

—
APPLICATION EX AMPLE

AC500 PACKML LIBRARY

2 3ADR010822, 1, en_US

1. Contents

1 Disclaimer ... 4

2 Introduction .. 5
2.1 Scope of the document ..5
2.2 Compatibility ..5
2.3 Overview ..5

3 Overview of PackML Library ... 6
3.1 What is PackML?.. 6
3.2 Solution Content .. 7

3.2.1 Library ... 7
3.2.2 AC500 Template ... 7
3.2.3 Webserver Template .. 7
3.2.4 CP600 Template ... 7

3.3 First Steps .. 8
3.4 Preconditions for the Use of the PackML Library .. 8

4 Event Handling of PackML Library ..9
4.1 Usage of Event Function Blocks .. 9

4.1.1 Event handling in subroutines .. 13
4.1.2 Template Example .. 13

4.2 Covered PackTags .. 15
4.2.1 Event Function Blocks ... 18

4.3 EVENT Datatypes .. 33
4.3.1 PML_EVENT_CFG_TYPE ... 34
4.3.2 PML_EVENT_MODULE_CFG_TYPE... 35
4.3.3 PML_EVENT_REF_TYPE .. 35
4.3.4 PML_EVENT_TYPE ... 36
4.3.5 PML_HMI_EVENT_CTRL_TYPE ... 37

4.4 Visualization .. 41
4.4.1 Webserver Template .. 41
4.4.2 CP600 Template .. 42
4.4.3 Change display size .. 43

5 Operating Time of PackML Library .. 44
5.1 Covered PackTags ... 44
5.2 Usage of Time of Operation Function Blocks .. 44

5.2.1 Template Example ... 45
5.3 Time of Operation Function Blocks .. 45

5.3.1 PML_TIME_OF_OPERATION ... 45
5.3.2 PML_HMI_TIME_OF_OPERATION ... 48

5.4 Time of Operation Datatypes .. 50
5.4.1 PML_HMI_MSTIME_CTRL_TYPE ... 50
5.4.2 PML_MODESTATE_TIME_TYPE .. 51
5.4.3 PML_STATE_TIME_TYPE ... 52

5.5 Visualization ... 52
5.5.1 Webserver Template ... 52
5.5.2 CP600 Template .. 53
5.5.3 Change display size .. 53

6 Modes & States of PackML Library .. 54
6.1 Covered PackTags ... 54
6.2 3.2 Usage of the mode and state machine Function Blocks ... 54

6.2.1 Template Example ... 55

 AC500 PACKML LIBRARY

 3ADR010822, 1, en_US 3

6.3 State machine Function Blocks ... 56
6.3.1 PML_MODE_STATE_MANAGER ... 56
6.3.2 PML_HMI_MODE_SELECT ... 62

6.4 Modes & States Datatype ... 64
6.4.1 PML_HMI_MODE_CTRL_TYPE... 64
6.4.2 PML_MODE_CFG_TYPE .. 65
6.4.3 PML_STATE_ENUM .. 66
6.4.4 PML_STATE_NAMES_TYPE .. 66

6.5 Visualization ... 67
6.5.1 Webserver Template ... 67
6.5.2 CP600 Template .. 68
6.5.3 Change display size .. 69

7 PackML User guide – An example for modular programming ... 70
7.1 Benefits ... 70
7.2 Modules ... 70

7.2.1 The usage of datatypes .. 71
7.3 Module-to-module Interface ... 71

7.3.1 Commands .. 71
7.3.2 Status .. 71
7.3.3 Event List ... 71
7.3.4 Example given by template project ... 72

7.4 HMI Interfaces .. 72
7.4.1 Commands (HMI-to-module) ... 73
7.4.2 Status (Module-to-HMI) ... 73
7.4.3 Example given by template project .. 73

8 PackML User Guide – Tips & Tricks ... 75
8.1 Things to consider when using CP600 templates .. 75

8.1.1 Things to consider when creating Template Pages .. 75
8.1.2 Importing Tags from CoDeSys .. 77

9 PackML User Guide – Glossary ... 81

10 Appendix ..83
10.1 Attachments .. 83
10.2 Command Tags (Complete Listing) ... 84
10.3 Status Tags (Complete Listing) ... 86
10.4 Admin Tags (Complete Listing) ... 88

4 3ADR010822, 1, en_US

1 Disclaimer
A. For customers domiciled outside Germany /

Für Kunden mit Sitz außerhalb Deutschlands

„Warranty, Liability:

The user shall be solely responsible for the use of this products described within this file. ABB

shall be under no warranty whatsoever. ABB's liability in connection with application of the

products or examples provided or the files included within this products, irrespective of the

legal ground, shall be excluded. The exclusion of liability shall not apply in the case of inten-

tion or gross negligence. The present declaration shall be governed by and construed in ac-

cordance with the laws of Switzerland under exclusion of its conflict of laws rules and of the

Vienna Convention on the International Sale of Goods (CISG)."

„Gewährleistung und Haftung:

Der Nutzer ist allein für die Verwendung des in diesem Dokument beschriebenen Produkte

und beschriebenen Anwendungsbeispiele verantwortlich.

ABB unterliegt keiner Gewährleistung. Die Haftung von ABB im Zusammenhang mit diesem

Anwendungsbeispiel oder den in dieser Datei enthaltenen Dateien - gleich aus welchem

Rechtsgrund - ist ausgeschlossen. Dieser Ausschluss gilt nicht im Falle von Vorsatz oder gro-

ber Fahrlässigkeit. Diese Erklärung unterliegt Schweizer Recht unter Ausschluss der Verwei-

sungsnormen und des UN-Kaufrechts (CISG)."

B. Nur für Kunden mit Sitz in Deutschland

„Gewährleistung und Haftung:

Die in diesem Dokument beschriebenen Anwendungsbeispiele oder enthaltenen Dateien be-

schreiben eine mögliche Anwendung der AC500 bzw. zeigen eine mögliche Einsatzart. Sie

stellen nur Beispiele für Programmierungen dar, sind aber keine fertigen Lösungen. Eine Ge-

währ kann nicht übernommen werden.

Der Nutzer ist für die ordnungsgemäße, insbesondere vollständige und fehlerfreie Program-

mierung der Steuerungen selbst verantwortlich. Im Falle der teilweisen oder ganzen Über-

nahme der Programmierbeispiele können gegen ABB keine Ansprüche geltend gemacht wer-

den.

Die Haftung von ABB, gleich aus welchem Rechtsgrund, im Zusammenhang mit den Anwen-

dungsbeispielen oder den in dieser Datei enthaltenen Beschreibung wird ausgeschlossen.

Der Haftungsausschluss gilt jedoch nicht in Fällen des Vorsatzes, der groben Fahrlässigkeit,

bei Ansprüchen nach dem Produkthaftungsgesetz, im Falle der Verletzung des Lebens, des

Körpers oder der Gesundheit oder bei schuldhafter Verletzung einer wesentlichen Vertrags-

pflicht. Im Falle der Verletzung einer wesentlichen Vertragspflicht ist die Haftung jedoch auf

den vertragstypischen, vorhersehbaren Schaden begrenzt, soweit nicht zugleich ein anderer

der in Satz 2 dieses Unterabsatzes erwähnten Fälle gegeben ist. Eine Änderung der Beweis-

last zum Nachteil des Nutzers ist hiermit nicht verbunden.

Es gilt materielles deutsches Recht unter Ausschluss des UN-Kaufrechts."

 AC500 PACKML LIBRARY

 3ADR010822, 1, en_US 5

2 Introduction

2.1 Scope of the document

This documentation is a guide to walk the user through the function blocks available, display

their features and explain their role in standardizing the machines to PackML.

2.2 Compatibility

The application example explained in this document have been used with the below engineer-

ing system versions. They should also work with other versions, nevertheless some small ad-

aptations may be necessary, for future versions.

• AC500 V2 PLC

• Automation Builder 1.2.0 or newer

2.3 Overview

This a guide to walk the user through the function blocks available, display their features and

explain their role in standardizing the machines to PackML, followed by the description of the

application example.

6 3ADR010822, 1, en_US

3 Overview of PackML Library
To begin it is necessary to get a quick inside on the PackML standardization.

3.1 What is PackML?

PackML, which stands for Packaging Machine Language, defines a common approach, or ma-

chine language, for automated machines. The primary goals are to encourage a common

"look and feel" across a plant floor and to enable and encourage industry innovation. PackML

was adopted as part of the ISA88 industry standard in August 2008 and has been imple-

mented by users and machine builders on a wide variety of control platforms. Those imple-

menting PackML are realizing cost benefits of higher reliability, better supply chain integra-

tion, reduced engineering and training costs, and shorter project cycles.

PackTags – PackML define the communication between different machines or a supervisory

control system by the use of standardized variables. They are divided into Control Tags, Sta-

tus Tags and Admin Tags. In this way communication with a line control system or M2M com-

munication is possible, regardless of the field bus type used or from which manufacturer the

components are produced.

A list with all PackTags can be seen in the attachments.

Unit, Equipment Module, Control Module – Based on ISA88 an assembly or a production ma-

chine is divided into these modules, forming a hierarchical order. The machine, named Unit,

controls several of its Equipment Modules (EM) which further on control their Control Mod-

ules (CM). An Equipment Module can be an Infeed section or an labeler etc., a Control Module

can be a drive or a sensor, etc.

TR88 also has predefined 3 mode setups, the production, maintenance and manual mode. In

general, each mode consists of user definable setup of states. In total he can choose of a

maximum number of 17 states per mode.

The PackML Library is a toolbox, intended for standardizing projects. It is supposed to sim-

plify maintenance and support, minimize implementation work and lower costs. It also allows

for the next user to have a program that is systematic and friendly to use. It contains all basic

function blocks to build up a new project (e.g. a production line) with the PackML standard,

or adapt your already existing project to the PackML standard.

 AC500 PACKML LIBRARY

 3ADR010822, 1, en_US 7

3.2 Solution Content

The user Guide is equipped with a Library that includes all the essential function blocks

needed to adapt PackML to your project, as well as a template for the AC500 including a tem-

plate for webserver and CP600 based HMI.

3.2.1 Library

The library includes a variety of function blocks. They are supposed to be used as tools to

adapt your project to the PackML standard. To explain them they are divided into three

groups: Event Handling, Mode & State Manager and the Operating Times blocks.

3.2.2 AC500 Template

To see the functions of the library in action a template with a unit, two equipment modules

and two control modules is included. Within this guide the steps for creating the template are

explained together with the connections to the library.

3.2.3 Webserver Template

The CoDeSys visualization is used for monitoring and operating a created control program.

The Web visualization is a target specific application. CoDeSys can process the objects in a

way that when downloading them to a controller they are in the XML-Format. There the Web-

server controls the data also in the XML-Format and provides a continuously updated visuali-

zation. With this anyone can connect via an Internet platform to the visualization.

3.2.4 CP600 Template

In general, the whole PackML visualization functionalities are done by HMI function blocks.

These blocks are all not integrated in the appropriate function POUs. They are separated for

more flexibility. Depending on the utilized CPU it can be possible that the HMI memory is very

limited. With the standalone HMI blocks the user can decide if visualizations are needed and

if so which ones.

Using the Panel Builder software, a template for the CP600 was created so the user also has

this option of an HMI visualization.

The template pages are created with widgets from the Widget Gallery. All pages have blue

navigation bar on the top and if available grey command buttons on the right.

On the bottom of each page there is a display which shows the date and time, the current

mode and the current state. It also shows in red the number of active events (if there are any),

in yellow the number of total events (only if all events are not triggered), and “no events” if

there are currently no alarms or warnings triggered.

8 3ADR010822, 1, en_US

3.3 First Steps

1. Install the latest version of the ABB Automation Builder.

2. Establish Ethernet communication.

3. When adapting PackML to already existing Code, decide whether to change the Code and

divide it into Modules or use it all as the Unit Code.

4. When building a new process with the PackML standard, refer to the “creating new Pro-

ject” chapter.

3.4 Preconditions for the Use of the PackML Library

The Function Blocks of the PackML Library are only working in the RUN

mode of the PLC. Usage of these libraries in the simulation mode may not

provide any valid or usable diagnostic information.

 AC500 PACKML LIBRARY

 3ADR010822, 1, en_US 9

4 Event Handling of PackML Library
This chapter is relevant if alarms or warnings can occur during the course of production,

maintenance or any process.

4.1 Usage of Event Function Blocks

The following figure shows how the main data flow can be seen for a layout example of a

modularized project.

1. For each module a maximum number of configured or storable events can be declared in

its program code. The size of the array is only limited by the resources of the PLC. An ex-

ample declaration is shown below:

VAR

EventsList: ARRAY [0..9] OF PML_EVENT_CFG_TYPE;

END_VAR

10 3ADR010822, 1, en_US

The content of the data type PML_EVENT_CFG_TYPE is shown below:

TYPE PML_EVENT_CFG_TYPE :

STRUCT

 Event : PML_EVENT_TYPE;

 EventType : BOOL;

 PathArray : ARRAY [0..9] OF INT;

 PathString : STRING(80);

 NumOccurred : INT := 0;

 AlmDateTime : DATE_AND_TIME;

 AckDateTime : DATE_AND_TIME;

 Subroutine : STRING;

END_STRUCT END_TYPE

Whereas the content of data type PML_EVENT_TYPE is:

TYPE PML_EVENT_TYPE :

STRUCT

 Trigger : BOOL := FALSE;

 ID : DINT := 0;

 Value : DINT := 0;

 Message : STRING[30] := '”;

 Category : DINT := 0;

 AlmDateTime : ARRAY [0..6] OF DINT;

 AckDateTime : ARRAY [0..6] OF DINT;

END_STRUCT END_TYPE

To activate an event there is a variable named “Trigger” of type BOOL, which is set to

TRUE as soon as an event condition is true. The next figure shows an implementation ex-

ample:

If the function block sets its Error output to TRUE, the fifth configured event is triggered.

 AC500 PACKML LIBRARY

 3ADR010822, 1, en_US 11

More elements of the event can be assigned before or in that moment the trigger is set, or

already during declaration. Such as:

– ID DINT, Globally unique number for this event. Mandatory when events

 are summated from different tasks where they are defined in.

– Value DINT, Additional information such as error number from a function

 block.

– Message STRING, general message of this event

– Category DINT, Severity numbers (0..9) can be defined to cause fault reactions

– EventType BOOL, Defines if this event is an Alarm (TRUE) or Warning (FALSE)

– Subroutine STRING, Information about the subroutine e.g. a function block.

The following figure shows an example how events can be predefined by declaration:

On the lowest level of each path, the PathString and the PathArray need to be de-

fined as well.

