done BOOL

Shows the status of the function

block. Done = TRUE if the execution is

finished

Busy BOOL The function block is active

Error BOOL
Signals that error has occurred within

function block

ErrorID
AC500_MotionCon-

trol.ERROR_ID

Shows error number, Refer ERROR_ID

enum in AC500_MotionControl library

Drive_Ref_O

k
BOOL

To be connected with input

“Drive_Ref_Ok” of the kernel function

block

Inout Axis Axis_Ref Connect axis varable here

10.2.4.2.4 TouchProbe

10.2.4.2.4.1 ECAT_CiA402_TouchProbe_App (FB)

This function block manages the Touch Probe objects according to: “EtherCAT Implementation Di-

rective for CiA402 Drive Profile” Document: ETG.6010 D (R) V1.0.0

InOut:

3ADR011116 484

Scope Name Type Comment

Input

Enable BOOL Enables processing of function block

Tp_Status_PDO UINT
Touch probe status word, corresponds to ob-

ject “Touch probe status” Index: 0x60B9”

Tp_Posi-

tion_Pos_PDO
DINT

Latch value from positve edge from Touch

Probe, corresponds to object “Touch probe po-

sition positive value” Index: 0x60BA, [incre-

ments]

Tp_Posi-

tion_Neg_PDO
DINT

Latch value from negative edge from Touch

Probe, corresponds to object “Touch probe po-

sition negative value” Index: 0x60BB, [incre-

ments]

Sel_Tp INT
1 = Touch Trobe 1 will be used, 2 = Touch Trobe

2 will be used

En_Tp_Z_Pulse BOOL
TRUE = Touch Probe on Z-pulse, FALSE = Touch

Probe on “Input”

En_Tp_Continuous BOOL

TRUE = Enables continuous mode for Touch

Probe, FALSE = enables single mode for Touch

Probe

En_Tp_Pos_Edge BOOL

TRUE = Enables Touch Probe on positive edge

from signal, FALSE = disables Touch Probe on

positive edge from signal

En_Tp_Neg_Edge BOOL

TRUE = Enables Touch Probe on negative edge

from signal, FALSE = disables Touch Probe on

negative edge from signal

Output

Error BOOL
Signals that an error has occurred within func-

tion block

ErrorID
AC500_Motion-

Control.ERROR_ID

Shows error number, Refer ERROR_ID enum in

AC500_MotionControl library

Tp_Enabled BOOL Touch Probe 1 object is activated

Tp_Pos_Edge BOOL

True when new latch value availabe for Touch

Probe on positive edge, stays TRUE in single

mode, TRUE for one cycle in continuous mode

Tp_Neg_Edge BOOL

True when new latch value availabe for Touch

Probe on negative edge, stays TRUE in single

mode, TRUE for one cycle in continuous mode

Tp_Position_Pos LREAL

Latch value from positve edge from Touch

Probe, [Position output converted to motion

control library scaled units]

Tp_Position_Neg LREAL

Latch value from negatve edge from Touch

Probe, [Position output converted to motion

control library scaled units]

Inout Motion_Kernel CMC_Basic_Kernel Connect instance name of motion kernel here

3ADR011116 485

Scope Name Type Comment

Tp_Function_PDO UINT

Control word for Touch Probe configuration,

corresponds to object “Touch probe function”

Index 0x60B8

10.2.5 MathFunctions (Library)

This library has mathematical functions like some linear equations, matrix and vector calculations

Current version has only function block for Math linear regression.

Copyright: We reserve all rights in these programs and the information therein. Reproduction, use or

disclosure to third parties without express authority is strictly forbidden. (c) 2006-2020 ABB, all

rights reserved

10.2.5.1 POUs

10.2.5.1.1 Math Library

10.2.5.1.1.1 LinearEquation

10.2.5.1.1.2 MATH_LINEAR_REGRESSION (FB)

This function block calculates the estimated next value based on a linear regression with a 8 values

history. It uses “least square” GAUSS algorithm

When this function block is used to process an actual position, 2 different purposes are fulfilled:

• A jitter or noise can be compensated

• It is possible to calculate a forecast-position to compensate for a delay in position measure-

ment

Process the actual position or any other master axis always before the slave axis. Other-

wise, an additional 1 cycle-delay is introduced

The block calculates the progress for a variable which is captured in equidistant periods of time and

is assumed to follow a linear curve. It uses the Gauss “least squares” algorithm to do so. The line is

calculated in a way that the sum of squares for the distances from the measured points to the as-

sumed straight line is minimized. A noise or jitter influence of the value is compensated and a predic-

tive value for the variable with an adjustable forecast horizon can be calculated

The gradient and offset for the line are calculated in a way that “sum” is minimized. Then these 2 val-

ues are used to calculate the forecast value:

3ADR011116 486

FORECAST=0 would mean: value right now, no future or past considered.

When the ACTUAL value is a modulo value, for example a single turn encoder or a rollover axis, this

has to be considered in the calculation. The 2 input values POSITIVE_LIMIT and NEGATIVE_LIMIT can

be used to configure this. They define the upper and lower limit for ACTUAL. Also, the NEXT_BINARY

will as a result be limited to these borders.

InOut:

Scope Name Type Comment

Input

ENABLE BOOL Enable the function block

ACTUAL LREAL Actual value

HISTORY DINT
Number of values to be stored to caclulate an
average

FORECAST LREAL
Number of cycles to calculate the future, ca be a
fractional number

POSITIVE_LI-
MIT

DWORD
Use a value >0 in case the input is based on a
modulo (rollover) value

3ADR011116 487

Scope Name Type Comment

NEGATIVE_LI-
MIT

DINT
Minimum value to be used for a modulo calcula-
tion

Output

NEXT_VALUE LREAL Result from least square algorithm as LREAL

NEXT_BINARY DWORD
Result from least square algorithm as binary
value

3ADR011116 488

11 DIAGNOSIS

The diagnosis system enables uniform diagnosis of the CPU and its local interfaces, of the local I/O

bus with the connected S500 I/O devices and of the fieldbuses connected via communication mod-

ules, considering the special features of the various fieldbuses. The safety CPU is also integrated into

the diagnosis system.