5. Each event list or event configuration list must be connected with a function Block of

PML_EVENT_BASE. It will observe the state of the Trigger variables in the connected list. If

a change in the state of the trigger is detected the event will get a timestamp and will be

copied to a variable of type PML_EVENT_REF_TYPE.

6. The variable of type PML_EVENT_REF_TYPE can be seen as a mailbox which receives

events from all connected function blocks of type PML_EVENT_BASE. There is no limita-

tion about the number of function blocks of type PML_EVENT_BASE which can be con-

nected to the same variable of type PML_EVENT_REF_TYPE.

7. The function block PML_EVENT_SUMMATION will read all events from the variable of type

PML_EVENT_REF and summates them in a new list which represents all events of this

module.

When an event passes the summation FB, module specific information will be added to

the event variable. “PathString” (STRING) in order to provide the user of the machine with

information about the source of a displayed event.

It also has outputs which give general information about the current event summation

from a module. E.g. that there is an active event or not or which categories the triggered

events have. This can be used for fault reactions or HMI visualization.

8. This event list is declared (in the same way as all the other event lists) as an ARRAY [0..n] of

type PML_EVENT_CFG_TYPE. In general, all event lists can be summated again from an-

other module by the use of a function block of type PML_EVENT_BASE. The size is only lim-

ited by PLC resources. Have in mind that there is no need to have a larger list than the

12 3ADR010822, 1, en_US

maximum of possible events which can be summated. Smaller lists are also possible

whereas in case an incoming event cannot be stored in the list, its category will still be

taken into account to determine the “EVENT_CATEGORY” output at the summation func-

tion blocks.

The Trigger variables from event lists which are filled by a summation function block may

not be set from application’s event condition.

The sequence of events within these lists is determined by the chronological order when

the events arrive during operation and not by the time they were triggered.

9. When there is no further summation the list represents all triggered events of this ma-

chine since the last reset of the event system. The function block of type PML_HMI_EVENT

can be used to filter and sort these events in a separate list (7). It also copies a selection

of alarms to an event list which can be used as HMI tag (8). There is also a data type for a

variable which should be used as HMI tag to have control the event display from the HMI.

10. This event list is declared as an ARRAY [0..n] OF TYPE PML_EVENT_CFG_TYPE and contains

filtered events in a sorted order. It must be the same size as the source list (5).

11. This event list is declared as an ARRAY [0..n] OF TYPE PML_EVENT_CFG_TYPE and contains

events which are displayed on HMI. The size of this list can be configured and depends on

how many events should be displayed on HMI at the same time.

12. Variable of type PML_HMI_EVENT_CTRL_TYPE which contains necessary controls for the

HMI. It should be used as an HMI tag and is connected to the function block

PML_HMI_EVENT.

13. The function block PML_EVENT_PACKTAGS is used to extract the PACKML relevant event

information from the main event list and copy them to the PackTags.

14. The event PackTags will represent the events as defined within PackML.

15. The function block PMI_HMI_ALARM_HISTORY reduces the list of PackML alarm history list

to an extract which can be shown on an HMI. An instance of an additional control data

type is connected to this block and used as

16. HMI tag in order to provide control elements for the user

17. This event list is declared as an ARRAY [0..n] OF TYPE PML_EVENT_TYPE and can be used

as HMI tag

18. Variable of type PML_HMI_EVENT_CTRL_TYPE which contains necessary controls for the

HMI. It should be used as an HMI tag and is connected to the function block

PMI_HMI_ALARM_HISTORY.

19. The function block PML_EVENT_STOPREASON is used to select events from the event list

depending on their category or their AlarmDateTime and copy them to the PackTags.

Additional information to (2):

As mentioned before the base FB is used to send the configured events one by one through

the mailbox, to eventually end up at the SUMMATION function block. The normal operation of

the base function block is to check all events whether their Trigger has been set to TRUE

since the last cycle. This indicates that the event is ready to be send to the mailbox. In that

case another condition has to be checked: Is the referring mailbox empty (EVENT_REF.Num_1

and EVENT_REF.Num_2 are both 0). There are two spots where the event writes its ID in, so all

interruptions between tasks won’t result in an event coping itself into the mailbox when an-

other event has already started the process. The two variables are only set back to 0 when

the summation function block has copied the event into its list.

 AC500 PACKML LIBRARY

 3ADR010822, 1, en_US 13

On a Reset the base function block sets all Triggers to False so they need to rewrite them-

selves into the mailbox if they still occur after the reset.

Attention:

All inputs named …_ADR needs to be connected to a variable that is an array of the correct

event Datatype. The variable to the …_SIZE input needs to be the exact size of the array.

Events from master list to HMI:

The HMI Event function block (PML_HMI_EVENT) uses the master list, created by the summa-

tion function block, to sort and filter the list according to the user’s expectations. Therewith

he is able to filter according status, event type, value, category and alarm time and sort ac-

cording to status, event type, category and Alarm Time. One by one the events that fulfill the

requests are copied to another list.

The events continue through the HMI function block to a third list, which will be displayed on

the HMI. It only copies the number of events of the size of the HMI event list.

Events from master list to PackTags:

When declaring the event it was divided into the PackTags and the user defined part. In this

step only the PackTags defined part gets copied to a separate alarm and warning list, de-

pending on event type. When the command update list is executed, the warnings and alarms

are copied to the appropriate list. If the command clear list is executed, then the alarm list is

copied to the alarm history list.

The separate HMI alarm history FB is used to display the history alarm list on the HMI accord-

ing to the same principle as displaying the events to the HMI.

4.1.1 Event handling in subroutines

In subroutines with only one task, where multitasking is not an issue, base and summation

function blocks are not needed. This is where the “subroutine” variable of the datatype

PML_EVENT_CFG_TYPE comes into play. Instead of the summation function block adding a

prefix and path to the event, the event writes the current subroutine. It is defined in the con-

figuration. It then goes directly into an event list.

4.1.2 Template Example

This template project includes a unit with two Equipment Modules and one of the Equipment

Module contains two Control Modules. Neither the whole application is running in one task

(as implemented in the template project) nor different programs are running in multiple

tasks (as shown in the scheme below), there is no influence on the functionality of the func-

tion blocks.

14 3ADR010822, 1, en_US

The events defaults are configured, as shown below, in the module code / program where

they occur. The list that is created by the summation FB is sent to the upper layer mailbox.

This mailbox gets used in the interface of the module and the next module.

All events will end up in a Unit master list. The template project includes the HMI function

block to display the events. Additionally, the HMI function block offers the possibility to filter

and sort the event list to the user’s inputs. However, it can display any list it has connected to

the EVENT_LIST_ADR input. The interface for the visualization event lists is the

HMI_EVENT_LIST_ADR input.

For the MODULE_CFG input of the summation function block, the module, where the list is

stored, needs to be declared, including ID and Name (see figure below). The purpose for this

is to track the events path.

The following extract of the event list visualization shows a tracking example of a CM event.

 AC500 PACKML LIBRARY

 3ADR010822, 1, en_US 15

4.2 Covered PackTags

 Tag Name Datatype

Alarm[#] UnitName.Admin.Alarm[#] Alarm Structure

 Trigger UnitName.Admin.Alarm[#].Trigger Bool

 ID UnitName.Admin.Alarm[#].ID Int (32bit)

 Value UnitName.Admin.Alarm[#].Value Int (32bit)

 Message UnitName.Admin.Alarm[#].Message String

 Category UnitName.Admin.Alarm[#].Category (Event

Grouping)
Int (32bit)

 AlmDate-

Time
 UnitName.Admin.Alarm[#] Date-Time Array

 [0] (year) UnitName.Admin.Alarm[#].AlmDateTime[0] Int (32bit)

 [1] (month) UnitName.Admin.Alarm[#].AlmDateTime[1] Int (32bit)

 [2] (day) UnitName.Admin.Alarm[#].AlmDateTime[2] Int (32bit)

 [3] (hour) UnitName.Admin.Alarm[#].AlmDateTime[3] Int (32bit)

 [4] (min) UnitName.Admin.Alarm[#].AlmDateTime[4] Int (32bit)

 [5] (sec) UnitName.Admin.Alarm[#].AlmDateTime[5] Int (32bit)

 [6] (usec) UnitName.Admin.Alarm[#].AlmDateTime[6] Int (32bit)

 AckDate-

Time
 UnitName.Admin.Alarm[#] Date-Time Array

 [0] (year) UnitName.Admin.Alarm[#].AckDateTime[0] Int (32bit)

 [1] (month) UnitName.Admin.Alarm[#].AckDateTime[1] Int (32bit)

 [2] (day) UnitName.Admin.Alarm[#].AckDateTime[2] Int (32bit)

 [3] (hour) UnitName.Admin.Alarm[#].AckDateTime[3] Int (32bit)

 [4] (min) UnitName.Admin.Alarm[#].AckDateTime[4] Int (32bit)

 [5] (sec) UnitName.Admin.Alarm[#].AckDateTime[5] Int (32bit)

 [6] (usec) UnitName.Admin.Alarm[#].AckDateTime[6] Int (32bit)

Alarm-

Extent
 UnitName.Admin.AlarmExtent Int(32bit)

Alarm-

History[#]
 UnitName.Admin.AlarmHistory[#] Alarm Structure

 Trigger UnitName.Admin.AlarmHistory[#].Trigger Bool

 ID UnitName.Admin.AlarmHistory[#].ID Int (32bit)

 Value UnitName.Admin.AlarmHistory[#].Value Int (32bit)

 Message UnitName.Admin.AlarmHistory[#].Message String

16 3ADR010822, 1, en_US

 Category

UnitName.Admin.AlarmHistory[#].Category

(Event

Grouping) Int (32bit)

 AlmDa-

teTime
 UnitName.Admin.AlarmHistory[#] Date-Time Array

 [0] (year) UnitName.Admin.AlarmHistory[#].AlmDate-

Time[0]
Int (32bit)

 [1] (month) UnitName.Admin.AlarmHistory[#].AlmDate-

Time[1]
Int (32bit)

 [2] (day) UnitName.Admin.AlarmHistory[#].AlmDate-

Time[2]
Int (32bit)

 [3] (hour) UnitName.Admin.AlarmHistory[#].AlmDate-

Time[3]
Int (32bit)

 [4] (min) UnitName.Admin.AlarmHistory[#].AlmDate-

Time[4]
Int (32bit)

 [5] (sec) UnitName.Admin.AlarmHistory[#].AlmDate-

Time[5]
Int (32bit)

 [6] (usec) UnitName.Admin.AlarmHistory[#].AlmDate-

Time[6]
Int (32bit)

 AckDate-

Time
 UnitName.Admin.AlarmHistory[#] Date-Time Array

 [0] (year) UnitName.Admin.AlarmHistory[#].AckDate-

Time[0]
Int (32bit)

 [1] (month) UnitName.Admin.AlarmHistory[#].AckDate-

Time[1]
Int (32bit)

 [2] (day) UnitName.Admin.AlarmHistory[#].AckDate-

Time[2]
Int (32bit)

 [3] (hour) UnitName.Admin.AlarmHistory[#].AckDate-

Time[3]
Int (32bit)

 [4] (min) UnitName.Admin.AlarmHistory[#].AckDate-

Time[4]
Int (32bit)

 [5] (sec) UnitName.Admin.AlarmHistory[#].AckDate-

Time[5]
Int (32bit)

 [6] (usec) UnitName.Admin.AlarmHistory[#].AckDate-

Time[6]
Int (32bit)

AlarmHis-

toryExtent
 UnitName.Admin.AlarmHistoryExtent Int (32bit)

Stop-

Reason
 UnitName.Admin.StopReason Alarm Structure

 Trigger UnitName.Admin.StopReason.Trigger Bool

 ID UnitName.Admin.StopReason.ID Int (32bit)

 Value UnitName.Admin.StopReason.Value Int (32bit)

 Message UnitName.Admin.StopReason.Message String

 Category
UnitName.Admin.StopReason.Category (Event

Grouping) Int (32bit)

 AC500 PACKML LIBRARY

 3ADR010822, 1, en_US 17

 AlmDate-

Time
 UnitName.Admin.StopReason[#] Date-Time Array

 [0] (year) UnitName.Admin.StopReason[#].AlmDate-

Time[0]
Int (32bit)

 [1] (month) UnitName.Admin.StopReason[#].AlmDate-

Time[1]
Int (32bit)

 [2] (day) UnitName.Admin.StopReason[#].AlmDate-

Time[2]
Int (32bit)

 [3] (hour) UnitName.Admin.StopReason[#].AlmDate-

Time[3]
Int (32bit)

 [4] (min) UnitName.Admin.StopReason[#].AlmDate-

Time[4]
Int (32bit)

 [5] (sec) UnitName.Admin.StopReason[#].AlmDate-

Time[5]
Int (32bit)

 [6] (usec) UnitName.Admin.StopReason[#].AlmDate-

Time[6]
Int (32bit)

 AckDate-

Time
 UnitName.Admin.StopReason[#] Date-Time Array

 [0] (year) UnitName.Admin.StopReason[#].AckDate-

Time[0]
Int (32bit)

 [1] (month) UnitName.Admin.StopReason[#].AckDate-

Time[1]
Int (32bit)

 [2] (day) UnitName.Admin.StopReason[#].AckDate-

Time[2]
Int (32bit)

 [3] (hour) UnitName.Admin.StopReason[#].AckDate-

Time[3]
Int (32bit)

 [4] (min) UnitName.Admin.StopReason[#].AckDate-

Time[4]
Int (32bit)

 [5] (sec) UnitName.Admin.StopReason[#].AckDate-

Time[5]
Int (32bit)

 [6] (usec) UnitName.Admin.StopReason[#].AckDate-

Time[6]
Int (32bit)

StopRea-

sonExtent
 UnitName.Admin.StopReasonExtent Int (32bit)

Warning[#] UnitName.Admin.Warning[#] Alarm Structure

 Trigger UnitName.Admin.Warning[#].Trigger Bool

 ID UnitName.Admin.Warning[#].ID Int (32bit)

 Value UnitName.Admin.Warning[#].Value Int (32bit)

 Message UnitName.Admin.Warning[#].Message String

 Category
UnitName.Admin.Warning[#].Category (Event

Grouping) Int (32bit)

 AlmDate-

Time
 UnitName.Admin.Warning[#] Date-Time Array

 [0] (year) UnitName.Admin.Warning[#].AlmDateTime[0] Int (32bit)

18 3ADR010822, 1, en_US

 [2] (day) UnitName.Admin.Warning[#].AlmDateTime[2] Int (32bit)

 [3] (hour) UnitName.Admin.Warning[#].AlmDateTime[3] Int (32bit)

 [4] (min) UnitName.Admin.Warning[#].AlmDateTime[4] Int (32bit)

 [5] (sec) UnitName.Admin.Warning[#].AlmDateTime[5] Int (32bit)

 [6] (usec) UnitName.Admin.Warning[#].AlmDateTime[6] Int (32bit)

 AckDate-

Time
 UnitName.Admin.Warning[#] Date-Time Array

 [0] (year) UnitName.Admin.Warning[#].AckDateTime[0] Int (32bit)

 [1] (month) UnitName.Admin.Warning[#].AckDateTime[1] Int (32bit)

 [2] (day) UnitName.Admin.Warning[#].AckDateTime[2] Int (32bit)

 [3] (hour) UnitName.Admin.Warning[#].AckDateTime[3] Int (32bit)

 [4] (min) UnitName.Admin.Warning[#].AckDateTime[4] Int (32bit)

 [5] (sec) UnitName.Admin.Warning[#].AckDateTime[5] Int (32bit)

 [6] (usec) UnitName.Admin.Warning[#].AckDateTime[6] Int (32bit)

Warning-

Extent
 UnitName.Admin.WarningExtent Int (32bit)

4.2.1 Event Function Blocks

All event function blocks are used to transfer events to different positions in the module hier-

archy.