Diagnosis data of the devices can be accessed by

• CPU display

• Automation Builder

• IEC application

To forward the information to notify them by, e.g., webserver or OPC UA server, the data retrieved in

IEC application can be stored in variables

Refer Automation Builder online help chapter PLC Automation with V3 CPUs > Diagnosis and debug-

ging for AC500 V3 products > The diagnosis system for up-to-date information.

11.1 Online diagnosis using Automation Builder

To use the diagnosis system in Automation Builder, login to the online mode is required ⇘ “Enter-

ing/leaving the online mode”. The online diagnosis in Automation Builder consists of a set of partly

animated, mostly read only views. They can be invoked by a double-click on a project tree element

which shows a circle indicating that this element is able to show diagnosis messages ⇘ “Project tree

in online mode”.

Available online diagnosis and statistics:

• Diagnosis messages

When the Automation Builder is switched to online mode, incoming diagnosis messages are dis-

played as plain-text ⇘ “Diagnosis in Automation Builder”.

• CPU/PLC diagnosis

o “CPU diagnosis views”.

• I/O module diagnosis

o “Live values in views with I/O components”.

• Communication module and fieldbus diagnosis

3ADR011116 489

o “Communication module and fieldbus diagnosis”

• Diagnosis in IEC application

o “Diagnosis in IEC application”

For information on the disk status, diagnosis information can be read out with the function blocks

PmDiskStatus and PmDiskLifetimeUsed. ⇘ “Health monitoring”

Refer Automation Builder online help chapter PLC Automation with V3 CPUs > Diagnosis and debug-

ging for AC500 V3 products > The diagnosis system > Diagnosis in Automation Builder for up-to-date

information.

11.2 Diagnosis in PLC program

There are two possibilities for accessing the diagnosis messages in the IEC application:

System diagnosis: Access to diagnosis messages of the whole PLC

Device diagnosis: Access to the diagnosis messages of a device

For both possibilities common data types (structures and enumerations) are defined in the library

AC500_DiagTypes⇘ “Data types in library AC500_DiagTypes”. The library is automatically included in

PLC project.

Details on how to integrate and use function blocks to receive diagnosis messages from the CPU and

fieldbus devices are given in the application examples:

• AC500 V3 diagnosis in IEC application

• AC500 V3 diagnosis

Refer Automation Builder online help chapter PLC Automation with V3 CPUs > Diagnosis and debug-

ging for AC500 V3 products > The diagnosis system > Diagnosis in IEC application for up-to-date in-

formation.

11.3 EtherCAT Diagnosis

Below chapter give an overview on the AC500 V3 EtherCAT diagnosis. For updated detailed infor-

mation please refer to AC500 EtherCAT diagnosis

11.3.1 Application scenarios of EtherCAT diagnostics

In this chapter, typical faults and errors are listed which can be determined, detected and located by

the EtherCAT bus.

The errors and faults are classified by Commissioning and Operational of the machinery. The list is

based on practical experience with EtherCAT and consists predefined faults and errors derived from

the ETG specification

Note: This document lists only a small selection of errors that can occur in an

Ether-CAT system. It is only intended to provide an exemplary overview of the vari-

ous error groups. Depending on the application and installation, further errors and

error groups may occurPM5012-x-ETH and all the PM50xx-R-ETH eCo PLC are not

supported by motion solution wizard.

11.3.1.1 Commissioning

Especially during commissioning, the topology errors can occur frequently. With completion of the

hardware setup, the topology errors are minimized and communication errors can emerge. Of

course, some topology errors might be also caused by communication error, e.g. a loose connection

of an EtherCAT device which leads to an incomplete system.

https://search.abb.com/library/Download.aspx?DocumentID=3ADR010852&LanguageCode=en&DocumentPartId=&Action=Launch
https://search.abb.com/library/Download.aspx?DocumentID=3ADR011072&LanguageCode=en&DocumentPartId=&Action=Launch
https://search.abb.com/library/Download.aspx?DocumentID=3ADR010988&LanguageCode=en&DocumentPartId=&Action=Launch

3ADR011116 490

Topology error

During the transition from Bus Off to Init, i.e. during the start-up of the EtherCAT bus, the topology

of the system will be checked by the master according to the configuration. The correct topology is

mandatory for the proper operation of the bus. Normally, a topology error only occurs during com-

missioning.

In case of a specific application where single devices must shut down and replaced, these errors can

occur as well.

Error or fault Description

Additional devices More devices installed than configured.

Missing devices Less devices installed than configured.

Missing cable between two de-vices This is basically the same behavior as the "Missing

devices" error. All devices behind the missing cable

are physically not available and therefore there are

less devices installed than configured.

Reversed devices Different types of EtherCAT Slave module, e.g. e190

servo drive instead of a e180 servo drive.

Reversed devices within one cluster Salve modules are swapped.

Reversed devices of same type but with pre-

defined station address

Module with predefined station address 1001 is

swapped with another module with the address of

1002.

Reversed connection at In/Out Ports During commissioning a reversed connection of

the IN and OUT ports will cause that this device will

be set as the last slave of the topology due to the

different telegram processing inside the slave

11.3.1.2 Communication error

A communication error is an error when writing or reading the telegram and can therefore occurs at

startup or operation. The correct operation of the communication is decisive for a functioning bus. In

case of a communication error, further errors can be caused.

Error and fault Description

Telegram error E.g. Defect cable or port, EMC interferences.

Loose connection Loose connection of EtherCAT cable or supply volt-

age.

Inadmissibly long or non-deter-ministic

forwarding times

Faulty EtherCAT Slave Controller implementation or

non-EtherCAT switch

Faulty device/slave Loosing telegrams (e.g. telegrams will be rejected due

to a broken line inside the slave) or telegram are not

executed correctly.

Non-EtherCAT device Loosing telegrams (The telegrams will not be re-

turned, and therefore the telegrams are rejected).

11.3.2 Operational

Usually, topology errors do not occur during a running system unless the application requires a hard-

ware change during operation, or a person willfully changes the topology.

Accordingly, only a communication error or a device, module or channel error can lead to a necessary

diagnostic during operation.

3ADR011116 491

11.3.2.1 Communication error

A communication error is an error when writing or reading the telegram and can therefore oc-curs at

startup or operation. The correct operation of the communication is decisive for a functioning bus. In

case of a communication error, further errors can be caused.

Error and fault Description

Telegram error E.g. Defect cable or port, EMC interferences.

Loose connection Loose connection of EtherCAT cable or supply volt-

age.

Inadmissibly long or non-deterministic

forwarding times

Faulty EtherCAT Slave Controller implementation.

Faulty device/slave Loosing telegrams (e.g. telegrams will be rejected

due to a broken line inside the slave) or telegram

are not executed correctly.

Non-EtherCAT device Loosing telegrams (The telegrams will not be re-

turned, and therefore the telegrams are rejected).

11.3.3 Diagnostic with Automation Builder

11.3.3.1 Diagnostic tools

Since the release of Automation Builder 2.2.4 (631), the Engineering Tool for the AC500, includes

interfaces to read basic diagnosis information for commissioning purposes without

any application effort.

This diagnostic has been improved over different Automation Builder Versions and is now

completely implemented. This Guideline will explain the diagnostic interfaces since Automation

Builder 2.3.0 and above.

Independent of the PLC type, the diagnosis can be found at the tab ETHCAT_Master (ETHCAT-Mas-

ter) and is only available in Online mode.

The following chapter will give an overview about the different diagnosis tools in Automation Builder.

3ADR011116 492

11.3.3.2 Diagnostics main

As general overview of the System, the Diagnostics main tab can be used. Accordingly, to the Ether-

CAT state machine (see also Chapter 2.3) the master and all slaves have to pass through all states for

an operational bus. In the Diagnostics main tab, the Master and the Slave states are displayed and

can be used to determine an error but not to locate the faulty device.

If the system goes to operational (OP), without having any error at the Master or the Slave, all display

indications must be green.

In case of an error, the display indications change their color and the communication fault can be

seen inside the Protocol error tab.

Having a look to the Slave/ Device state, it is noticeable that the number of configured and active

slaves does not match each other. It is obvious that the connection from the master to the first slave

already has an error.

3ADR011116 493

11.3.3.3 Diagnostics live list

In case of a topology error the Diagnostics live list will list all found devices in their actual topology

after pressing “Scan”. Beside the name, it will also display the state of the ports and the revision

number of the devices.

By comparing the scanned list with the configuration in the device tree, the incorrectly installed de-

vice and thus the topology error can be detected.

CAUTION! - Bus and Topology Scan will reset the System. As this is not a common function during

operational and can causes unexpected issues, the scan is al-lowed at the Init state only.

11.3.3.4 Master State Control

The state machine of the EtherCAT bus can be changed by the Master State Control register. Within

this state control, the Master as well as the Slaves can be set to a desired state to start, initialize, or

stop the entire system.

Next to the control pane for the EtherCAT system, the Master State Control register has additional

windows to display diagnostic information:

1. Communication log:

The latest EtherCAT communication information is displayed on top to indicate the status of the

EtherCAT network. In total the last five communication information of the master is shown.

3ADR011116 494

2. Frame loss counters:

In case of lost frames, the counter will increase and therefore indicates whether some telegrams are

lost in the network. The lost frame counter might increase during startup, therefore it must be read

out for each startup and compared with the value during the fault.

3. Timing:

• Bus cycle time - Bus cycle time in nanoseconds

• Expected RX end time -Time from start of bus cycle transmission until completion of re-

ceiving the bus cycle back (in nanoseconds)

• Expected TX data time - Time from start of bus cycle transmission until a new data up-

date is expected to be signaled to stack (in nanoseconds)

4. Log entry:

The existing Log file does not only show state changes of the bus, but also slave error with the hexa-

decimal code and the station address of the corresponding device. The additional slave errors can

give deeper information about its faults (e.g. SDO error during startup of the system).

11.3.3.5 Slave diagnosis

New in Automation Builder 2.3 is the Slave diagnosis for the EtherCAT system. While the communica-

tion log of the Master State Control tab indicates whether an error is present or not, the Slave diag-

nosis can give additional information about the slaves directly and therefore about the positioning

of the fault.

3ADR011116 495

11.3.4 Process guideline for typical faults and errors during commissioning

11.3.4.1 Topology error

3ADR011116 496

3ADR011116 497

11.3.4.2 Communication error

3ADR011116 498

11.4 Diagnostic with IEC programming

Automation Builder serves libraries with function blocks for extended EtherCAT diagnostic. System

integrators have access to the whole diagnostic System of EtherCAT and can implement it individu-

ally to provide diagnostic for different purposes. Therefore, diagnostic during commissioning is not

only available in Automation Builder but also in IEC code.