4.2.1.1 PML_EVENT_BASE

The event base function block is used to configure events and accordingly registers them in

the mailbox. It continually includes measures that prevent errors when multitasking. When it

has completed the coping process, it releases the event to be read by the module. Once it has

gotten the command that the master has read the event and the mailbox is emptied, it also

sets all triggers to False if there is a Reset command.

 AC500 PACKML LIBRARY

 3ADR010822, 1, en_US 19

4.2.1.1.1 Input Description

The inputs marked with a triangle are of the class VAR_IN_OUT (input and

output variable). These inputs must be connected to a variable.

EN (enable)

Data type: BOOL

In order to enable the Function Block processing, input EN has to be continuously set to

TRUE. The block is not processed if input. While EN = FALSE input is set to TRUE, the inputs

are continuously checked for validity and plausibility. If this is not the case, processing is

aborted and corresponding error is displayed at output ERR/ERNO.

EVENT_CFG_ADR

Data type: POINTER TO PML_EVENT_CFG_TYPE

This input can be connected to the address of the configured events or an event list.

EVENT_CFG_SIZE

Data type: DWORD

Size of the connected event array.

EVENT_REF

Data type: PML_EVENT_REF_TYPE

This input is from the datatype Event Ref, the mailbox of a module that takes care of event

exchange between two or more modules. The base function block sends events to upper

modules.

4.2.1.1.2 Output Description

20 3ADR010822, 1, en_US

DONE (done)

Data type: BOOL

Output DONE indicates the processing state of the block. After completion or abortion of

processing (due to an error), DONE is set to TRUE for one cycle. This output always has to be

considered together with output ERR. If ERR is TRUE, an error occurred. In this case, the error

number can be read at output ERNO.

BUSY (busy)

Data type: BOOL

This output is set to TRUE when EN is TRUE.

ERR (error)

Data type: BOOL

Output ERR indicates whether an error occurred during data reception. If ERR is TRUE, an er-

ror occurred. In this case, the error number can be read at output ERNO.

ERNO (error number)

Data type: WORD

Output ERNO provides an error identifier if an error occurs during execution of the function

block. ERNO always has to be considered together with the output ERR. The value output at

ERNO is only valid if ERR is TRUE. The error messages encoding at output ERNO is explained

below.

ID

Data type: INT

Internally given ID to clearly indicate a Base function block and its referring events. The ID is

unique for each Base function block connected to one mailbox of EVENT_REF_TYPE.

4.2.1.2 PML_EVENT_PACKTAGS

The event PackTags function block is used to copy the part of the event information that is

PackTags certified to a separate warning and alarm list, depending on their event type.

 AC500 PACKML LIBRARY

 3ADR010822, 1, en_US 21

4.2.1.2.1 Input Description

The inputs marked with a triangle are of the class VAR_IN_OUT (input and

output variable). These inputs must be connected to a variable.

EN (enable)

Data type: BOOL

In order to enable the Function Block processing, input EN has to be continuously set to

TRUE. The block is not processed if input. While EN = FALSE input is set to TRUE, the inputs

are continuously checked for validity and plausibility. If this is not the case, processing is

aborted and corresponding error is displayed at output ERR/ERNO.

CMD_UPDATE_EVENTS

Data type: BOOL

If this input is set to TRUE, the function block extracts the PackML specified event infor-

mation for each event from the master list and copies them to separate alarm and warning

lists.

CMD_CLEAR_EVENTS

Data type: BOOL

This input is set to TRUE when all alarms are to be copied from the alarm list to the alarm his-

tory list and the alarm and warning list are to be cleared.

CMD_RESET_HISTORY

Data type: BOOL

This input is set to TRUE when the history alarm list is to be cleared and the internal working

counter for adding alarms to history is to be reset.

EVENT_LIST_ADR

Data type: POINTER TO PML_EVENT_CFG_TYPE

This input can be connected to the address of the master event list.

EVENT_LIST_SIZE

Data type: DWORD

Size of master list that is connected at the corresponding ..ADR input.

22 3ADR010822, 1, en_US

PACKTAGS_ALARMS_ADR

Data type: POINTER TO PACKML_EVENT_TYPE

This input can be connected to the address of the alarm list where the PackTag certified part

of the event information will be copied to if the event type is TRUE (=Alarm).

PACKTAGS_ALARMS_SIZE

Data type: DWORD

Size of alarm list that is connected at the corresponding ..ADR input.

PACKTAGS_WARNINGS_ADR

Data type: POINTER TO PACKML_EVENT_TYPE

This input can be connected to the address of the warning list where the PackTag certified

part of the event information will be copied to if the event type is FALSE (=Warning).

PACKTAGS_WARNINGS_SIZE

Data type: DWORD

Size of alarm list that is connected at the corresponding ..ADR input.

PACKTAGS_ALARMS_HIST_ADR

Data type: Pointer to PACKML_EVENT_TYPE

This input can be connected to the address of the alarm history list where the PackTag certi-

fied part of the event information will be copied to if the clear command input is TRUE.

PACKTAGS_ALARMS_HIST_SIZE

Data type: DWORD

Size of alarm history list that is connected at the corresponding ..ADR input.

PACKTAGS_ALARM_HIST_WRK_CNT

Data type: DINT

Working counter for alarm history list, which indicates how many events are stored in the

alarm history list.

4.2.1.2.2 Output Description

UPDATE_DONE

Data type: BOOL

Output indicates the processing state of the block. As soon as the update routine has been

finished the output will be set to TRUE.

 AC500 PACKML LIBRARY

 3ADR010822, 1, en_US 23

CLEAR_DONE

Data type: BOOL

Output indicates the processing state of the block. As soon as the clear routine has been fin-

ished the output will be set to TRUE.

RESET_DONE

Data type: BOOL

Output indicates the processing state of the block. As soon as the reset routine has been fin-

ished the output will be set to TRUE.

ERR (error)

Data type: BOOL

Output ERR indicates whether an error occurred during data reception. If ERR is TRUE, an er-

ror occurred. In this case, the error number can be read at output ERNO.

ERNO (error number)

Data type: WORD

Output ERNO provides an error identifier if an error occurs during execution of the function

block. ERNO always has to be considered together with the output ERR. The value output at

ERNO is only valid if ERR is TRUE. The error messages encoding at output ERNO is explained

below.

4.2.1.3 PML_EVENT_SUMMATION

This function block collects all events from lower level control modules and summates them

in one common list.

Additionally, it offers the user information about the events of the hierarchal layer.

24 3ADR010822, 1, en_US

4.2.1.3.1 Input Description

The inputs marked with a triangle are of the class VAR_IN_OUT (input and

output variable). These inputs must be connected to a variable.

EN (enable)

Data type: BOOL

In order to enable the Function Block processing, input EN has to be continuously set to

TRUE. The block is not processed if input. While EN = FALSE input is set to TRUE, the inputs

are continuously checked for validity and plausibility. If this is not the case, processing is

aborted and corresponding error is displayed at output ERR/ERNO.

RESET

Data type: BOOL

This input is set to TRUE when all events are to be reset from the master event list. Also con-

nected event base function blocks will reset the trigger of their configured events.

EVENT_LIST_ADR

Data type: POINTER TO PML_EVENT_CFG_TYPE

This input can be connected to the address of the event list where all events from lower mod-

ules are summed.

EVENT_LIST_SIZE

Data type: DWORD

Size of event list that is connected at the corresponding ..ADR input.

MODULE_CFG

Data type: PML_EVENT_MODULE_CFG_TYPE

This input contains information about the event summation (module). It is important for the

event tracking (Path) to know in which module an event was triggered.

 AC500 PACKML LIBRARY

 3ADR010822, 1, en_US 25

EVENT_REF

Data type: PML_EVENT_REF_TYPE

This input is from the datatype Event Ref, the mailbox of a module that takes care of event

exchange between two or more modules. The summation function block receives events from

lower modules.

4.2.1.3.2 Output Description

DONE (done)

Data type: BOOL

Output DONE indicates the processing state of the block. After completion or abortion of

processing (due to an error), DONE is set to TRUE for one cycle. This output always has to be

considered together with output ERR. If ERR is TRUE, an error occurred. In this case, the error

number can be read at output ERNO.

BUSY (busy)

Data type: BOOL

This output is set to TRUE when EN is TRUE.

ERR (error)

Data type: BOOL

Output ERR indicates whether an error occurred during data reception. If ERR is TRUE, an er-

ror occurred. In this case, the error number can be read at output ERNO.

ERNO (error number)

Data type: WORD

Output ERNO provides an error identifier if an error occurs during execution of the function

block. ERNO always has to be considered together with the output ERR. The value output at

ERNO is only valid if ERR is TRUE. The error messages encoding at output ERNO is explained

below.

26 3ADR010822, 1, en_US

The function block indicates a full Event_List if ERR is TRUE and ERNO has

the value 9999.

RESET_DONE

Data type: BOOL

This output is set to TRUE when the reset routine is finished.

EVENTS

Data type: BOOL

This output is set to TRUE when there is an Event in the master list, active or not.

EVENTS_ACTIVE

Data type: BOOL

This output is set to TRUE when there is an active Event in the master list.

NUM_EVENTS

Data type: INT

This output gives out the total number of events in the master list.

NUM_EVENTS_ACTIVE

Data type: INT

This output gives out the total number of active events in the master list.

UNACK_ALARM

Data type: BOOL

This output is set to TRUE if there is at least one unacknowledged alarm.

UNACK_WARNING

Data type: BOOL

This output is set to TRUE if there is at least one unacknowledged warning.

EVENT_CATEGORY

Data type: WORD

Bit 0 to 14 are set to 1 if there is one event with a corresponding category, bit 15 indicates

that there is on event of category 15 or higher.

 AC500 PACKML LIBRARY

 3ADR010822, 1, en_US 27

4.2.1.4 PML_HMI_ALARM_HISTORY

The alarm history function block displays the alarm history list on the HMI. (This function

block is a modified version of the PML_HMI_EVENT).

4.2.1.4.1 Input Description

EN (enable)

Data type: BOOL

In order to enable the Function Block processing, input EN has to be continuously set to

TRUE. The block is not processed if input. While EN = FALSE input is set to TRUE, the inputs

are continuously checked for validity and plausibility. If this is not the case, processing is

aborted and corresponding error is displayed at output ERR/ERNO.

ALARM_HIST_CTRL

Data type: POINTER TO PML_HMI_EVENT_CTRL_TYPE

This input can be connected to the instance address of the control buttons.

ALARM_HIST_LIST_ADR

Data type: POINTER TO PACKML_EVENT_TYPE

This input can be connected to the address of the alarm history list where the PackTag certi-

fied part of the event information is stored.

ALARM_HIST_LIST_SIZE

Data type: DWORD

Size of alarm history list that is connected at the corresponding ..ADR input.

HMI_ALARM_HIST_LIST_ADR

Data type: POINTER TO PACKML_EVENT_TYPE

This input can be connected to the address of the hmi alarm history list which is shown on

the HMI.

HMI_ALARM_HIST_LIST_SIZE

Data type: DWORD

Size of hmi alarm history list that is connected at the corresponding ..ADR input.

28 3ADR010822, 1, en_US

4.2.1.4.2 Output Description

DONE (done)

Data type: BOOL

Output DONE indicates the processing state of the block. After completion or abortion of

processing (due to an error), DONE is set to TRUE for one cycle. This output always has to be

considered together with output ERR. If ERR is TRUE, an error occurred. In this case, the error

number can be read at output ERNO.

BUSY (busy)

Data type: BOOL

This output is set to TRUE when EN is TRUE.

ERR (error)

Data type: BOOL

Output ERR indicates whether an error occurred during data reception. If ERR is TRUE, an er-

ror occurred. In this case, the error number can be read at output ERNO.

ERNO (error number)

Data type: WORD

Output ERNO provides an error identifier if an error occurs during execution of the function

block. ERNO always has to be considered together with the output ERR. The value output at

ERNO is only valid if ERR is TRUE. The error messages encoding at output ERNO is explained

below.

 AC500 PACKML LIBRARY

 3ADR010822, 1, en_US 29

4.2.1.5 PML_HMI_EVENT

The event HMI function block takes the connected event list and copies it to a shorted one to

be displayed on the HMI.

It also can be used for sorting and filtering of the shown list.

4.2.1.5.1 Input Description

EN (enable)

Data type: BOOL

In order to enable the Function Block processing, input EN has to be continuously set to

TRUE. The block is not processed if input. While EN = FALSE input is set to TRUE, the inputs

are continuously checked for validity and plausibility. If this is not the case, processing is

aborted and corresponding error is displayed at output ERR/ERNO.

EVENT_LIST_ADR

Data type: POINTER TO PML_EVENT_CFG_TYPE

This input can be connected to the address of the master event list.

EVENT_LIST_SIZE

Data type: DWORD

Size of master list that is connected at the corresponding ..ADR input.

SORTFILTERED_LIST_ADR

Data type: POINTER TO PML_EVENT_CFG_TYPE

This Input can be connected to the address of the list where sorted and filtered events are to

be added.

SORTFILTERED_LIST_SIZE

Data type: DWORD

Size of sorted and filtered master list that is connected at the corresponding ..ADR input.

30 3ADR010822, 1, en_US

HMI_EVENT_LIST_ADR

Data type: POINTER TO PML_EVENT_CFG_TYPE

This input can be connected to the address of the hmi event list which is shown on the HMI.

HMI_EVENT_LIST_SIZE

Data type: DWORD

Size of hmi event list that is connected at the corresponding ..ADR input.

EVENT_CTRL

Data type: POINTER TO PML_HMI_EVENT_CTRL_TYPE

This input can be connected to the instance address of the control buttons.

4.2.1.5.2 Output Description

DONE (done)

Data type: BOOL

Output DONE indicates the processing state of the block. After completion or abortion of

processing (due to an error), DONE is set to TRUE for one cycle. This output always has to be

considered together with output ERR. If ERR is TRUE, an error occurred. In this case, the error

number can be read at output ERNO.

BUSY (busy)

Data type: BOOL

This output is set to TRUE when EN is TRUE.

ERR (error)

Data type: BOOL

Output ERR indicates whether an error occurred during data reception. If ERR is TRUE, an er-

ror occurred. In this case, the error number can be read at output ERNO.

ERNO (error number)

Data type: WORD

Output ERNO provides an error identifier if an error occurs during execution of the function

block. ERNO always has to be considered together with the output ERR. The value output at

ERNO is only valid if ERR is TRUE. The error messages encoding at output ERNO is explained

below.

 AC500 PACKML LIBRARY

 3ADR010822, 1, en_US 31

4.2.1.6 PML_EVENT_STOPREASON

The stop reason function block copies certain events from the connected event list to an-

other stop reason event list depending on its inputs.

4.2.1.6.1 Input Description

EN (enable)

Data type: BOOL

In order to enable the Function Block processing, input EN has to be continuously set to

TRUE. The block is not processed if input. While EN = FALSE input is set to TRUE, the inputs

are continuously checked for validity and plausibility. If this is not the case, processing is

aborted and corresponding error is displayed at output ERR/ERNO.

UPDATE

Data type: BOOL

This input is set to TRUE when certain events are to be copied from the master list to the

stop reason list. The event selection depends on the time input and the category inputs.

RESET

Data type: BOOL

This input is set to TRUE when the stop reason list is to be cleared.

32 3ADR010822, 1, en_US

EVENT_LIST_ADR

Data type: POINTER TO PML_EVENT_CFG_TYPE

This input can be connected to the address of the master event list.

EVENT_LIST_SIZE

Data type: DWORD

Size of master list that is connected at the corresponding ..ADR input.

PACKTAGS_STOP_REASON_ADR

Data type: POINTER TO PML_EVENT_TYPE

This Input can be connected to the address of the list where the stop reason events are to be

added.

PACKTAGS_STOP_REASON_SIZE

Data type: DWORD

Size of stop reason list that is connected at the corresponding ..ADR input.

TIME_SINCE

Data type: DATE_AND_TIME

Events that have a higher alarm date time are copied to the stop reason list.

STOP_REASON_CAT_LOW

Data type: INT

Events which category is higher or equal as this input are copied to the stop reason list.

STOP_REASON_CAT_HIGH

Data type: INT

Events which category is lower or equal as this input are copied to the stop reason list.

4.2.1.6.2 Output Description

DONE (done)

Data type: BOOL

Output DONE indicates the processing state of the block. After completion or abortion of

processing (due to an error), DONE is set to TRUE for one cycle. This output always has to be

considered together with output ERR. If ERR is TRUE, an error occurred. In this case, the error

number can be read at output ERNO.

 AC500 PACKML LIBRARY

 3ADR010822, 1, en_US 33

BUSY (busy)

Data type: BOOL

This output is set to TRUE when EN is TRUE.

ERR (error)

Data type: BOOL

Output ERR indicates whether an error occurred during data reception. If ERR is TRUE, an er-

ror occurred. In this case, the error number can be read at output ERNO.

ERNO (error number)

Data type: WORD

Output ERNO provides an error identifier if an error occurs during execution of the function

block. ERNO always has to be considered together with the output ERR. The value output at

ERNO is only valid if ERR is TRUE. The error messages encoding at output ERNO is explained

below.

4.3 EVENT Datatypes

– PML_EVENT_CFG_TYPE (STRUCT)

– PML_EVENT_MODULE_CFG_TYPE (STRUCT)

– PML_EVENT_REF_TYPE (STRUCT)

– PML_EVENT_TYPE (STRUCT)

– PML_HMI_EVENT_CTRL_TYPE (STRUCT)

34 3ADR010822, 1, en_US

4.3.1 PML_EVENT_CFG_TYPE

The Event configuration data type describes the structure of an event. It is divided into two

parts, the part that is PackML specified (“Event”, part of datatype PACKML_EVENT_TYPE) and

the added, user definable event information.

In case of flexibility and to prevent of unused memory space the string

length of Sub-routine and PathString are free definable. Make sure they are

initialized in the global variables of your project.

Event

Data type: PACKML_EVENT_TYPE

This structure stores the PackML defined event information.

EventType

Data type: BOOL

This variable stores whether the event is a Warning or an Alarm (False = Warning; True =

Alarm).

PathArray

Data type: ARRAY [0..9] OF INT

This array stores the spot the event is saved in the list.

PathString

Data type: STRING (n)

This variable stores the path the event has taken to get to the master list.

Due to limited memory space, the string length can be set in the global variables.

(PML_PATHSTRING_LEN_CONST)

NumOccurred

Data type: INT

This variable stores the number of times the Trigger of the event has been set to TRUE.

AlmDateTime

Data type: DATE_AND_TIME

 AC500 PACKML LIBRARY

 3ADR010822, 1, en_US 35

This variable stores the time the event Trigger was set to TRUE.

GoneDateTime

Data type: DATE_AND_TIME

This variable stores the time the event Trigger was set to FALSE.

GoneDateTime_ms

Data type: BYTE

This variable stores the time in milliseconds the event Trigger was set to FALSE.

AckDateTime

Data type: DATE_AND_TIME

This variable stores the time the event was acknowledged.

Acknowledged

Data type: BOOL

Bit shows if the event was acknowledged by using an HMI.

Subroutine

Data type: STRING (n)

Can Contain additional information about the source of an event

Due to limited memory space, the string length can be set in the global variables.

(PML_SUBROUTINE_LEN_CONST)

4.3.2 PML_EVENT_MODULE_CFG_TYPE

This datatype is for identifying which modules are included in the project. It is used to iden-

tify the address and path array of the events.

ID

Data type: INT

This variable stores the ID of the module.

NAME

Data type: STRING (80)

This variable stores the name of the module.

4.3.3 PML_EVENT_REF_TYPE

36 3ADR010822, 1, en_US

ReadFlag

Data type: BOOL

This variable stores whether the mailbox has read the event that is entered.

EventFbCnt

Data type: INT

This variable stores the number of connected function blocks of type PML_EVENT_BASE

EventTotalCnt

Data type: INT

This variable stores the number of all events from all connected functions blocks of type

PML_EVENT_BASE

Event

Data type: PML_EVENT_CFG_TYPE

This variable stores the event in the mailbox.

4.3.4 PML_EVENT_TYPE

Trigger

Data type: BOOL

Indicates if Event (Alarm/Warning) is True or False

ID

Data type: DINT

Shows the configured Event (Alarm/Warning) Id

Value

Data type: DINT

Shows the configured Event (Alarm/Warning) Value

Message

Data type: STRING (n)

Shows the configured Event (Alarm/Warning) Message

Due to limited memory space, the string length can be set in the global variables.

(PML_MESSAGE_LEN_CONST)

 AC500 PACKML LIBRARY

 3ADR010822, 1, en_US 37

Category

Data type: DINT

Shows the configured Event (Alarm/Warning) Category

AlmDateTime

Data type: ARRAY [0..6] OF DINT

Shows the time, referring to PackML specification, the Event (Alarm/Warning) was triggered.

ARRAY [0] – Year

ARRAY [1] – Month

ARRAY [2] – Day

ARRAY [3] – Hour

ARRAY [4] – Minute

ARRAY [5] – Second

ARRAY [6] - uSecond

AckDateTime

Data type: ARRAY [0..6] OF DINT

Shows the time, referring to PackML specification, the Event (Alarm/Warning) was acknowl-

edged.

ARRAY [0] – Year

ARRAY [1] – Month

ARRAY [2] – Day

ARRAY [3] – Hour

ARRAY [4] – Minute

ARRAY [5] – Second

ARRAY [6] - uSecond

4.3.5 PML_HMI_EVENT_CTRL_TYPE

38 3ADR010822, 1, en_US

Btn_Up1

Data type: BOOL

This variable moves the connected list to the top when TRUE.

Btn_Up2

Data type: BOOL

This variable moves the connected list one page size up when TRUE.

Btn_Up3

Data type: BOOL

This variable moves the connected list one event up when TRUE.

Btn_Down1

Data type: BOOL

This variable moves the connected list to the bottom when TRUE.

Btn_Down2

Data type: BOOL

This variable moves the connected list one page size down when TRUE.

Btn_Down3

Data type: BOOL

This variable moves the connected list one event down when TRUE.

Btn_Refresh

Data type: BOOL

This variable refreshes the connected list.

Btn_Ack_All

Data type: BOOL

This variable acknowledges all unacknowledged events when TRUE.

Filter_Status

Data type: BOOL

This input is set to TRUE when the function block should filter with the FILTER_STATUS_CFG

condition

Filter_Status_Cfg

Data type: BOOL

True = active, False = not active

Filter_Event_Type

Data type: BOOL

This input is set to TRUE when the function block should filter with the

FILTER_EVENT_TYPE_CFG condition.

 AC500 PACKML LIBRARY

 3ADR010822, 1, en_US 39

Filter_Event_Type_Cfg

Data type: BOOL

True = Alarm, False = Warning

Filter_Value

Data type: BOOL

The input is set to TRUE when the function block should filter with the

FILTER_VALUE_CFG_LOW and FILTER_VALUE_CFG_HIGH conditions.

Filter_Value_Cfg_Low

Data type: INT

Lower limit of Value filtering range.

Filter_Value_Cfg_High

Data type: INT

Upper limit of Value filtering range.

Filter_Category

Data type: BOOL

This input is set to TRUE when the function block should filter with the

FILTER_CATEGORY_CFG_LOW and FILTER_CATEGORY_CFG_HIGH conditions.

Filter_Category_Cfg_Low

Data type: INT

Lower limit of Category filtering range.

Filter_Category_Cfg_High

Data type: INT

Upper limit of Category filtering range.

Filter_Time_Come

Data type: BOOL

This input is set to TRUE when the function block should filter with the

FILTER_TIME_COME_CFG_LOW and FILTER_TIME_COME_CFG_HIGH conditions.

Filter_Time_Come_Cfg_Low

Data type: DATE_AND_TIME

Lower limit of time come filtering range.

Filter_Time_Come_Cfg_High

Data type: DATE_AND_TIME

Upper limit of time come filtering range.

Sort_Cat

Data type: BOOL

This input is set to TRUE when the function block should sort with the SORT_CAT_CFG condi-

tion.

40 3ADR010822, 1, en_US

Sort_Cat_Cfg

Data type: BOOL

TRUE = highest event first, FALSE = lowest event first

Sort_Status

Data type: BOOL

This input is set to TRUE when the function block should sort with the SORT_STATUS_CFG

condition.

Sort_Status_Cfg

Data type: BOOL

TRUE = active first, FALSE = inactive first

Sort_Event_Type

Data type: BOOL

This input is set to TRUE when the function block should sort with the

SORT_EVENT_TYPE_CFG condition.

Sort_Event_Type_Cfg

Data type: BOOL

TRUE = alarm first, FALSE = warning first

Sort_Time_Come

Data type: BOOL

This input is set to TRUE when the function block should sort with the

SORT_TIME_COME_CFG condition.

Sort_Time_Come_Cfg

Data type: BOOL

TRUE = newest events first, FALSE = oldest events first

Sort_Acknowledge

Data type: BOOL

This input is set to TRUE when the function block should sort with the

SORT_ACKNOWLEDGE_CFG condition.

Sort_Acknowledge_Cfg

Data type: BOOL

TRUE = acknowledged first, FALSE = not acknowledged first

 AC500 PACKML LIBRARY

 3ADR010822, 1, en_US 41

4.4 Visualization

4.4.1 Webserver Template

means it is a predefined visualization template in CoDeSys and part of the Library .

42 3ADR010822, 1, en_US

The CoDeSys webserver visualizations are implemented using place holders. Instead of recon-

figuring each element on the used HMI page connect the variable instance to the referring

visualization place holder.

4.4.2 CP600 Template

Events:

The event list elements on the template page in the CP600 has to be connected to the

HMI_EVENT_LIST_ADR variables.

On the top of the events page the user can select filtering and sorting options. On the bot-

tom a limited number of the chosen events are displayed with the option to scroll through

the entire list.

Alarm History:

This page is used to display and scroll through the alarm history list.

 AC500 PACKML LIBRARY

 3ADR010822, 1, en_US 43

4.4.3 Change display size

1. Change the array size and adjust all size inputs on the FBs in CoDeSys.

2. Reimport Tags (Symbol file) from CoDeSys to the CP600.

3. Copy one event structure from the list and paste it onto the bottom.

4. Connect the fields to the correct variables.

44 3ADR010822, 1, en_US

5 Operating Time of PackML Library

5.1 Covered PackTags

 Tag Name Datatype

Admin

ModeCurrent-

Time[#]
 UnitName.Admin.ModeCurrent-

Time[#]
Int (32bit)

ModeCumulative-

Time[#]
 UnitName.Admin.Mode-

CumulativeTime[#]
Int (32bit)

StateCurrent-

Time[#,#]
(Mode,

State)
 UnitName.Admin.StateCurrent-

Time[#,#] (Mode, State)
Int (32bit)

StateCumulative-

Time[#,#]
(Mode,

State)
 UnitName.Admin.State-

CumulativeTime[#,#] (Mode, State)
Int (32bit)

AccTimeSinceReset AccTime-

SinceReset
 UnitName.Admin.AccTimeSince-

Reset
Int(32bit)

PLCDateTime UnitName.Admin.PLCDateTime Date-Time

Array

 [0] (year) UnitName.Admin.PLCDateTime[0] Int (32bit)

 [1]

(month)

UnitName.Admin.PLCDateTime[1] Int (32bit)

 [2] (day) UnitName.Admin.PLCDateTime[2] Int (32bit)

 [3] (hour) UnitName.Admin.PLCDateTime[3] Int (32bit)

 [4] (min) UnitName.Admin.PLCDateTime[4] Int (32bit)

 [5] (sec) UnitName.Admin.PLCDateTime[5] Int (32bit)

 [6] (usec) UnitName.Admin.PLCDateTime[6] Int (32bit)

5.2 Usage of Time of Operation Function Blocks

These function blocks are essential for the PackTags. They are used to calculate and display

current and cumulative times for all states in each mode.

 AC500 PACKML LIBRARY

 3ADR010822, 1, en_US 45

5.2.1 Template Example

In the template Project the function blocks are implemented on the Unit layer. It is the hierar-

chal level which represents the mode state model outwards the machine, so it is the only

place to detect the operating times for each mode and each state.

5.3 Time of Operation Function Blocks

5.3.1 PML_TIME_OF_OPERATION

The Time of Operation function block is used to calculate current and cumulative times for all

modes and all states, following the PackML standard.