To implement EtherCAT diagnostic inside IEC code for a V3 PLC, the Library AC500_EtherCAT is re-

quired. The library will be added to the Library Manager after adding the CM579-ETHCAT to a PLC

slot. At least Version 1.3.0.17 of the Library is required to use Automation Builder 2.3.0 and a PM5670-

ETH PLC with the Firmware Version 3.3.1.0.

The Library consists of different folders with Function blocks to read/ write CoE- and SoE data or to

read/ write registers, to control the EtherCAT system and to get diagnostic of the same

This chapter shows the process how to detect and localize faults and errors that might occurs during

commissioning by using the library in the IEC code.

3ADR011116 499

11.4.1 Topology error

3ADR011116 500

3ADR011116 501

11.4.2 Communication error

3ADR011116 502

11.5 Data recording with trace

You can use a “Trace” to follow the value history of variables on the controller in a similar way as a

digital sampling oscilloscope. To add the trace to Automation Builder device tree,

Right click on the “Application” and click on the Add Object.

This will open the Add Object window, select “Other” and “Trace as shown below” and click on “Add

object”.

“Add Trace” window will open and provide a name and assign a task for the trace and click on “Add”.

3ADR011116 503

This will add the trace to device tree.

User can configure the trace by clicking on the “configuration”, which will the pop-up Trace configu-

ration window. Details on the configuration can be found from latest Automation Builder help file.

3ADR011116 504

To add a variable to monitor, user can click on Add variable and map the variable.

After adding the variable to Trace, login to the PLC, right click on the trace area and click on ”Down-

load Trace”.

3ADR011116 505

Trace will be downloaded based on the configuration and user can right click on the trace to get

more option to operate the trace.

3ADR011116 506

REVISION HISTORY

Rev. Page Change Description Date / Initial

-d1 All First version 2022-03-10

MODP/AC500/DKO

-d2 Review and accounted for changes by Richard 2022-04-28

MODP/AC500/GS

-d3

1.2.4

 Cleaning and accounting for review comments from Auguast and be-

fore from CN Team, Additions of eCo in chapter2, Diagnosis chapter 12

and update of Configurator Chapters 8 and CAM chapter 9

2022-12-19

MODP/AC500/DKO,

GS

D = draft

R = released version

__

__

ABB AG

Eppelheimer Straße 82

D-69123 Heidelberg / Germany

Phone: +49 62 21 701 1444

Fax : +49 62 21 701 1382

E-Mail: plc.support@de.abb.com

new.abb.com/plc
new.abb.com/plc/automationbuilder
new.abb.com/contact-centers

We reserve the right to make technical

changes or modify the contents of this

document without prior notice. With re-

gard to purchase orders, the agreed

particulars shall prevail. ABB AG does

not accept any responsibility whatso-

ever for potential errors or possible lack

of information in this document.

We reserve all rights in this document and

in the subject matter and illustrations con-

tained therein. Any reproduction, disclosure

to third parties or utilization of its contents

– in whole or in parts – is forbidden without

prior written consent of ABB AG.

Copyright© 2022 ABB. All rights reserved

D
o

c
u

m
e

n
t

N
u

m
b

e
r

3
A

D
R

0
11

11
6

	1 Introduction
	1.1 Scope of the document
	1.2 Safety Instructions and Preconditions

	2 AC500 Product Overview
	2.1 AC500 PLC overview
	2.2 AC500 / S500 hardware overview
	2.3 Selecting an AC500 “V3” CPU as Motion Controller
	2.3.1 Identifying AC500 “V3” CPU
	2.3.2 Understanding the ABB products type codes and labels:
	2.3.3 Understanding the Contents of ABB Motion Controller Kits:
	2.3.4 The CPUs main technical data and limits for motion control selection

	2.4 Mechanical installation
	2.4.1 Mounting and demounting
	2.4.1.1 Terminal bases / unit mounting and demounting on DIN rail
	2.4.1.2 Terminal bases / Terminal unit mounting with screws
	2.4.1.3 Mounting and demounting V3 processor (CPU) and S500 IO modules
	2.4.1.4 Mounting and deunmounting eCo V3 processor (CPU) and eCo S500 IO modules
	2.4.1.5 Mounting and demounting the communication modules (CMxxx-yyyy)

	2.5 Electrical connection
	2.5.1 Power supply for processor modules

	2.6 CPU function keys Display and LED display
	2.6.1 Description of the function keys
	2.6.2 Description of Display
	2.6.2.1 Start-up procedure of a new PLC from factory
	2.6.2.2 Start-up procedure of a PLC with system firmware

	2.6.3 Other common display codes
	2.6.4 Description of LED

	2.7 Accessories (TA521 - Lithium battery)
	2.8 Introduction to ABB PLC Licenses

	3 Automation Builder Overview
	3.1 Software installation
	3.1.1 Preconditions
	3.1.1.1 System requirements
	3.1.1.2 Creating project archives before an upgrade installation
	3.1.1.3 Check internet connection and firewall settings

	3.1.2 Online Installation
	3.1.3 Offline Installation
	3.1.4 Installing additional tools

	3.2 Software user licensing of Automation Builder
	3.2.1 Online Activation
	3.2.2 Offline Activation

	3.3 Using Servo Drives with AC500 PLC
	3.3.1 Setting up ABB Servo Drives for use with EtherCAT Master
	3.3.2 Exporting the xml file from the drive
	3.3.3 Adding ABB and 3rd party devices to the Device repository

	4 Introduction to the Project
	4.1 Project types guidance
	4.1.1 Different project types
	4.1.2 Understanding when to use the different project types

	4.2 Selecting hardware used in the project
	4.2.1 Select PLC Type
	4.2.2 Saving the project
	4.2.3 Navigating the project