5.3.1.1 Input Description

EN (enable)

Data type: BOOL

In order to enable the Function Block processing, input EN has to be continuously set to

TRUE. The block is not processed if input. While EN = FALSE input is set to TRUE, the inputs

are continuously checked for validity and plausibility. If this is not the case, processing is

aborted and corresponding error is displayed at output ERR/ERNO.

46 3ADR010822, 1, en_US

CURRENT_ STATE

Data type: INT

The input can be connected to the number associated with the currently active state. See at-

tachments for PackML specified state numbers.

CURRENT_MODE

Data type: INT

The input can be connected to the number associated with the currently active mode. See at-

tachments for PackML specified mode numbers.

RESET_ALL_TIMES

Data type: BOOL

The input is set to TRUE when all times of all modes and states are to do a reset.

TIME_DATA_ADR

Data type: POINTER TO PML_MODESTATE_TIME_TYPE

This input can be connected to the address of the full time array for all modes and states.

Make sure array is persistent in order to keep data during power off times.

TIME_DATA_SIZE

Data type: DWORD

Size of modes and states time array that is connected at the corresponding ..ADR input.

TIME_SINCE_RESET

Data type: POINTER TO DINT

This input can be connected to the address of machine total time variable. Make sure array is

persistent in order to keep data during power off times.

5.3.1.2 Output Description

DONE (done)

Data type: BOOL

Output DONE indicates the processing state of the block. After completion or abortion of

processing (due to an error), DONE is set to TRUE for one cycle. This output always has to be

considered together with output ERR. If ERR is TRUE, an error occurred. In this case, the error

number can be read at output ERNO.

 AC500 PACKML LIBRARY

 3ADR010822, 1, en_US 47

ERR (error)

Data type: BOOL

Output ERR indicates whether an error occurred during data reception. If ERR is TRUE, an er-

ror occurred. In this case, the error number can be read at output ERNO.

ERNO (error number)

Data type: WORD

Output ERNO provides an error identifier if an error occurs during execution of the function

block. ERNO always has to be considered together with the output ERR. The value output at

ERNO is only valid if ERR is TRUE. The error messages encoding at output ERNO is explained

below.

TIME_ROLLOVER_WARN

Data type: BOOL

This Output is set to TRUE when the time goes beyond the permissible range (2144891648

seconds).

PLC_BATT_WARN

Data type: BOOL

This output gives is set to TRUE when there is a PLC Battery Warning.

PLC_DATE_TIME

Data type: DATA_AND_TIME

This output gives out the current PLC time.

PLC_DATA_TIME_ARRAY

Data type: ARRAY [0…6] OF DINT

This output gives out the current PLC time, separated in arrays because of PackML specifica-

tion.

48 3ADR010822, 1, en_US

5.3.2 PML_HMI_TIME_OF_OPERATION

The Time of Operation function block for the HMI is used to display the mode and state times

on the HMI, including the corresponding controls. It also allows to reset all times via the HMI.

5.3.2.1 Input Description

EN (enable)

Data type: BOOL

In order to enable the Function Block processing, input EN has to be continuously set to

TRUE. The block is not processed if input. While EN = FALSE input is set to TRUE, the inputs

are continuously checked for validity and plausibility. If this is not the case, processing is

aborted and corresponding error is displayed at output ERR/ERNO.

STS_TIME_DATA_ADR

Data type: POINTER TO PML_MODESTATE_TIME_TYPE

This input can be connected to the address of the modes and states full time array.

STS_TIME_DATA_SIZE

Data type: DWORD

Size of modes and states time array that is connected at the corresponding ..ADR input.

 AC500 PACKML LIBRARY

 3ADR010822, 1, en_US 49

CFG_MODES_ADR

Data type: POINTER TO PML_MODE_CFG_TYPE

This input can be connected to the address of the mode configuration. It is needed, so only

the times are displayed from the Mode that is active.

CFG_MODES_SIZE

Data type: DWORD

Size of mode configuration list that is connected at the corresponding ..ADR input.

HMI_CTRL_ADR

Data type: POINTER TO PML_HMI_MSTIME_CTRL_TYPE

This input can be connected to the address of the instance for the control buttons of time

management.

HMI_TIME_DATA_ADR

Data type: POINTER TO PML_MODESTATE_TIME_TYPE

This input can be connected to the address of the list where the configured time array from

the connected list are copied to and then displayed on the HMI.

HMI_MODE_DATA_ADR

Data type: POINTER TO PML_MODE_CFG_TYPE

This input can be connected to the address of the hmi list which shows the mode configura-

tion on the HMI.

HMI_MODE_SIZE

Data type: DWORD

Size of hmi mode configuration list that is connected at the corresponding ..ADR input.

5.3.2.2 Output Description

DONE (done)

Data type: BOOL

Output DONE indicates the processing state of the block. After completion or abortion of

processing (due to an error), DONE is set to TRUE for one cycle. This output always has to be

considered together with output ERR. If ERR is TRUE, an error occurred. In this case, the error

number can be read at output ERNO.

50 3ADR010822, 1, en_US

BUSY (busy)

Data type: BOOL

This output is set to TRUE when EN is TRUE.

ERR (error)

Data type: BOOL

Output ERR indicates whether an error occurred during data reception. If ERR is TRUE, an er-

ror occurred. In this case, the error number can be read at output ERNO.

ERNO (error number)

Data type: WORD

Output ERNO provides an error identifier if an error occurs during execution of the function

block. ERNO always has to be considered together with the output ERR. The value output at

ERNO is only valid if ERR is TRUE. The error messages encoding at output ERNO is explained

below.

5.4 Time of Operation Datatypes

– PML_HMI_MSTIME_CTRL_TYPE

– PML_MODESTATE_TIME_TYPE

– PML_STATE_TIME_TYPE

5.4.1 PML_HMI_MSTIME_CTRL_TYPE

Btn_Update

Data type: BOOL

This variable updates the connected time array.

 AC500 PACKML LIBRARY

 3ADR010822, 1, en_US 51

Btn_Up1

Data type: BOOL

This variable moves the connected list to the top when TRUE.

Btn_Up2

Data type: BOOL

This variable moves the connected list one page size up when TRUE.

Btn_Down1

Data type: BOOL

This variable moves the connected list to the bottom when TRUE.

Btn_Down2

Data type: BOOL

This variable moves the connected list one page size down when TRUE.

TimeSinceReset

Data type: DINT

This variable stores the time since the last reset.

TimeRolloverWarning

Data type: BOOL

This variable stores whether there is a rollover warning or not.

Btn_Reset_All_Times

Data type: BOOL

This variable resets all mode and state times

5.4.2 PML_MODESTATE_TIME_TYPE

ModeCurrentTime

Data type: DINT

This variable stores the total time elapsed at the current mode.

ModeCumulativeTime

Data type: DINT

This variable stores the total time elapsed by all modes.

StateCurrentTime

Data type: PACKML_STATE_TIME_TYPE

This structure stores the total time elapsed at the current state.

52 3ADR010822, 1, en_US

StateCumulativeTime

Data type: PACKML_STATE_TIME_TYPE

This structure stores the total time elapsed by all states.

5.4.3 PML_STATE_TIME_TYPE

State

Data type: ARRAY [0..17] OF DINT

This array stores the time elapsed in each PackML state.

5.5 Visualization

The page for the times is used to display the current and cumulative times of each state of

the selected mode (mode in the first line). The currently active mode will be marked. Addi-

tionally the user is able to reset all times and see the time elapsed since the last reset.

5.5.1 Webserver Template

 means it is a predefined visualization template in CoDeSys and part of the Library

The CoDeSys webserver visualizations are implemented using place holders. Instead of recon-

figuring each element on the used HMI page connect the variable instance to the referring

visualization place holder.

 AC500 PACKML LIBRARY

 3ADR010822, 1, en_US 53

5.5.2 CP600 Template

5.5.3 Change display size

1. Change the array size and adjust all size inputs on the FBs in CoDeSys.

2. Reimport Tags from CoDeSys to the CP600.

3. Copy one list structure from the list and paste it onto the bottom.

4. Connect the fields to the correct variables.

54 3ADR010822, 1, en_US

6 Modes & States of PackML Library

6.1 Covered PackTags

Command

UnitMode UnitName.Command.UnitMode Int (32bit)

UnitModeChangeRequest UnitName.Command.UnitModeChangeRequest Bool

CntrlCmd UnitName.Command.CntrlCmd Int (32bit)

CmdChangeRequest UnitName.Command.CmdChangeRequest Bool

Status

UnitModeCurrent UnitName.Status.UnitModeCurrent Int (32bit)

UnitModeRequested UnitName.Status.UnitModeRequested Bool

UnitModeChangeInProcess UnitName.Status.UnitModeChangeInProcess Bool

StateCurrent UnitName.Status.StateCurrent Int (32bit)

StateRequested UnitName.Status.StateRequested Int (32bit)

StateChangeInProcess UnitName.Status.StateChangeInProcess Bool

Admin

StatesDisabled UnitName.Admin.StatesDisabled Int(32bit)

6.2 3.2 Usage of the mode and state machine Function

Blocks

In case of flexibility and to receive the modular structure that that guide promises, the ma-

chine functionalities are divided into modes and states. A mode describes an entire proce-

dure that occurs within for example a production line. The states in the mode are the differ-

ent situation that can happen. The three predefined PackML modes (Production,

Maintenance, Manual) can be used additional to the user defined modes (e.g. Clean-out). In

general the mode configuration (which states are active and which states allow a mode

change) are user definable.

On a unit level the machine has to at least appear as having one state machine, as it is re-

quired for PackML. This is for a common outwards machine representation when another unit

or a line controller sends a command for a specific state, it needs to be able to react. Lower

machine modules are not prohibited from adapting the mode-state-machine.

To start off, all Modes that can occur need to be defined, in the appropriate module code.

This can include the 3 predefined Modes (Production, Maintenance and Manual) from OMAC

and also the user defined ones if needed.

 AC500 PACKML LIBRARY

 3ADR010822, 1, en_US 55

The ‘Disabled States’ and ‘Mode Transitions’ are two DWORDs. ‘Disabled States’ describe the

states that are not available in the mode and ‘Mode Transitions’ describe the states where a

mode change is allowed.

Caution: When creating the two 17-bit rows it is crucial to set the correct bits. It starts on the

right. The first bit is always 0 because the first PackML defined state starts with number 1.

The next 17 bits have to be set according to the attached state table.

The following picture shows the state model for one mode, which has all states active. De-

pending on the above mentioned bit settings each of these states can be disabled.

The mode-state-manager is used to manage these mode state models, including mode and

state transitioning. When it gets a mode or state change command it goes through all condi-

tions required to allow the mode or state change and then returns as an output whether the

change was successful.

State changes can be initialized by either a user command via HMI or by the application code.

Leaving an acting state (state ending with ..ing) happens via a State Complete command.

Normally this bit is set by the application code.

6.2.1 Template Example

In the template example ten modes are configured (seven user defined modes additional to

the three PackML predefined ones: Production, Maintenance and Manual).

56 3ADR010822, 1, en_US

6.3 State machine Function Blocks

The two function blocks (PML_MODE_STATE_MANAGER and PML_HMI_MODE_SELECT) han-

dle everything regarding modes and states in the Unit, letting the submodules know how to

react and displaying the appropriate information on the HMI. On the one hand side the mode

state function block has to process the commands coming from an HMI or the application

code and on the other hand side the remote commands. In case of repair or maintenance on

the hardware, the function block has to make sure that no commands from a line controller or

another Unit, which could change the actual state, are executed.

When using the Mode-State-Machine in a module it is important to determine where the com-

mands are coming from. The GT FB will be TRUE when the first input is bigger than 0. If on

the first input the SEL FB receives a TRUE the 3rd input will become the output (commands

are coming from the HMI/Web Server), otherwise the second input becomes the output (cur-

rent mode). Therefore, if the HMI sends a mode change, the Mode-State-Manager will receive

it, otherwise it will continue working with its current mode.

6.3.1 PML_MODE_STATE_MANAGER

The Mode State Manager function block is used to handle inputs from different sources, disa-

ble specific states, update mode information and control Mode and State transition.

 AC500 PACKML LIBRARY

 3ADR010822, 1, en_US 57

6.3.1.1 Input Description

EN (enable)

Data type: BOOL

In order to enable the Function Block processing, input EN has to be continuously set to

TRUE. The block is not processed if input. While EN = FALSE input is set to TRUE, the inputs

are continuously checked for validity and plausibility. If this is not the case, processing is

aborted and corresponding error is displayed at output ERR/ERNO.

EN_REMOTE_CMD

Data type: BOOL

This input is set to TRUE when a possible mode change command from a remote source is

allowed.

CMD_MODE

Data type: INT

This input can be connected to the mode the machine shall switch into. The target mode has

to be connected depending on its configured ID.

CMD_RESET

Data type: BOOL

This input is set to TRUE when the machine shall switch into the Reset State.

CMD_START

Data type: BOOL

This input is set to TRUE when the machine shall switch into the Start State.

58 3ADR010822, 1, en_US

CMD_STOP

Data type: BOOL

This input is set to TRUE when the machine shall switch into the Stop State.

CMD_HOLD

Data type: BOOL

This input is set to TRUE when the machine shall switch into the Hold State.

CMD_UNHOLD

Data type: BOOL

This input is set to TRUE when the machine shall switch into the Unhold State.

CMD_SUSPEND

Data type: BOOL

This input is set to TRUE when the machine shall switch into the Suspend State.

CMD_UNSUSPEND

Data type: BOOL

This input is set to TRUE when the machine shall switch into the Unsuspend State.

CMD_ABORT

Data type: BOOL

This input is set to TRUE when the machine shall switch into the Abort State.

CMD_CLEAR

Data type: BOOL

This input is set to TRUE when the machine shall switch into the Clear State.

CMD_SC

Data type: BOOL

This input is set to TRUE when the machine gets the State Complete command from the ap-

plication code. There further conditions need to be fulfilled before.

REMOTE_CMD_MODE

Data type: DINT

This input can be connected to the mode that the machine shall switch into coming from a

remote source.

REMOTE_CMD_MODE_REQUEST

Data type: BOOL

This input is set to TRUE when a remote source wants to carry out a mode change.

REMOTE_CMD_STATE

Data type: DINT

This input can be connected to the state the machine shall switch into coming from a remote

source. See the attached list for the mapping of a state command on a specified number.

 AC500 PACKML LIBRARY

 3ADR010822, 1, en_US 59

REMOTE_CMD_STATE_REQUEST

Data type: BOOL

This input is set to TRUE when a remote source wants to carry out a state change.

CFG_MODES_ADR

Data type: POINTER TO PML_MODE_CFG_TYPE

This input can be connected to the address of the mode configuration.