	4.3 Important CPU parameters
	4.3.1 Checking program size and number of configured axis

	4.4 Changing CPU type
	4.5 I/O in AC500 and S500 IO System
	4.5.1 Configuring local ABB I/O module (S500)
	4.5.2 Configuring to ABB Remote IO
	4.5.3 Configuring to 3rd Party Remote IO

	4.6 Fieldbus protocol types
	4.6.1 Communication using Onboard Ethernet Ports
	4.6.2 Communication via a coupler Communications module
	4.6.2.1 Manually adding a communications module
	4.6.2.2 Manually adding a communications Slave node

	4.7 Programming and compiling AC500 code
	4.8 Library Manager Introduction
	4.8.1 Add or Search function
	4.8.2 Placeholders and handling different library versions
	4.8.3 Library Repository
	4.8.4 View embedded documentation of all libraries

	4.9 Task configuration
	4.9.1 Understanding Task Configuration.
	4.9.2 Task types and task monitor

	4.10 Real time clock and battery
	4.11 Integrated project visualization
	4.11.1 Add the Visualization
	4.11.2 Set-up the Visualization Manager
	4.11.3 Enable web visualization
	4.11.3.1 Add a web server object to the device tree
	4.11.3.2 Set-up the web server

	5 AC500 Communication Protocols
	5.1 Supported Protocols Overview
	5.2 EtherCAT
	5.2.1 Configuring the CM579-ETHCAT EtherCAT master in the project
	5.2.2 CM579-ETHCAT
	5.2.3 EtherCAT Master Settings
	5.2.3.1 “General” Tab
	5.2.3.1.1 EtherCAT NIC setting
	5.2.3.1.2 Distributed clock
	5.2.3.1.3 Options
	5.2.3.1.4 Master Settings

	5.2.3.2 “Sync Unit Assignment” Tab
	5.2.3.3 “IO mapping list” Tab
	5.2.3.4 ”EtherCAT IO mapping” Tab
	5.2.3.5 Online Diagnosis and State control Tabs

	5.2.4 EtherCAT Slave Settings
	5.2.4.1 General
	5.2.4.1.1 Additional
	5.2.4.1.2 Distributed Clock
	5.2.4.1.3 Sync0 and Sync1
	5.2.4.1.4 Diagnosis
	5.2.4.1.5 Start-up Checking
	5.2.4.1.6 Timeouts
	5.2.4.1.7 DC Cyclic Unit Control: Assign to Local µC
	5.2.4.1.8 Watchdog
	5.2.4.1.9 Identification

	5.2.4.2 FMMU/Sync
	5.2.4.3 Expert Mode Process Data
	5.2.4.3.1 Sync Manager
	5.2.4.3.2 PDO assignment (16#1C12/16#1C13)
	5.2.4.3.3 PDO list
	5.2.4.3.4 PDO Contents
	5.2.4.3.5 Download

	5.2.4.4 Process Data
	5.2.4.5 Startup Parameters
	5.2.4.6 EoE Settings
	5.2.4.6.1 Settings
	5.2.4.6.2 IP Settings

	5.2.5 Setting up the PLC and ABB Servo EtherCAT Slave for EoE Comms
	5.2.5.1 How to configure e1x0 drive
	5.2.5.2 How to configure Automation Builder Project
	5.2.5.3 How to connect your Network
	5.2.5.4 How to use this configuration

	5.2.6 How to add a Serial Protocol
	5.2.7 Modbus RTU Server (Slave)
	5.2.8 Modbus RTU Client (Master)
	5.2.9 HMI Modbus RTU communication
	5.2.9.1 CP600 HMI Modbus RTU communication
	5.2.9.2 3rd Party HMI’s and Modbus RTU communication

	5.3 Modbus TCP/IP
	5.3.1 Modbus TCP/IP Server
	5.3.2 Modbus TCP/IP Client
	5.3.3 HMI’s and Modbus TCP/IP communication
	5.3.3.1 CP600 HMI Modbus TCP/IP communication
	5.3.3.2 3rd Party Modbus TCP/IP HMI communication

	5.4 OPC UA

	6 Getting online and Managing the PLC
	6.1 Getting online to the PLC
	6.1.1 Set-up communication parameters in windows
	6.1.1.1 Change the windows IP address

	6.1.2 Configuration of the PLC IP settings
	6.1.3 Set-up the communication gateway
	6.1.3.1 PLC IP Address is known to the user
	6.1.3.2 PLC IP Address is not known to the user (Network scan)

	6.1.4 Check communication settings
	6.1.5 Change PLC IP address
	6.1.5.1 IP configuration using Automation Builder / IP Configuration tool

	6.2 Login to the CPU and download the program
	6.3 Firmware update
	6.3.1 Behaviour of LEDs during firmware update

	6.4 Run time license for PLC for Motion Control
	6.4.1 What is Run time licensing
	6.4.2 Activating PLC license with internet connection
	6.4.3 Downloading and activating PLC license without internet connection
	6.4.4 Downloading and activating PLC license via memory card
	6.4.5 Activating a demo license
	6.4.6 Returning a license from a PLC
	6.4.6.1 Returning a license using Automation Builder
	6.4.6.2 Returning a license using SD card

	7 General PLC Program Basics
	7.1 Programming languages and editors
	7.2 Variable classifications
	7.2.1 Local Variables - VAR
	7.2.2 Input Variables - VAR_INPUT
	7.2.3 Output Variables - VAR_OUTPUT
	7.2.4 Input/Output Variable (VAR_IN_OUT)
	7.2.5 Global Variables - VAR_GLOBAL
	7.2.6 Temporary Variable - VAR_TEMP
	7.2.7 Static Variables - VAR_STAT
	7.2.8 Constant Variables - ‘CONSTANT’
	7.2.9 Persistent Variable - PERSISTENT
	7.2.10 Retain Variable - RETAIN
	7.2.11 Handling of remanent variables for AC500 V3 products