CFG_MODES_SIZE

Data type: DWORD

Size of mode configuration list that is connected at the corresponding ..ADR input.

CFG_STATE_NAMES_ADR

Data type: POINTER TO PML_STATE_NAMES_TYPE

This input points to the address of the PackML defined state names.

6.3.1.2 Output Description

DONE (done)

Data type: BOOL

Output DONE indicates the processing state of the block. After completion or abortion of

processing (due to an error), DONE is set to TRUE for one cycle. This output always has to be

considered together with output ERR. If ERR is TRUE, an error occurred. In this case, the error

number can be read at output ERNO.

ERR (error)

Data type: BOOL

Output ERR indicates whether an error occurred during data reception. If ERR is TRUE, an er-

ror occurred. In this case, the error number can be read at output ERNO.

60 3ADR010822, 1, en_US

ERNO (error number)

Data type: WORD

Output ERNO provides an error identifier if an error occurs during execution of the function

block. ERNO always has to be considered together with the output ERR. The value output at

ERNO is only valid if ERR is TRUE. The error messages encoding at output ERNO is explained

below.

STS_CLEARING

Data type: BOOL

This output is set to TRUE when CLEARING the current machine state is.

STS_STOPPED

Data type: BOOL

This output is set to TRUE when STOPPED the current machine state is.

STS_STARTING

Data type: BOOL

This output is set to TRUE when STARTING the current machine state is.

STS_IDLE

Data type: BOOL

This output is set to TRUE when IDLE the current machine state is.

STS_SUSPENDED

Data type: BOOL

This output is set to TRUE when SUSPENDED the current machine state is.

STS_EXECUTE

Data type: BOOL

This output is set to TRUE when EXECUTE the current machine state is.

STS_STOPPING

Data type: BOOL

This output is set to TRUE when STOPPING the current machine state is.

STS_ABORTING

Data type: BOOL

This output is set to TRUE when ABORTING the current machine state is.

 AC500 PACKML LIBRARY

 3ADR010822, 1, en_US 61

STS_ABORTED

Data type: BOOL

This output is set to TRUE when ABORTED the current machine state is.

STS_HOLDING

Data type: BOOL

This output is set to TRUE when HOLDING the current machine state is.

STS_HELD

Data type: BOOL

This output is set to TRUE when HELD the current machine state is.

STS_UNHOLDING

Data type: BOOL

This output is set to TRUE when UNHOLDING the current machine state is.

STS_SUSPENDING

Data type: BOOL

This output is set to TRUE when SUSPENDING the current machine state is.

STS_UNSUSPENDING

Data type: BOOL

This output is set to TRUE when UNSUSPENDING the current machine state is.

STS_RESETTING

Data type: BOOL

This output is set to TRUE when RESETTING the current machine state is.

STS_COMPLETING

Data type: BOOL

This output is set to TRUE when COMPLETING the current machine state is.

STS_COMPLETE

Data type: BOOL

This output is set to TRUE when COMPLETE the current machine state is.

MODE_CHG_NOT_ALLOWED

Data type: BOOL

This output is set to TRUE when a mode change is currently not allowed.

STATE_CHG_NOT_ALLOWED

Data type: BOOL

This output is set to TRUE when a state change is currently not allowed.

CURRENT_MODE

Data type: INT

This output gives out the number associated with the currently active mode.

62 3ADR010822, 1, en_US

CURRENT_MODE_NAME

Data type: String [20]

This output gives out the name of the currently active mode.

CURRENT_STATE

Data type: INT

This output gives out the number associated with the currently active state.

CURRENT_STATE_NAME

Data type: String [20]

This output gives out the name of the currently active state.

6.3.2 PML_HMI_MODE_SELECT

The Mode Select function block for the HMI is used to display the different modes available,

including the corresponding controls. It allows you to activate a specific mode via the HMI.

6.3.2.1 Input Description

EN (enable)

Data type: BOOL

In order to enable the Function Block processing, input EN has to be continuously set to

TRUE. The block is not processed if input. While EN = FALSE input is set to TRUE, the inputs

are continuously checked for validity and plausibility. If this is not the case, processing is

aborted and corresponding error is displayed at output ERR/ERNO.

MODE_DATA_ADR

Data type: POINTER TO PML_MODE_CFG_TYPE

This input can be connected to the address of the list which shows the mode configuration

on the HMI.

 AC500 PACKML LIBRARY

 3ADR010822, 1, en_US 63

MODE_DATA_SIZE

Data type: DWORD

Size of mode configuration list that is connected at the corresponding ..ADR input.

HMI_MODE_CTRL_ADR

Data type: POINTER TO PML_HMI_MODE_CTRL_TYPE

This input can be connected to the address of the instance for the control buttons of mode

selection.

HMI_MODE_DATA_ADR

Data type: POINTER TO PML_MODE_CFG_TYPE

This input can be connected to the address of the hmi list which shows the mode configura-

tion on the HMI.

HMI_MODE_SIZE

Data type: DWORD

Size of hmi mode configuration list that is connected at the corresponding ..ADR input.

6.3.2.2 Output Description

DONE (done)

Data type: BOOL

Output DONE indicates the processing state of the block. After completion or abortion of

processing (due to an error), DONE is set to TRUE for one cycle. This output always has to be

considered together with output ERR. If ERR is TRUE, an error occurred. In this case, the error

number can be read at output ERNO.

BUSY (busy)

Data type: BOOL

This output is set to TRUE when EN is TRUE.

ERR (error)

Data type: BOOL

Output ERR indicates whether an error occurred during data reception. If ERR is TRUE, an er-

ror occurred. In this case, the error number can be read at output ERNO.

64 3ADR010822, 1, en_US

ERNO (error number)

Data type: WORD

Output ERNO provides an error identifier if an error occurs during execution of the function

block. ERNO always has to be considered together with the output ERR. The value output at

ERNO is only valid if ERR is TRUE. The error messages encoding at output ERNO is explained

below.

CMD_MODE

Data type: INT

This output gives out the target ID of the users HMI selection for mode change command.

6.4 Modes & States Datatype

– PML_HMI_MODE_CTRL_TYPE

– PML_MODE_CFG_TYPE

– PML_STATE_ENUM

– PML_STATE_NAMES_TYPES

6.4.1 PML_HMI_MODE_CTRL_TYPE

Btn_Up1

Data type: BOOL

This variable moves the connected list one mode up when TRUE.

Btn_Up2

Data type: BOOL

This variable moves the connected list one page size up when TRUE.

Btn_Down1

Data type: BOOL

This variable moves the connected list one mode down when TRUE.

 AC500 PACKML LIBRARY

 3ADR010822, 1, en_US 65

Btn_Down2

Data type: BOOL

This variable moves the connected list one page size down when TRUE.

Btn_Activate

Data type: BOOL

This variable activates the highlighted mode.

6.4.2 PML_MODE_CFG_TYPE

Name

Data type: STRING (80)

This variable stores the name of the mode.

Id

Data type: INT

This variable stores the ID of the mode.

DisableStates

Data type: DWORD

This variable stores the disabled states of the mode.

ModeTransitions

Data type: DWORD

This variable stores the states where a mode transition is allowed.

Active

Data type: BOOL

This variable stores whether the mode is active or not. It should also be used to define the

first mode after starting up the PLC.

InitState

Data type: INT

This variable stores the first state after starting up the PLC when this mode is the first mode

active.

66 3ADR010822, 1, en_US

6.4.3 PML_STATE_ENUM

6.4.4 PML_STATE_NAMES_TYPE

 AC500 PACKML LIBRARY

 3ADR010822, 1, en_US 67

6.5 Visualization

The mode state visualization pages are used to display the currently active state machine.

Additionally there is the possibility to initialize a mode or state change.

6.5.1 Webserver Template

 means it is a predefined visualization template in CoDeSys and part of the Library

68 3ADR010822, 1, en_US

The CoDeSys webserver visualizations are implemented using place holders. Instead of recon-

figuring each element on the used HMI page connect the variable instance to the referring

visualization place holder.

6.5.2 CP600 Template

1. Mode Select

 AC500 PACKML LIBRARY

 3ADR010822, 1, en_US 69

This page displays the configured modes. The top one in the list will be selected if the acti-

vate button is pressed.

2. Mode States

This page displays the different state machines according to the active mode. States get de-

activated according to the mode. State changes can be initialized by using the buttons on the

right.

6.5.3 Change display size

1. Change the array size, add another Mode to the default information and adjust all size in-

puts on the FBs in CoDeSys.

2. Reimport Tags from CoDeSys to the CP600.

3. Copy one list structure from the list and paste it onto the bottom.

4. Connect the fields to the correct variables.

70 3ADR010822, 1, en_US

7 PackML User guide – An example for

modular programming

7.1 Benefits

Modular programming allows an organized project structure. Due to all modules being inde-

pendent of one other you are able to reuse them without having to change variables. You are

also able to quickly perform a trouble shooting routine on single modules. Another benefit is

a shorter time to market.

7.2 Modules

In general a module describes one or multiple logical code segments, of the whole applica-

tion code, belonging together. They are helpful for the clearness of large projects because of

planning, programing and testing of each module on its own. Using interfaces, they com-

municate data and information to their environment, e.g. other modules.

To be able to stand independently it is important that the code doesn’t depend on infor-

mation from a higher module.

They exchange data with other modules using interfaces. On Unit level there is an additional

special interface, the PackML defined PackTags and also tags to and from the HMI. The

PackML command tags to send requests to the Mode State Manager and the PackML status

tags to send the proper reply to the command. This is for a common communication method

to a line controller or another Unit.

All communication is done through these interfaces. It lets the modules write their infor-

mation on the interface for the upper module to extract the information. The interfaces from

submodules can be chosen more freely. If the project includes event handling the interface

will have the event mailbox.

 AC500 PACKML LIBRARY

 3ADR010822, 1, en_US 71

7.2.1 The usage of datatypes

All interfaces are made up of multiple datatypes. The HMI communicates with modules by

having a datatype for each module which includes their functionalities and the datatypes

from the lower modules.

7.3 Module-to-module Interface

For Module-to-Module communication there are datatypes used that unlike for the HMI only

get used once. If one module controls another one, it doesn’t know what happens inside the

lower module. Therefore it sends a command to the next module after the current module

has fulfilled all its requirements.

7.3.1 Commands

There is a specific datatype for the commands that a module can send to the next module. It

lets the higher module tell the lower module to for example switch states. The lower module

then can follow through with its code and can react to the command in many different ways.

Whether or not the command was followed through with, the higher module will only know if

it gets an appropriate Status in return.

7.3.2 Status

Similar to the commands there is a specific datatype for the module to module status up-

dates. Statuses are information that lets the higher module know that for example some-

thing is complete. Just like for the commands it can only be passed to the one higher module.

If the information needs to be passed on further, it has to be noted in the higher modules

code.

7.3.3 Event List

As explained in Chapter 2.2 in the Library Description, there is one summated list for each

module. These lists are stored in the module so that they can be send to a higher module us-

ing its interface (mailbox). The Unit list will then include its events, as well as all the lower

ones.

72 3ADR010822, 1, en_US

7.3.4 Example given by template project

For Module-to-Module communication there are used two datatypes. One is for the com-

mands and one is for the statuses. They are all BOOLs. The commands are used to trigger a

certain section of the code. For example, if the program code aborting is called, it has the

condition that the command aborting is set to TRUE. If the other conditions are also fulfilled

and the code is executed, it sends a status bit back to the interface that sets the Sts_Abort-

ing_SC to TRUE. This information is always available for only one level. What the next module

does with this information is not important.

7.4 HMI Interfaces

All HMI tags are in the Interface of the Unit. The differences between these interfaces, from

the Module-to-Module interfaces is the used datatypes. There are only two functionalities

needed, either sending commands from the Unit down to the submodules or sending status

reports back up to the Unit. To simplify the information, exchange each datatype includes,

the commands/statuses from its own module but also the commands/statuses datatypes

from all lower submodules.

This allows the user to add a functionality to a lower submodule without having to change

every other datatype from the above modules.

 AC500 PACKML LIBRARY

 3ADR010822, 1, en_US 73

7.4.1 Commands (HMI-to-module)

The commands coming from the HMI start on Unit level and are distributed downwards to

the submodules according to the hierarchy. Commands need permission from each module

before it can be sent to down to the next submodule. The information exchange can be inter-

rupted in every submodule.

Possible reasons for denying permission:

– The current state – operation not allowed

– The current mode – e.g. in maintenance mode no remote commands are allowed - Cur-

rent position

7.4.2 Status (Module-to-HMI)

For sending a status report it is the same procedure working the other way round. The Unit

application code receive information from its submodules, waits till the needed data is com-

plete and then writes it on the HMI Tags.

7.4.3 Example given by template project

As displayed below commands are passed down via assignments.

This example shows that the Module Control command for the EM1 only gets copied to the

program code when the Mode State Manager is in the mode Production and in the state Exe-

cute.

74 3ADR010822, 1, en_US

For statuses the information is passed upwards as shown in the next picture.

 AC500 PACKML LIBRARY

 3ADR010822, 1, en_US 75

8 PackML User Guide – Tips & Tricks

8.1 Things to consider when using CP600 templates

The template pages are created with widgets from the Widget Gallery. All pages have naviga-

tion bar on the top of the page in blue and commands, if available, on the right in grey.

On the bottom of each page there is a display which shows the date and time and the current

mode and state. It also shows in red the number of active events (if there are any), in yellow

the number of total events (only if all events are not triggered), and “no events” if there are

currently no alarms or warnings (triggered or not).

The Module Control page gets a second navigation bar. By clicking on the blue buttons in the

module / machine structure, individual module commands and module statuses are shown.

8.1.1 Things to consider when creating Template Pages

1. Each widget, which needs an action happing on command (a variable changing or a but-

ton being pressed) has to have the appropriate variable declared into its properties.

76 3ADR010822, 1, en_US

2. Each widget can also change color on a bit change. This bit can come from an imported

tag or from a separate protocol. In the image color is orange on True (1) and grey on False

(0).

In the example project the self-created tags are used for the navigation bar when on a

page change the buttons are to light up accordingly.

3. When wanting to switch between two texts, depending on for example the sorting option

(Inactive or active) the user needs to use “show widget” to set showing one to True and

the other one to False depending on the bit of the variable.

 AC500 PACKML LIBRARY

 3ADR010822, 1, en_US 77

8.1.2 Importing Tags from CoDeSys

1. In CoDeSys under options, make sure the “Dump symbol entries” is selected.

78 3ADR010822, 1, en_US

2. First, click on Configure symbol file and select all folders and unselect the “export varia-

bles of object” field.

3. Press ok twice and re-enter the Configure Symbol file. Now you can select single variable

files and select the “export variables of object” field to the ones that should be imported

into the Panel Builder.