	7.3 Data types
	7.3.1 BOOL
	7.3.2 INTEGER
	7.3.3 REAL / LREAL
	7.3.4 STRING
	7.3.5 TIME
	7.3.6 LTIME
	7.3.7 Date and Time
	7.3.8 BIT
	7.3.9 Pointers
	7.3.10 ARRAY
	7.3.10.1 Array of arrays

	7.3.11 SUM := diResult;Structure (STRUCT)
	7.3.12 Enumerations (ENUM)

	7.4 ST Statements
	7.4.1 IF
	7.4.2 FOR
	7.4.3 CASE
	7.4.4 WHILE

	7.5 REPEAT
	7.5.1 RETURN
	7.5.2 JMP
	7.5.3 EXIT
	7.5.4 CONTINUE
	7.5.5 Function Block Call

	8 Motion Solution Project
	8.1 Introduction
	8.1.1 Understanding the Motion Solution Project
	8.1.2 Understanding the Motion Solution Wizard
	8.1.3 Understanding the Axis Objects

	8.2 Installing the latest Motion Control Wizard and Libraries
	8.3 Creating new Motion Solution project
	8.3.1 Creating new project
	8.3.2 Add PLC types
	8.3.3 Add PTO axis
	8.3.3.1 PTO Axis Object
	8.3.3.2 PTO Axis Object settings

	8.3.4 Add EtherCAT axis
	8.3.4.1 Configuring the CM579-ETHCAT EtherCAT master
	8.3.4.2 Configuring the EtherCAT Slave axis
	8.3.4.3 Additional PDO mapping

	8.3.5 Adding encoder axis
	8.3.5.1 Drive Encoder
	8.3.5.2 PLC Encoder (OBIO)
	8.3.5.3 Data Source

	8.3.6 Adding virtual axis

	8.4 Motion Axis generation
	8.4.1 PTO axis
	8.4.1.1 PTO axis onboard IO (OBIO) configuration
	8.4.1.2 General PLC configuration changes
	8.4.1.3 Task configuration

	8.4.2 EtherCAT motion axis
	8.4.2.1 General PLC configuration changes
	8.4.2.2 Task configuration
	8.4.2.3 Motion solution libraries
	8.4.2.4 EtherCAT bus behaviour
	8.4.2.5 PDO and Startup Parameters (SDO)

	8.4.3 Axis program generated (Hidden by default)
	8.4.3.1 Axis parameters generated (GVL)
	8.4.3.2 Generated Program (PRG)

	8.5 Writing Application program

	9 Cam Editor
	9.1 Definition of a Cam
	9.2 Structure of the Cam Editor
	9.2.1 Tab 'Cam'
	9.2.2 Tab 'Cam table'
	9.2.3 Tab 'Tappets'
	9.2.4 Tab 'Tappet table'
	9.2.5 Dialog 'Properties - 'Cam'

	9.3 Creating Cams
	9.3.1 Adding a cam to the device tree
	9.3.2 Setting the properties of the cam
	9.3.3 Changing the Cam Path
	9.3.3.1 Changing the path with the graphical editor
	9.3.3.2 Changing the path with a cam table

	9.3.4 Defining Switch Points

	9.4 Cam generated code
	9.5 Importing a Cam from 3rd party Codesys controller
	9.5.1 Exporting the Cam for the the 3rd party PLC
	9.5.2 Importing the Cam data into Automation Builder

	9.6 Application program using generated Cam

	10 ABB PLCOpen Motion Control Library
	10.1 Motion Control library: System Technology
	10.1.1 Preconditions for the use of the motion control libraries
	10.1.2 Overview and Basics
	10.1.2.1 PLC-based motion control
	10.1.2.2 Overview of libraries
	10.1.2.3 Overview of PLCopen function blocks
	10.1.2.4 Overview of data types
	10.1.2.5 Naming of function blocks and data structures

	10.1.3 PLCopen Introduction and Basics
	10.1.3.1 Programming guidelines
	10.1.3.1.1 Axis data type Axis_Ref

	10.1.3.2 The single axis state diagram
	10.1.3.3 Visualizations
	10.1.3.4 Error codes
	10.1.3.5 Error handling
	10.1.3.6 PLCopen parameter
	10.1.3.7 Limits
	10.1.3.8 General restrictions
	10.1.3.9 Behavior of the function block inputs and outputs
	10.1.3.9.1 General rules
	10.1.3.9.2 Why is the command input edge sensitive?
	10.1.3.9.3 The input ContinuousUpdate

	10.1.3.10 Unit of length
	10.1.3.11 Aborting versus buffered modes
	10.1.3.12 PLCopen Examples

	10.1.4 PLC-based motion control
	10.1.4.1 PLC-based motion control architecture
	10.1.4.1.1 Kernel function block

	10.1.4.2 Basic functionalities
	10.1.4.2.1 How to connect a drive
	10.1.4.2.2 How to enable and disable a drive
	10.1.4.2.3 How to use the axis simulation
	10.1.4.2.4 How to perform a homing
	10.1.4.2.5 How to Use a CAM curve
	10.1.4.2.6 How to use an external axis
	10.1.4.2.7 How to use an encoder/drive with <> 32 bit position overrun
	10.1.4.2.8 How to do position correction “on the fly”
	10.1.4.2.9 How to limit the movement
	10.1.4.2.10 How does the parameter for jerk influence the axis movements?

	10.1.4.3 Axis parameters
	10.1.4.3.1 Supervision
	10.1.4.3.2 Position control loop
	10.1.4.3.3 PLC Cycle time
	10.1.4.3.4 Roll-Over axis
	1.1.1.1.1
	10.1.4.3.5 Scaling of the unit of length
	10.1.4.3.6 Scaling of the speed reference output
	10.1.4.3.7 Access and modify parameters

	10.1.4.4 Programming guidelines
	10.1.4.5 Visualization
	10.1.4.6 ABB specific data structures
	10.1.4.6.1 PositionPositionProfile
	10.1.4.6.2 PositionTimeProfile
	10.1.4.6.3 Interpolation types for profiles

	10.1.5 Load Control/Torque Control: Fluid Power Extension according PLCopen

	10.2 PLCopen based Motion Control Libraries (Function Block descriptions)
	10.2.1 MotionControl (Library)
	10.2.1.1 PLCopen
	10.2.1.1.1 ABB Specific
	10.2.1.1.1.1 MCA_CamGetInterpolationPosition (FB)
	10.2.1.1.1.2 MCA_CamInDirect (FB)
	10.2.1.1.1.3 MCA_CamInfo (FB)
	10.2.1.1.1.4 MCA_Cam_Extra (FUN)
	10.2.1.1.1.5 MCA_DriveBasedHome (FB)
	10.2.1.1.1.6 MCA_GearInDirect (FB)
	10.2.1.1.1.7 MCA_Indexing (FB)
	10.2.1.1.1.8
	10.2.1.1.1.9 MCA_JogAxis (FB)
	10.2.1.1.1.10 MCA_MoveByExternalReference (FB)
	10.2.1.1.1.11 MCA_MoveRelativeOpti (FB)
	10.2.1.1.1.12 MCA_MoveVelocityContinuous (FB)
	10.2.1.1.1.13 MCA_Parameter (FB)
	10.2.1.1.1.14 MCA_PhasingByMaster (FB)
	10.2.1.1.1.15 MCA_ReadParameterList (FB)
	10.2.1.1.1.16 MCA_SetOperatingMode (FB)
	10.2.1.1.1.17 MCA_SetPositionContinuous (FB)
	10.2.1.1.1.18 MCA_WriteParameterList (FB)
	10.2.1.1.1.19 MCA_DigitalCamSwitch (FB)
	10.2.1.1.1.20 MCA_MoveBuffer (FB)
	10.2.1.1.1.21 MCA_MoveByExtRefRelative (FB)

	10.2.1.1.2 MC Administrative
	10.2.1.1.2.1 MC_CamTableSelect (FB)
	10.2.1.1.2.2 MC_Power (FB)
	10.2.1.1.2.3 MC_ReadActualPosition (FB)
	10.2.1.1.2.4 MC_ReadActualVelocity (FB)
	10.2.1.1.2.5 MC_ReadAxisError (FB)
	10.2.1.1.2.6 MC_ReadBoolParameter (FB)
	10.2.1.1.2.7 MC_ReadParameter (FB)
	10.2.1.1.2.8 MC_ReadStatus (FB)
	10.2.1.1.2.9 MC_Reset (FB)
	10.2.1.1.2.10 MC_SetOverride (FB)
	10.2.1.1.2.11 MC_SetPosition (FB)
	10.2.1.1.2.12 MC_WriteBoolParameter (FB)
	10.2.1.1.2.13 MC_WriteParameter (FB)

	10.2.1.1.3 MC Homing
	10.2.1.1.3.1 MC_StepAbsSwitch (FB)
	10.2.1.1.3.2 MC_StepDirect (FB)
	10.2.1.1.3.3 MC_StepLimitSwitch (FB)
	10.2.1.1.3.4 MC_StepRefPulse (FB)

	10.2.1.1.4 MC MultiAxis
	10.2.1.1.4.1 MC_CamIn (FB)
	10.2.1.1.4.2 MC_CamOut (FB)
	10.2.1.1.4.3 MC_CombineAxes (FB)
	10.2.1.1.4.4 MC_GearIn (FB)
	10.2.1.1.4.5 MC_GearInPos (FB)
	10.2.1.1.4.6 MC_GearOut (FB)
	10.2.1.1.4.7 MC_HaltPhasing (FB)
	10.2.1.1.4.8 MC_PhasingAbsolute (FB)
	10.2.1.1.4.9 MC_PhasingRelative (FB)

	10.2.1.1.5 MC SingleAxis
	10.2.1.1.5.1 MC_AccelerationProfile (FB)
	10.2.1.1.5.2 MC_Halt (FB)
	10.2.1.1.5.3 MC_HaltSuperImposed (FB)
	10.2.1.1.5.4 MC_MoveAbsolute (FB)
	10.2.1.1.5.5 MC_MoveAdditive (FB)
	10.2.1.1.5.6 MC_MoveContinuousAbsolute (FB)
	10.2.1.1.5.7 MC_MoveContinuousRelative (FB)
	10.2.1.1.5.8 MC_MoveRelative (FB)
	10.2.1.1.5.9 MC_MoveSuperImposed (FB)
	10.2.1.1.5.10 MC_MoveVelocity (FB)
	10.2.1.1.5.11 MC_PositionProfile (FB)
	10.2.1.1.5.12 MC_Stop (FB)
	10.2.1.1.5.13 MC_VelocityProfile (FB)

	10.2.1.2 CMC_Blocks
	10.2.1.2.1 CMC_Axis_Control_Parameter (FB)
	10.2.1.2.2 CMC_Axis_Simu (FB)
	10.2.1.2.3 CMC_Basic_Kernel (FB)
	10.2.1.2.4 CMC_Binary2Modulo (FB)
	10.2.1.2.5 CMC_Get_Units_From_Inc (FUN)
	10.2.1.2.6 CMC_Modulo2Binary (FB)
	10.2.1.2.7 CMC_PidT1 (FB)
	10.2.1.2.8 CMC_SIPosiLoop (FB)
	10.2.1.2.9 CMC_SInterPolation (FB)