 AC500 PACKML LIBRARY

 3ADR010822, 1, en_US 79

4. After selecting all wanted variables, clean all, rebuild all, log in and create a boot project.

5. Go into the Automation Builder, right click on Application, under export select Symbol file.

Choose a name for your file and save it.

80 3ADR010822, 1, en_US

6. Open the Panel Builder and create under Protocols one for the Tags that are to be im-

ported. Make sure to include the correct IP address under Configuration.

7. In the Tags, click on “Import Tags” and select the correct controller, already selected in the

protocol. Select the appropriate file.

8. At the bottom all imported tags are shown. The user must select all and press import tags

at the bottom.

 AC500 PACKML LIBRARY

 3ADR010822, 1, en_US 81

9 PackML User Guide – Glossary
BOOL

Variables of the type BOOL can have the values TRUE and FALSE. For this, 8 bit of memory

space are reserved.

.

Integer Data Types

BYTE, DINT, DWORD, INT, WORD

The different numerical types are responsible for a different numerical range. Due to this, it is

possible that information are lost when converting greater data types to smaller data types.

For integer data types the following range limits are valid:

Type BYTE INT DINT WORD DWORD

Lower limit 0 -32768 -2147483648 0 0

Upper limit 255 32767 2147483647 65535 4294967295

Memory space 8 bits 16 bits 32 bits 16 bits 32 bits
.

Functions

Functions are subroutines which have multiple input parameters and return exactly one result

element. The returned result can be of an elementary or a derived data type. Due to this, a

function may also return an array, a structure, an array of structures and so on. For the same

input parameters, functions always return the same result (they do not have an internal

memory).

.

Therefore, the following rules can be derived:

Within functions, global variables can neither be read nor written.

Within functions, absolute operands can neither be read nor written.

Within functions, function Function Blocks must not be called.

.

Function Blocks

Function Blocks are subroutines which can have as many inputs, outputs and internal varia-

bles as required. They are called from a program or from another Function Block. As they can

be used several times (with different data records), Function Blocks (code and interface) can

be considered as type. When assigning an individual data record

(declaration) to the Function Block, a Function Block instance is generated. In contrast to

functions, Function Blocks can contain statically local data which are saved from one call to

the next. Therefore e.g. counters can be realized which may not forget their counter value. I.e.

Function Blocks can have an internal memory.

.

Functions and Function Blocks differ in two essential points:

82 3ADR010822, 1, en_US

A Function Block has multiple output parameters, a function only one. The output parameters

of functions and Function Blocks differ syntactically.

In contrast to a function, a Function Block can have an internal memory.

.

Function Blocks with historical values (memory)

For Function Blocks with historical values it has to be observed that instance names may not

be defined several times if different data sets should be called.

.

Function Blocks without historical values (memory)

For Function Blocks without historical values only one instance has to be defined for the

Function Block type. This instance can be used for several calls of the Function Block (also

with different I/O values).

 AC500 PACKML LIBRARY

 3ADR010822, 1, en_US 83

10 Appendix

10.1 Attachments

State IDs, predefined by the OMAC

Mode IDs, predefined by the OMAC, definition of user defined modes is possible

State change commands, predefined by the OMAC

84 3ADR010822, 1, en_US

10.2 Command Tags (Complete Listing)

Command TAGNAME

DATA

TYPE

UnitMode UnitName.Command.Unit-

Mode

Int (32bit)

UnitModeChan-

geRequest

 UnitName.Command.Unit-

ModeChangeRequest

Bool

MachSpeed UnitName.Com-

mand.MachSpeed

Real

MaterialInterlock
UnitName.Command.Materi-

alInterlock

Bool

Structure

CntrlCmd UnitName.Com-

mand.CntrlCmd

Int (32bit)

CmdChangeRe-

quest

 UnitName.Command.Cmd-

ChangeRequest

Bool

RemoteInter-

face[#]

 UnitName.Command.Remo-

teInterface[#]

Interface

 Number UnitName.Command.Remo-

teInterface[#].Number

Int (32bit)

 ControlCmdNum-

ber

 UnitName.Command.Remo-

teInterface[#].Con-

trolCmdNumber

Int (32bit)

 CmdValue UnitName.Command.Remo-

teInterface[#].CmdValue

Int (32bit)

Parameter[#] UnitName.Command.Remo-

teInterface[#].Parameter[#]

Descriptor

Structure

 ID UnitName.Command.Re-

moteInterface[#].Parame-

ter[#].ID

Int (32bit)

 Name UnitName.Command.Re-

moteInterface[#].Parame-

ter[#].Name

String

 Unit UnitName.Command.Re-

moteInterface[#].Parame-

ter[#].Unit

String

 Value UnitName.Command.Re-

moteInterface[#].Parame-

ter[#].Value

Real

Parameter[#]
UnitName.Command.Para-

meter[#]

Descriptor

Structure

 ID UnitName.Command.Para-

meter[#].ID

Int (32bit)

 Name UnitName.Command.Para-

meter[#].Name

String

 Unit UnitName.Command.Para-

meter[#].Unit

String

 AC500 PACKML LIBRARY

 3ADR010822, 1, en_US 85

 Value
UnitName.Command.Para-

meter[#].Value

User

Defined

Product[#]
UnitName.Command.Pro-

duct[#]

Product

Structure

 ProductID UnitName.Command.Pro-

duct[#].ProductID

Int (32bit)

 ProcessVariab-

les[#]

UnitName.Command.Pro-

duct[#].ProcessVariables[#]

Descriptor

Structure

 ID UnitName.Command.Prod-

uct[#].ProcessVariables[#].ID

Int (32bit)

 Name UnitName.Command.Prod-

uct[#].ProcessVaria-

bles[#].Name

String

 Unit UnitName.Command.Prod-

uct[#].ProcessVaria-

bles[#].Unit

String

 Value UnitName.Command.Prod-

uct[#].ProcessVaria-

bles[#].Value

Real

 Ingredients[#] UnitName.Command.Pro-

duct[#].Ingredients[#]

Ingredient

 Ingredi-

entID

UnitName.Command.Prod-

uct[#].Ingredients[#].Ingre-

dientID

Int (32bit)

Parame-

ter[#]

UnitName.Command.Prod-

uct[#].Ingredients[#].Param-

eter[#]

Descriptor

Structure

 UnitName.Command.Prod-

uct[#].Ingredients[#].Param-

eter[#].ID

Int (32bit)

 UnitName.Command.Prod-

uct[#].Ingredients[#].Param-

eter[#].Name

String

 UnitName.Command.Prod-

uct[#].Ingredients[#].Param-

eter[#].Unit

String

 UnitName.Command.Prod-

uct[#].Ingredients[#].Param-

eter[#].Value

Real

86 3ADR010822, 1, en_US

10.3 Status Tags (Complete Listing)

Status TAGNAME DATATYPE

UnitModeCurrent UnitName.Status.UnitMo-

deCurrent

Int (32bit)

UnitModeReques-

ted

 UnitName.Status.UnitMode-

Requested

Bool

UnitModeChan-

geInProcess

 UnitName.Status.UnitMo-

deChangeInProcess

Bool

StateCurrent UnitName.Status.StateCur-

rent

Int (32bit)

StateRequested UnitName.Status.StateRe-

quested

Int (32bit)

StateChangeIn-

Process

 UnitName.Status.State-

ChangeInProcess

Bool

MachSpeed UnitName.Sta-

tus.MachSpeed

Real

CurMachSpeed UnitName.Status.Cur-

MachSpeed

Real

MaterialInter-

lock[#]

UnitName.Status.MaterialIn-

terlock

Bool Array

[32]

EquipmentInter-

lock

UnitName.Status.Equipmen-

tInterlock

Bool

Structure

[2]

 Blocked UnitName.Status.Equipmen-

tInterlock.Blocked

Bool

 Starved UnitName.Status.Equipmen-

tInterlock.Starved

Bool

RemoteInter-

face[#]

 UnitName.Status.RemoteIn-

terface[#]

Interface

 Number UnitName.Status.RemoteIn-

terface[#].Number

Int (32bit)

 ControlCmdNum-

ber

 UnitName.Status.RemoteIn-

terface[#].ControlCmdNum-

ber

Int (32bit)

 CmdValue UnitName.Status.RemoteIn-

terface[#].CmdValue

Int (32bit)

Parameter[#] UnitName.Status.RemoteIn-

terface[#].Parameter[#]

Descriptor

Structure

 ID UnitName.Status.RemoteIn-

terface[#].Parameter[#].ID

Int (32bit)

 Name UnitName.Status.RemoteIn-

terface[#].Parame-

ter[#].Name.

String

 Unit UnitName.Status.RemoteIn-

terface[#].Parameter[#].Unit

String

 AC500 PACKML LIBRARY

 3ADR010822, 1, en_US 87

 Value UnitName.Status.RemoteIn-

terface[#].Parame-

ter[#].Value

Real

Parameter[#]
UnitName.Status.Parame-

ter[#]

Descriptor

Structure

 ID UnitName.Status.Parame-

ter[#].ID

Int (32bit)

 Name UnitName.Status.Parame-

ter[#].Name

String

 Unit UnitName.Status.Parame-

ter[#].Unit

String

 Value
UnitName.Status.Parame-

ter[#].Value

User

Defined

Product[#] UnitName.Status.Product[#]
Product

Structure

 ProductID UnitName.Status.Pro-

duct[#].ProductID

Int (32bit)

 ProcessVariables[#]
UnitName.Status.Pro-

duct[#].ProcessVariables[#]

Descriptor

Structure

 ID UnitName.Status.Prod-

uct[#].ProcessVariables[#].ID

Int (32bit)

 Name UnitName.Status.Prod-

uct[#].ProcessVaria-

bles[#].Name

String

 Unit UnitName.Status.Prod-

uct[#].ProcessVaria-

bles[#].Unit

String

 Value UnitName.Status.Prod-

uct[#].ProcessVaria-

bles[#].Value

Real

 Ingredients[#] UnitName.Status.Pro-

duct[#].Ingredients[#]

Ingredient

 Ingredi-

entID

UnitName.Status.Pro-

duct[#].Ingredients[#].Ingre-

dientID

Int (32bit)

 Parame-

ter[#]

UnitName.Status.Prod-

uct[#].Ingredients[#].Param-

eter[#]

Descriptor

Structure

 UnitName.Status.Prod-

uct[#].Ingredients[#].Param-

eter[#].ID

Int (32bit)

 UnitName.Status.Prod-

uct[#].Ingredients[#].Param-

eter[#].Name

String

 UnitName.Status.Prod-

uct[#].Ingredients[#].Param-

eter[#].Unit

String

 UnitName.Status.Prod-

uct[#].Ingredients[#].Param-

eter[#].Value

Real

88 3ADR010822, 1, en_US

10.4 Admin Tags (Complete Listing)

Admin TAGNAME DATATYPE

Parameter[#]
UnitName.Admin.Parame-

ter[#]

Descriptor

Structure

 ID UnitName.Admin.Parame-

ter[#].ID

Int (32bit)

 Name UnitName.Admin.Parame-

ter[#].Name

String

 Unit UnitName.Admin.Parame-

ter[#].Unit

String

 Value UnitName.Admin.Parame-

ter[#].Value

Real

Alarm[#] UnitName.Admin.Alarm[#]
Alarm

Structure

 Trigger UnitName.Ad-

min.Alarm[#].Trigger

Bool

 ID UnitName.Ad-

min.Alarm[#].ID

Int (32bit)

 Value UnitName.Ad-

min.Alarm[#].Value

Int (32bit)

 Message UnitName.Ad-

min.Alarm[#].Message

String

 Category

UnitName.Ad-

min.Alarm[#].Category

(Event

Grouping) Int (32bit)

 AlmDateTime UnitName.Admin.Alarm[#]

Date-Time

Array

[0]

(year)
UnitName.Ad-

min.Alarm[#].AlmDa-

teTime[0] Int (32bit)

[1]

(month)

UnitName.Ad-

min.Alarm[#].AlmDa-

teTime[1] Int (32bit)

 [2] (day) UnitName.Ad-

min.Alarm[#].AlmDa-

teTime[2]

Int (32bit)

[3]

(hour)
UnitName.Ad-

min.Alarm[#].AlmDa-

teTime[3] Int (32bit)

 [4] (min) UnitName.Ad-

min.Alarm[#].AlmDa-

teTime[4]

Int (32bit)

 AC500 PACKML LIBRARY

 3ADR010822, 1, en_US 89

 [5] (sec) UnitName.Ad-

min.Alarm[#].AlmDa-

teTime[5]

Int (32bit)

[6]

(usec)

UnitName.Ad-

min.Alarm[#].AlmDa-

teTime[6] Int (32bit)

 AckDateTime UnitName.Admin.Alarm[#]

Date-Time

Array

[0]

(year)

UnitName.Ad-

min.Alarm[#].AckDa-

teTime[0] Int (32bit)

[1]

(month)

UnitName.Ad-

min.Alarm[#].AckDa-

teTime[1] Int (32bit)

 [2] (day) UnitName.Ad-

min.Alarm[#].AckDa-

teTime[2]

Int (32bit)

[3]

(hour)

UnitName.Ad-

min.Alarm[#].AckDa-

teTime[3] Int (32bit)

 [4] (min) UnitName.Ad-

min.Alarm[#].AckDa-

teTime[4]

Int (32bit)

 [5] (sec) UnitName.Ad-

min.Alarm[#].AckDa-

teTime[5]

Int (32bit)

[6]

(usec)

UnitName.Ad-

min.Alarm[#].AckDa-

teTime[6] Int (32bit)

AlarmExtent UnitName.Admin.AlarmEx-

tent

Int(32bit)

AlarmHistory[#]

UnitName.Admin.AlarmHis-

tory[#]

Alarm

Structure

 Trigger UnitName.Admin.AlarmHis-

tory[#].Trigger

Bool

 ID UnitName.Admin.AlarmHis-

tory[#].ID

Int (32bit)

 Value UnitName.Admin.AlarmHis-

tory[#].Value

Int (32bit)

 Message UnitName.Admin.AlarmHis-

tory[#].Message

String

 Category

UnitName.Admin.AlarmHis-

tory[#].Category (Event

Grouping) Int (32bit)

 AlmDateTime

UnitName.Admin.AlarmHis-

tory[#]

Date-Time

Array

[0]

(year)

UnitName.Admin.AlarmHis-

tory[#].AlmDateTime[0] Int (32bit)

90 3ADR010822, 1, en_US

[1]

(month)

UnitName.Admin.AlarmHis-

tory[#].AlmDateTime[1] Int (32bit)

 [2] (day) UnitName.Admin.AlarmHis-

tory[#].AlmDateTime[2]

Int (32bit)

[3]

(hour)

UnitName.Admin.AlarmHis-

tory[#].AlmDateTime[3] Int (32bit)

 [4] (min) UnitName.Admin.AlarmHis-

tory[#].AlmDateTime[4]

Int (32bit)

 [5] (sec) UnitName.Admin.AlarmHis-

tory[#].AlmDateTime[5]

Int (32bit)

[6]

(usec)

UnitName.Admin.AlarmHis-

tory[#].AlmDateTime[6] Int (32bit)

 AckDateTime

UnitName.Admin.AlarmHis-

tory[#]

Date-Time

Array

[0]

(year)

UnitName.Admin.AlarmHis-

tory[#].AckDateTime[0] Int (32bit)

[1]

(month)

UnitName.Admin.AlarmHis-

tory[#].AckDateTime[1] Int (32bit)

 [2] (day) UnitName.Admin.AlarmHis-

tory[#].AckDateTime[2]

Int (32bit)

[3]

(hour)

UnitName.Admin.AlarmHis-

tory[#].AckDateTime[3] Int (32bit)

 [4] (min) UnitName.Admin.AlarmHis-

tory[#].AckDateTime[4]

Int (32bit)

 [5] (sec) UnitName.Admin.AlarmHis-

tory[#].AckDateTime[5]

Int (32bit)

[6]

(usec)

UnitName.Admin.AlarmHis-

tory[#].AckDateTime[6] Int (32bit)

AlarmHistoryEx-

tent

 UnitName.Admin.AlarmHis-

toryExtent

Int (32bit)

StopReason
UnitName.Admin.Sto-

pReason

Alarm

Structure

 Trigger UnitName.Admin.Sto-

pReason.Trigger

Bool

 ID UnitName.Admin.Sto-

pReason.ID

Int (32bit)

 Value UnitName.Admin.Sto-

pReason.Value

Int (32bit)

 Message UnitName.Admin.Sto-

pReason.Message

String

 Category

UnitName.Ad-

min.StopReason.Category

(Event

Grouping) Int (32bit)

 AC500 PACKML LIBRARY

 3ADR010822, 1, en_US 91

 AlmDateTime

UnitName.Admin.Sto-

pReason[#]

Date-Time

Array

[0]

(year)

UnitName.Admin.Sto-

pReason[#].AlmDa-

teTime[0] Int (32bit)

[1]

(month)

UnitName.Admin.Sto-

pReason[#].AlmDateTime[1] Int (32bit)

 [2] (day) UnitName.Admin.Sto-

pReason[#].AlmDateTime[2]

Int (32bit)

[3]

(hour)

UnitName.Admin.Sto-

pReason[#].AlmDateTime[3] Int (32bit)

 [4] (min) UnitName.Admin.Sto-

pReason[#].AlmDateTime[4]

Int (32bit)

 [5] (sec) UnitName.Admin.Sto-

pReason[#].AlmDateTime[5]

Int (32bit)

[6]

(usec)

UnitName.Admin.Sto-

pReason[#].AlmDateTime[6] Int (32bit)

 AckDateTime

UnitName.Admin.Sto-

pReason[#]

Date-Time

Array

[0]

(year)

UnitName.Admin.Sto-

pReason[#].AckDateTime[0] Int (32bit)

[1]

(month)

UnitName.Admin.Sto-

pReason[#].AckDateTime[1] Int (32bit)

 [2] (day) UnitName.Admin.Sto-

pReason[#].AckDateTime[2]

Int (32bit)

[3]

(hour)

UnitName.Admin.Sto-

pReason[#].AckDateTime[3] Int (32bit)

 [4] (min) UnitName.Admin.Sto-

pReason[#].AckDateTime[4]

Int (32bit)

 [5] (sec) UnitName.Admin.Sto-

pReason[#].AckDateTime[5]

Int (32bit)

[6]

(usec)

UnitName.Admin.Sto-

pReason[#].AckDateTime[6] Int (32bit)

StopReasonEx-

tent

 UnitName.Admin.Sto-

pReasonExtent

Int (32bit)

Warning[#]
UnitName.Admin.Warn-

ing[#]

Alarm

Structure

 Trigger UnitName.Admin.Warn-

ing[#].Trigger

Bool

 ID UnitName.Admin.Warn-

ing[#].ID

Int (32bit)

 Value UnitName.Admin.Warn-

ing[#].Value

Int (32bit)

 Message UnitName.Admin.Warn-

ing[#].Message

String

92 3ADR010822, 1, en_US

 Category

UnitName.Admin.Warn-

ing[#].Category (Event

Grouping) Int (32bit)

 AlmDateTime

UnitName.Admin.Warn-

ing[#]

Date-Time

Array

[0]

(year)

UnitName.Admin.Warn-

ing[#].AlmDateTime[0] Int (32bit)

 [2] (day) UnitName.Admin.Warn-

ing[#].AlmDateTime[2]

Int (32bit)

[3]

(hour)

UnitName.Admin.Warn-

ing[#].AlmDateTime[3] Int (32bit)

 [4] (min) UnitName.Admin.Warn-

ing[#].AlmDateTime[4]

Int (32bit)

 [5] (sec) UnitName.Admin.Warn-

ing[#].AlmDateTime[5]

Int (32bit)

[6]

(usec)

UnitName.Admin.Warn-

ing[#].AlmDateTime[6] Int (32bit)

 AckDateTime

UnitName.Admin.Warn-

ing[#]

Date-Time

Array

[0]

(year)

UnitName.Admin.Warn-

ing[#].AckDateTime[0] Int (32bit)

[1]

(month)

UnitName.Admin.Warn-

ing[#].AckDateTime[1] Int (32bit)

 [2] (day) UnitName.Admin.Warn-

ing[#].AckDateTime[2]

Int (32bit)

[3]

(hour)

UnitName.Admin.Warn-

ing[#].AckDateTime[3] Int (32bit)

 [4] (min) UnitName.Admin.Warn-

ing[#].AckDateTime[4]

Int (32bit)

 [5] (sec) UnitName.Admin.Warn-

ing[#].AckDateTime[5]

Int (32bit)

[6]

(usec)

UnitName.Admin.Warn-

ing[#].AckDateTime[6] Int (32bit)

WarningExtent UnitName.Admin.Warning-

Extent

Int (32bit)

ModeCur-

rentTime[#]

 UnitName.Admin.ModeCur-

rentTime[#]

Int (32bit)

ModeCumula-

tiveTime[#]

 UnitName.Admin.ModeCu-

mulativeTime[#]

Int (32bit)

StateCur-

rentTime[#,#]
(Mode,State)

UnitName.Admin.StateCur-

rentTime[#,#]

(Mode,State) Int (32bit)

StateCumula-

tiveTime[#,#]
(Mode,State)

UnitName.Admin.StateCu-

mulativeTime[#,#]

(Mode,State) Int (32bit)

 AC500 PACKML LIBRARY

 3ADR010822, 1, en_US 93

ProdConsu-

medCount[#]

UnitName.Admin.ProdCon-

sumedCount[#]

Count

Structure

 ID UnitName.Admin.ProdCon-

sumedCount[#].ID

Int(32bit)

 Name UnitName.Admin.ProdCon-

sumedCount[#].Name

String

 Unit UnitName.Admin.ProdCon-

sumedCount[#].Unit

String

 Count UnitName.Admin.ProdCon-

sumedCount[#].Count

Int(32bit)

 AccCount UnitName.Admin.ProdCon-

sumedCount[#].AccCount

Int(32bit)

ProdProces-

sedCount[#]

UnitName.Admin.ProdPro-

cessedCount[#]

Count

Structure

 ID UnitName.Admin.ProdPro-

cessedCount[#].ID

Int(32bit)

 Name UnitName.Admin.ProdPro-

cessedCount[#].Name

String

 Unit UnitName.Admin.ProdPro-

cessedCount[#].Unit

String

 Count UnitName.Admin.ProdPro-

cessedCount[#].Count

Int(32bit)

 AccCount UnitName.Admin.ProdPro-

cessedCount[#].AccCount

Int(32bit)

ProdDefec-

tiveCount[#]

UnitName.Admin.ProdDe-

fectiveCount[#]

Count

Structure

 ID UnitName.Admin.ProdDe-

fectiveCount[#].ID

Int(32bit)

 Name UnitName.Admin.ProdDe-

fectiveCount[#].Name

String

 Unit UnitName.Admin.ProdDe-

fectiveCount[#].Unit

String

 Count UnitName.Admin.ProdDe-

fectiveCount[#].Count

Int(32bit)

 AccCount UnitName.Admin.ProdDe-

fectiveCount[#].AccCount

Int(32bit)

AccTimeSinceRe-

set

AccTimeSinceReset UnitName.Admin.AccTime-

SinceReset

Int(32bit)

MachDe-

signSpeed

 UnitName.Admin.MachDe-

signSpeed

Real

StatesDisabled UnitName.Admin.States-

Disabled

Int(32bit)

PLCDateTime
UnitName.Admin.PLCDa-

teTime

Date-Time

Array

94 3ADR010822, 1, en_US

[0]

(year)

UnitName.Admin.PLCDa-

teTime[0] Int (32bit)

[1]

(month)

UnitName.Admin.PLCDa-

teTime[1] Int (32bit)

 [2] (day) UnitName.Admin.PLCDa-

teTime[2]

Int (32bit)

[3]

(hour)

UnitName.Admin.PLCDa-

teTime[3] Int (32bit)

 [4] (min) UnitName.Admin.PLCDa-

teTime[4]

Int (32bit)

 [5] (sec) UnitName.Admin.PLCDa-

teTime[5]

Int (32bit)

[6]

(usec)

UnitName.Admin.PLCDa-

teTime[6] Int (32bit)

__

__

ABB Automation Products GmbH

Eppelheimer Straße 82

69123 Heidelberg, Germany

Phone: +49 62 21 701 1444

Fax: +49 62 21 701 1382

E-Mail: plc.support@de.abb.com

www.abb.com/plc

We reserve the right to make technical

changes or modify the contents of this

document without prior notice. With re-

gard to purchase orders, the agreed par-

ticulars shall prevail. ABB AG does not ac-

cept any responsibility whatsoever for

potential errors or possible lack of infor-

mation in this document.

We reserve all rights in this document and

in the subject matter and illustrations con-

tained therein. Any reproduction, disclo-

sure to third parties or utilization of its

contents – in whole or in parts – is forbid-

den without prior written consent of ABB

AG.

Copyright© 2021 ABB. All rights reserved

	1 Disclaimer
	2 Introduction
	2.1 Scope of the document
	2.2 Compatibility
	2.3 Overview

	3 Overview of PackML Library
	3.1 What is PackML?
	3.2 Solution Content
	3.2.1 Library
	3.2.2 AC500 Template
	3.2.3 Webserver Template
	3.2.4 CP600 Template

	3.3 First Steps
	3.4 Preconditions for the Use of the PackML Library

	4 Event Handling of PackML Library
	4.1 Usage of Event Function Blocks
	4.1.1 Event handling in subroutines
	4.1.2 Template Example

	4.2 Covered PackTags
	4.2.1 Event Function Blocks
	4.2.1.1 PML_EVENT_BASE
	4.2.1.1.1 Input Description
	4.2.1.1.2 Output Description

	4.2.1.2 PML_EVENT_PACKTAGS
	4.2.1.2.1 Input Description
	4.2.1.2.2 Output Description

	4.2.1.3 PML_EVENT_SUMMATION
	4.2.1.3.1 Input Description
	4.2.1.3.2 Output Description

	4.2.1.4 PML_HMI_ALARM_HISTORY
	4.2.1.4.1 Input Description
	4.2.1.4.2 Output Description

	4.2.1.5 PML_HMI_EVENT
	4.2.1.5.1 Input Description
	4.2.1.5.2 Output Description

	4.2.1.6 PML_EVENT_STOPREASON
	4.2.1.6.1 Input Description
	4.2.1.6.2 Output Description

	4.3 EVENT Datatypes
	4.3.1 PML_EVENT_CFG_TYPE
	4.3.2 PML_EVENT_MODULE_CFG_TYPE
	4.3.3 PML_EVENT_REF_TYPE
	4.3.4 PML_EVENT_TYPE
	4.3.5 PML_HMI_EVENT_CTRL_TYPE

	4.4 Visualization
	4.4.1 Webserver Template
	4.4.2 CP600 Template
	4.4.3 Change display size

	5 Operating Time of PackML Library
	5.1 Covered PackTags
	5.2 Usage of Time of Operation Function Blocks
	5.2.1 Template Example

	5.3 Time of Operation Function Blocks
	5.3.1 PML_TIME_OF_OPERATION
	5.3.1.1 Input Description
	5.3.1.2 Output Description

	5.3.2 PML_HMI_TIME_OF_OPERATION
	5.3.2.1 Input Description
	5.3.2.2 Output Description

	5.4 Time of Operation Datatypes
	5.4.1 PML_HMI_MSTIME_CTRL_TYPE
	5.4.2 PML_MODESTATE_TIME_TYPE
	5.4.3 PML_STATE_TIME_TYPE

	5.5 Visualization
	5.5.1 Webserver Template
	5.5.2 CP600 Template
	5.5.3 Change display size

	6 Modes & States of PackML Library
	6.1 Covered PackTags
	6.2 3.2 Usage of the mode and state machine Function Blocks
	6.2.1 Template Example

	6.3 State machine Function Blocks
	6.3.1 PML_MODE_STATE_MANAGER
	6.3.1.1 Input Description
	6.3.1.2 Output Description

	6.3.2 PML_HMI_MODE_SELECT
	6.3.2.1 Input Description
	6.3.2.2 Output Description

	6.4 Modes & States Datatype
	6.4.1 PML_HMI_MODE_CTRL_TYPE
	6.4.2 PML_MODE_CFG_TYPE
	6.4.3 PML_STATE_ENUM
	6.4.4 PML_STATE_NAMES_TYPE

	6.5 Visualization
	6.5.1 Webserver Template
	6.5.2 CP600 Template
	6.5.3 Change display size

	7 PackML User guide – An example for modular programming
	7.1 Benefits
	7.2 Modules
	7.2.1 The usage of datatypes

	7.3 Module-to-module Interface
	7.3.1 Commands
	7.3.2 Status
	7.3.3 Event List
	7.3.4 Example given by template project

	7.4 HMI Interfaces
	7.4.1 Commands (HMI-to-module)
	7.4.2 Status (Module-to-HMI)
	7.4.3 Example given by template project

	8 PackML User Guide – Tips & Tricks
	8.1 Things to consider when using CP600 templates
	8.1.1 Things to consider when creating Template Pages
	8.1.2 Importing Tags from CoDeSys

	9 PackML User Guide – Glossary
	10 Appendix
	10.1 Attachments
	10.2 Command Tags (Complete Listing)
	10.3 Status Tags (Complete Listing)
	10.4 Admin Tags (Complete Listing)