	10.2.1.3 Data types
	10.2.1.3.1 Enums
	10.2.1.3.1.1 ERROR_ID (ENUM)
	10.2.1.3.1.2 MC_ABB_iTypes_Enum (ENUM)
	10.2.1.3.1.3 MC_BufferMode (ENUM)
	10.2.1.3.1.4 MC_Direction (ENUM)
	10.2.1.3.1.5 MC_Homing_Direction (ENUM)
	10.2.1.3.1.6 MC_Homing_Edge (ENUM)
	10.2.1.3.1.7 MC_Homing_Mode (ENUM)
	10.2.1.3.1.8 MC_Source (ENUM)

	10.2.1.3.2 Structs
	10.2.1.3.2.1 Axis_Parameter (STRUCT)
	10.2.1.3.2.2 Axis_Ref (STRUCT)
	10.2.1.3.2.3 CMC_Axis_Actual (STRUCT)
	10.2.1.3.2.4 CMC_Axis_IO (STRUCT)
	10.2.1.3.2.5 CMC_Axis_InOut (STRUCT)
	10.2.1.3.2.6 CMC_Axis_User (STRUCT)
	10.2.1.3.2.7 CMC_Pos_Control (STRUCT)
	10.2.1.3.2.8 Expert (STRUCT)
	10.2.1.3.2.9 MCA_Parameter_Struct (STRUCT)
	10.2.1.3.2.10 MCA_Pos_Ref (STRUCT)
	10.2.1.3.2.11 MC_Cam_Id (STRUCT)
	10.2.1.3.2.12 MC_PProfile (STRUCT)
	10.2.1.3.2.13 MC_TProfile (STRUCT)

	10.2.2 MotionControlLoad (Library)
	10.2.2.1 01_PLCopen
	10.2.2.1.1 MC_LimitLoad (FB)
	10.2.2.1.2 MC_LimitMotion (FB)
	10.2.2.1.3 MC_LoadControl (FB)
	10.2.2.1.4 MC_LoadProfile (FB)
	10.2.2.1.5 MC_LoadSuperimposed (FB)
	10.2.2.1.6 MC_TorqueControl (FB)

	10.2.2.2 CMC_Blocks
	10.2.2.2.1 CMC_Load_Motion_Kernel (FB)

	10.2.2.3 Data types
	10.2.2.3.1 CMC_Load_InOut (STRUCT)
	10.2.2.3.2
	10.2.2.3.3 CMC_Load_Super (STRUCT)
	10.2.2.3.4 Load_Ref (STRUCT)

	10.2.2.4 Visualizations

	10.2.3 MotionControlEco (Library)
	10.2.3.1 Data types
	10.2.3.1.1 OBIO_PTO_Motion_Parameter (STRUCT)
	10.2.3.1.2 OBIO_PWM_Motion_Parameter (STRUCT)

	10.2.3.2 eCo Kernel Function blocks
	10.2.3.2.1 OBIO_PTOMotionKernel (FB)
	10.2.3.2.2 OBIO_PWMMotionKernel (FB)

	10.2.4 Ecat_CiA402 (Library)
	10.2.4.1 Data Types
	10.2.4.1.1 CiA
	10.2.4.1.1.1 ECAT_CiA_Object_App (STRUCT)

	10.2.4.2 POUs
	10.2.4.2.1 CoE
	10.2.4.2.1.1 ECAT_Read_Byte_App (FB)
	10.2.4.2.1.2 ECAT_Read_COE_List_App
	10.2.4.2.1.3 ECAT_Read_DInt_App (FB)
	10.2.4.2.1.4 ECAT_Read_Int_App (FB)
	10.2.4.2.1.5 ECAT_Write_Byte_App (FB)
	10.2.4.2.1.6 ECAT_Write_Coe_List_App (FB)
	10.2.4.2.1.7 ECAT_Write_DInt_App (FB)
	10.2.4.2.1.8 ECAT_Write_Int_App (FB)

	10.2.4.2.2 Drive
	10.2.4.2.2.1 ECAT_CiA402_Control_App (FB)

	10.2.4.2.3 Homing
	10.2.4.2.3.1 ECAT_402ParameterHoming_APP (FB)
	10.2.4.2.3.2 ECAT_HomingOnTouchProbe_APP (FB)

	10.2.4.2.4 TouchProbe
	10.2.4.2.4.1 ECAT_CiA402_TouchProbe_App (FB)

	10.2.5 MathFunctions (Library)
	10.2.5.1 POUs
	10.2.5.1.1 Math Library
	10.2.5.1.1.1 LinearEquation
	10.2.5.1.1.2 MATH_LINEAR_REGRESSION (FB)

	1
	11 Diagnosis
	11.1 Online diagnosis using Automation Builder
	11.2 Diagnosis in PLC program
	11.3 EtherCAT Diagnosis
	11.3.1 Application scenarios of EtherCAT diagnostics
	11.3.1.1 Commissioning
	11.3.1.2 Communication error

	11.3.2 Operational
	11.3.2.1 Communication error

	11.3.3 Diagnostic with Automation Builder
	11.3.3.1 Diagnostic tools
	11.3.3.2 Diagnostics main
	11.3.3.3 Diagnostics live list
	11.3.3.4 Master State Control
	11.3.3.5 Slave diagnosis

	11.3.4 Process guideline for typical faults and errors during commissioning
	11.3.4.1 Topology error
	11.3.4.2 Communication error

	11.4 Diagnostic with IEC programming
	11.4.1 Topology error
	11.4.2 Communication error

	11.5 Data recording with trace

	Revision History

